Least Area Planes in H^{3} are Properly Embedded

Baris Coskunuzer

Koc University Mathematics Department

20 October 2011

Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a least area disk.

- A compact, orientable surface with boundary is called absolutely area minimizing surface if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.
A noncompact, orientable surface is called absolutely area minimizing surface if any compact subsurface is an absolutely area minimizing surface.
- Any least area disk, and area minimizing surface is automatically a minimal surface. The main difference between least area disk and area minimizing surface is that there is no topological restriction on the surface.

Asymptotic Plateau Problem

Plateau Problem

Let Γ be a simple closed curve in M. Then, is there a least area disk (or absolutely area minimizing surface) Σ in M with $\partial \Sigma=\Gamma$?

Asymptotic Plateau Problem

Let Γ be a simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$. Then, is there a least area plane (or absolutely area minimizing surface) Σ in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$?

- Existence 1: [Anderson, 83] For any $\Gamma \subset S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$, there exists a least area plane Σ in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$.
- Existence 2: [Anderson, 82] For any codimension-1 hypersurface Γ in $S_{\infty}^{n}\left(\mathbf{H}^{n+1}\right)$, there exists an absolutely area minimizing hypersurface Σ in \mathbf{H}^{n+1} with $\partial_{\infty} \Sigma=\Gamma$.
- Regularity: [Hardt-Lin 1987, Tonegawa 1996] Let Γ be a C^{1} simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$, and let Σ be a minimal surface in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$. Then, $\Sigma \cup \Gamma$ is a C^{1} manifold with boundary in $\overline{\mathbf{H}^{3}}$.

Asymptotic Plateau Problem

- Number of Solutions:

Let Γ be a simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$.

- [Anderson, 83] If Γ bounds a convex domain in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$, then Γ bounds a unique absolutely area minimizing surface Σ with $\partial_{\infty} \Sigma=\Gamma$.
- [Hardt-Lin, 87] If Γ bounds a star-shaped domain in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$, then Γ bounds a unique absolutely area minimizing surface Σ with $\partial_{\infty} \Sigma=\Gamma$.
- [C-, 05] For a generic simple closed curve Γ in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right), \Gamma$ bounds a unique absolutely area minimizing surface Σ with $\partial_{\infty} \Sigma=\Gamma$. The same is true for least area planes, too.
- These results are also valid for general dimensions where Σ is the absolutely area minimizing hypersurface.

More Definitions

- An immersed surface S in \mathbf{H}^{3} is proper if the preimage of any compact subset of \mathbf{H}^{3} is compact in the surface S.
If an embedded surface S in \mathbf{H}^{3} is proper, we will call S as properly embedded.
- Some examples
- Let A be a subset of $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$. Then the convex hull of A, $C H(A)$, is the smallest closed convex subset of \mathbf{H}^{3} which is asymptotic to A.

Equivalently, $\mathrm{CH}(A)$ can be defined as the intersection of all supporting closed half-spaces of \mathbf{H}^{3}.

Basic Facts

Convex Hull Property

Let Σ be a minimal surface in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$, then $\Sigma \subset C H(\Gamma)$.

Maximum Principle

If Σ and Σ^{\prime} are two minimal surfaces in M, then they cannot "touch" each other.

Meeks-Yau Exchange Roundoff Trick

If Σ and Σ^{\prime} are two least area disks, then $\Sigma \cap \Sigma^{\prime}$ cannot contain a closed curve.

In asymptotic Plateau problem setting, this implies the following:
Let Γ_{1}, Γ_{2} be two disjoint simple closed curves in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$. If Σ_{1} and Σ_{2} are two least area planes in \mathbf{H}^{3} with $\partial_{\infty} \Sigma_{i}=\Gamma_{i}$, then Σ_{1} and Σ_{2} are disjoint, too.

The Main Result

Question

Let Γ be a simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$. Let Σ be a least area plane in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$. Must such a least area plane Σ be properly embedded in \mathbf{H}^{3} ?

Main Result

Let Γ be a simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ containing at least one C^{1} point, and let Σ be a least area plane in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$. Then Σ is properly embedded in \mathbf{H}^{3}.

