A counterexample to Calabi-Yau Conjecture in H^{3}

Baris Coskunuzer

Koc University
Mathematics Department

21 October 2011

Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a least area disk.

- A compact, orientable surface with boundary is called absolutely area minimizing surface if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.
A noncompact, orientable surface is called absolutely area minimizing surface if any compact subsurface is an absolutely area minimizing surface.
- Any least area disk, and area minimizing surface is automatically a minimal surface. The main difference between least area disk and area minimizing surface is that there is no topological restriction on the surface.

Calabi-Yau Conjecture in \mathbf{R}^{3}

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbf{R}^{3} is proper.

- Finite Topology case: [Colding-Minicozzi] The conjecture is true for minimal surfaces with finite genus \& finite number of ends in \mathbf{R}^{3}.
- Finite Genus \& Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus \& countable number of ends in \mathbf{R}^{3}.
- Positive Injectivity Radius case: [Meeks-Rosenberg] The conjecture is true for minimal surfaces with positive injectivity radius in \mathbf{R}^{3}.
(Implies finite topology case [Colding-Minicozzi])
- Finite Genus case: finite genus \& uncountable number of ends case is still open.

Generalizations of CYC

Question

Is it possible to generalize CYC to simply connected, nonpositive curvature spaces?

- Why simply connected? Why nonpositive curvature?
- Supporting Result: [Meeks-Rosenberg]

Let N be a Riemannian 3-manifold of nonpositive sectional curvature. If M is a complete embedded minimal surface of finite topology in N, then \bar{M} has the structure of a minimal lamination.

- Note that the result above is the key lemma for their proof of CYC for finite genus case in \mathbf{R}^{3}.
- Question: Is CYC true for simply connected, nonpositive curvature spaces?

CYC vs. H^{3}

- Result 1: [Tonegawa] Let M be a complete minimal surface in \mathbf{H}^{3} where $\partial_{\infty} M=\Gamma$ is a C^{1} simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$. Then, M is properly embedded.
- Result 2: [C-] Let Σ be a complete least area plane in \mathbf{H}^{3} where $\partial_{\infty} M=\Gamma$ is a simple closed curve in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ with one smooth point. Then, Σ is properly embedded.

Question

Is CYC true for \mathbf{H}^{3} ?

- NO. In this talk, we will construct a counterexample to CYC in \mathbf{H}^{3} ?
- [Meeks-Tinaglia] have constructed another counterexample recently.

A counterexample to CYC

Main Theorem

There exists a nonproperly embedded minimal plane in \mathbf{H}^{3}.

- The example:
\diamond Take sequence of circles C_{n} in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ limiting on equator.
\diamond Each C_{n} bounds a geodesic plane P_{n} in \mathbf{H}^{3}
\diamond Connect P_{n} and P_{n+1} with a bridge at infinity
\diamond Resulting plane Σ is nonproperly embedded.
- The construction is not trivial since we do not have the bridge principle at infinity.

Figure 4. In the figure left, we see the minimal plane Σ with $\partial_{\infty} \Sigma=\Gamma$. In the figure right, we see the line segment β which is transverse to Σ.

The Construction

Main Ingredients

Lemma (Meeks-Yau)

Let Ω be a compact, mean convex 3-manifold, and $\alpha \subset \partial \Omega$ be a nullhomotopic simple closed curve.
Then, there exists an embedded least area disk $D \subset M$ with $\partial D=\Gamma$.

Lemma (Gabai)

Let $\left\{E_{n}\right\}$ be a sequence of embedded least area disks in \mathbf{H}^{3} where $\partial E_{n} \rightarrow \infty$. Then after passing to a subsequence $\left\{E_{n_{j}}\right\}$ converges to a (possibly empty) lamination σ by least area planes in \mathbf{H}^{3}.

FIGURE 2. In the figure left, Γ_{4} is constructed by using the circles $C_{1}, C_{2}, C_{3}, C_{4}$ in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ by connecting each other with bridges (blue line segments $l_{i}^{ \pm}$). The red circles represents $\eta_{i}^{ \pm}$. In the figure right, the tunnel \mathcal{T}_{1} is shown.

Z_{4}

Collapsing Disks

Figure 3. The box corresponds to Z_{4}. Green tubes are the tunnels, and blue tube is the curve β. The red curve is α_{4}. In the right, the grey rectangles are the collapsing disks.

Final Remarks

[Meeks-Rosenberg] technique for H^{3}
What goes wrong in [Meeks-Rosenberg] technique while Key Lemma is valid?

[Meeks-Rosenberg] Theorem 3 (Key Lemma)

Let N be a 3-manifold with nonpositive curvature. Let M be a complete embedded minimal surface with finite topology in N. Then, \bar{M} has the structure of a minimal lamination.

[Meeks-Rosenbeg] Theorem 4

M has bounded curvature near a limit leaf L in \bar{M}.
[Meeks-Rosenberg2] Lemma 1.3
If $N=\mathbf{R}^{3}$, then M has unbounded curvature near the limit leaf L.

This proves CYC in \mathbf{R}^{3} for finite topology case.
Our example shows that the last statement is not valid for \mathbf{H}^{3}.

Final Remarks

The Bridge Principle at Infinity

- Why can't we simply use the bridge principle in our construction?
- Is Bridge Principle at Infinity True?
\diamond Least Area case: Probably Not
\diamond Minimal case: Probably Yes

Final Remarks

[Meeks-Tinaglia] example

- Σ is a least area plane with $\partial_{\infty} \Sigma=C_{1}^{ \pm} \cup C_{2}^{ \pm}$where $C_{1}^{ \pm}$and $C_{2}^{ \pm}$ are two pairs of round circles in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$.
- Σ is an infinite strip which spirals into two annuli A_{1} and A_{2} with $\partial_{\infty} A_{i}=C_{i}^{+} \cup C_{i}^{-}$.
- [Meeks-Tinaglia] example generalizes to any CMC surface with mean curvature $H \in[0,1)$.

References

1 A. Alarcon, Recent progresses in the Calabi-Yau problem for minimal surfaces, Mat. Contemp. 30 (2006) 29-40.
2 T.H. Colding and W.P. Minicozzi, The Calabi-Yau conjectures for embedded surfaces, Ann. of Math. (2) 167 (2008) 211-243.

3 B. Coskunuzer, Least Area Planes in Hyperbolic 3-Space are Properly Embedded, Indiana Univ. Math. J. 58 (2009) 381-392.

4 B. Coskunuzer, Non-properly Embedded Minimal Planes in Hyp. 3-Space, Comm. Contemp. Math. 13 (2011) 727-739.

5 D. Gabai, On the geometric and topological rigidity of hyp. 3-manifolds, J. Amer. Math. Soc. 10 (1997) 37-74.
6 W.H. Meeks, J. Perez and A. Ros, The embedded Calabi-Yau Conjectures for finite genus, preprint.
7 W.H. Meeks, and H. Rosenberg, The minimal lamination closure theorem, Duke Math. J. 133 (2006), 467-497.
8 W.H. Meeks, and H. Rosenberg, The uniqueness of the helicoid, Ann. of Math. (2) $\mathbf{1 6 1}$ (2005) 727-758.
9 W.H. Meeks, and G. Tinaglia, Properness results for constant mean curvature surfaces, preprint.
10 W. Meeks and S.T. Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. (2) 112 (1980) 441-484.

11 Y. Tonegawa, Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space, Math. Z. 221 (1996) 591-615.

