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Basic Definitions

Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if
the mean curvature is 0 everywhere.

A least area disk is a disk which has the smallest area among the disks with the
same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a
least area disk.

A compact, orientable surface with boundary is called absolutely area
minimizing surface if it has the smallest area among all orientable surfaces
(with no topological restriction) with the same boundary.

A noncompact, orientable surface is called absolutely area minimizing surface
if any compact subsurface is an absolutely area minimizing surface.

Any least area disk, and area minimizing surface is automatically a minimal
surface. The main difference between least area disk and area minimizing
surface is that there is no topological restriction on the surface.
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Calabi-Yau Conjecture in R3

Calabi-Yau Conjecture

A complete, embedded minimal surface in R3 is proper.

Finite Topology case: [Colding-Minicozzi] The conjecture is true for minimal
surfaces with finite genus & finite number of ends in R3.

Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for
minimal surfaces with finite genus & countable number of ends in R3.

Positive Injectivity Radius case: [Meeks-Rosenberg] The conjecture is true for
minimal surfaces with positive injectivity radius in R3.

(Implies finite topology case [Colding-Minicozzi])

Finite Genus case: finite genus & uncountable number of ends case is still
open.
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Generalizations of CYC

Question

Is it possible to generalize CYC to simply connected, nonpositive curvature
spaces?

Why simply connected? Why nonpositive curvature?

Supporting Result: [Meeks-Rosenberg]
Let N be a Riemannian 3-manifold of nonpositive sectional curvature.
If M is a complete embedded minimal surface of finite topology in N, then M has
the structure of a minimal lamination.

Note that the result above is the key lemma for their proof of CYC for
finite genus case in R3.

Question: Is CYC true for simply connected, nonpositive curvature
spaces?
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CYC vs. H3

Result 1: [Tonegawa] Let M be a complete minimal surface in H3

where ∂∞M = Γ is a C1 simple closed curve in S2
∞(H3). Then, M is

properly embedded.

Result 2: [C–] Let Σ be a complete least area plane in H3 where
∂∞M = Γ is a simple closed curve in S2

∞(H3) with one smooth point.
Then, Σ is properly embedded.

Question

Is CYC true for H3?

NO. In this talk, we will construct a counterexample to CYC in H3?

[Meeks-Tinaglia] have constructed another counterexample recently.
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A counterexample to CYC

Main Theorem

There exists a nonproperly embedded minimal plane in H3.

The example:
� Take sequence of circles Cn in S2

∞(H3) limiting on equator.
� Each Cn bounds a geodesic plane Pn in H3

� Connect Pn and Pn+1 with a bridge at infinity
� Resulting plane Σ is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle
at infinity.
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The Construction

Main Ingredients

Lemma (Meeks-Yau)

Let Ω be a compact, mean convex 3-manifold, and α ⊂ ∂Ω be a
nullhomotopic simple closed curve.
Then, there exists an embedded least area disk D ⊂ M with ∂D = Γ.

Lemma (Gabai)

Let {En} be a sequence of embedded least area disks in H3 where ∂En →∞.
Then after passing to a subsequence {Enj } converges to a (possibly empty)
lamination σ by least area planes in H3.
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Final Remarks

[Meeks-Rosenberg] technique for H3

What goes wrong in [Meeks-Rosenberg] technique while Key Lemma is valid?

[Meeks-Rosenberg] Theorem 3 (Key Lemma)

Let N be a 3-manifold with nonpositive curvature. Let M be a complete
embedded minimal surface with finite topology in N. Then, M has the
structure of a minimal lamination.

[Meeks-Rosenbeg] Theorem 4

M has bounded curvature near a limit leaf L in M.

[Meeks-Rosenberg2] Lemma 1.3

If N = R3, then M has unbounded curvature near the limit leaf L.

This proves CYC in R3 for finite topology case.

Our example shows that the last statement is not valid for H3.
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Final Remarks

The Bridge Principle at Infinity

Why can’t we simply use the bridge principle in our construction?

Is Bridge Principle at Infinity True?

� Least Area case: Probably Not

� Minimal case: Probably Yes
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Final Remarks

[Meeks-Tinaglia] example

Σ is a least area plane with ∂∞Σ = C±1 ∪ C±2 where C±1 and C±2
are two pairs of round circles in S2

∞(H3).

Σ is an infinite strip which spirals into two annuli A1 and A2 with
∂∞Ai = C+

i ∪ C−i .

[Meeks-Tinaglia] example generalizes to any CMC surface with
mean curvature H ∈ [0, 1).
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