Analogous Question in \mathbf{R}^{3} :

\diamond [Colding-Minicozzi, 08] Any complete, embedded minimal surface of finite topology in \mathbf{R}^{3} must be properly embedded.
\diamond They used chord-arc bound for the proof.
\diamond This is known as the Calabi-Yau Conjecture for Minimal Surfaces.

Proof of the Main Result

- From now on, Γ represents a simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ containing at least one C^{1} point, and Σ represents a least area plane in \mathbf{H}^{3} with $\partial_{\infty} \Sigma=\Gamma$.
- Lemma 1: For a generic $r>0, B_{r}(0) \cap \Sigma$ consists of disjoint least area disks.
- Lemma 2: If Σ is not properly embedded, then $\exists r_{0}>0$ such that for any generic $r>r_{0}, B_{r}(0) \cap \Sigma$ consists of infinitely many disjoint least area disks.
- Definition: Separating Disks vs. Nonseparating Disks

Key Lemma

Key Lemma

Let $D_{r} \subset \Sigma \cap B_{r}(0)$ be a nonseparating disk.
Then $d\left(0, D_{r}\right)>F(r)$ where F is monotone increasing function $F:(C, \infty) \rightarrow\left(C^{\prime}, \infty\right)$, and $F(r) \nearrow \infty$ as $r \nearrow \infty$.

- If Σ is nonproper, then intuitively Σ should visit the compact part many times "unnecessarily". This lemma prohibits this!
- The Proof of the Key Lemma:

Step 1. Existence of Least Area Annulus
Step 2. Nonseparating Disks Stays near Boundary

Proof of the Main Theorem

- Lemma: If Σ is nonproper, then for any $R>0$, there exists $R^{\prime}>R$ such that $B_{R^{\prime}}(0) \cap \Sigma$ consists of infinitely many separating disks.
- Main Theorem: Σ is properly embedded in \mathbf{H}^{3}.

Final Remarks

Conjecture

Main result is true without the smooth point condition.

- However;
\diamond If we relax the condition being least area to being minimal surface, there are examples of nonproperly embedded, complete, minimal planes in \mathbf{H}^{3} [C-, 10].
\diamond If we allow more than one component for $\partial_{\infty} \Sigma$, there are examples of nonproperly embedded, complete least area planes in \mathbf{H}^{3} [Meeks-Tinaglia, 10].
- In other words, CYC in \mathbf{H}^{3} is not true.

We will talk more about the examples above in the next talk.

References

1 M. Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982) 477-494.
2 M. Anderson, Complete minimal hypersurfaces in hyp. n-manifolds, Comment. Math. Helv. 58 (1983) 264-290.
3 T.H. Colding and W.P. Minicozzi, The Calabi-Yau conjectures for embedded surfaces, Ann. of Math. (2) 167 (2008) 211-243.

4 B. Coskunuzer, Least Area Planes in Hyperbolic 3-Space are Properly Embedded, Indiana Univ. Math. J. 58 (2009) 381-392.

5 B. Coskunuzer, Generic Uniqueness of Least Area Planes in Hyp. Space, Geom. \& Topology 10 (2006) 401-412.
6 B. Coskunuzer, On the Number of Solutions to Asymptotic Plateau Problem, math/0505593.
7 B. Coskunuzer, Non-properly Embedded Minimal Planes in Hyp. 3-Space, Comm. Contemp. Math. 13 (2011) 727-739.

8 D. Gabai, On the geometric and topological rigidity of hyp. 3-manifolds, J. Amer. Math. Soc. 10 (1997) 37-74.
9 R. Hardt and F.H. Lin, Regularity at infinity for absolutely area minimizing hypersurfaces in hyperbolic space, Invent. Math. 88 (1987) 217-224.

10 W. Meeks and S.T. Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. 112 (1980) 441-484.

11 W.H. Meeks, and G. Tinaglia, Properness results for constant mean curvature surfaces, preprint.
12 Y. Tonegawa, Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space, Math. Z. 221 (1996) 591-615.

