Nonproper Minimal Surfaces with Arbitrary Topology in **H**³

Baris Coskunuzer

Koc University Mathematics Department

20 June 2013

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H³

 Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A **least area plane** is a plane such that any compact subdisk in the plane is a least area disk.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A **least area plane** is a plane such that any compact subdisk in the plane is a least area disk.

A compact, orientable surface with boundary is called **absolutely area minimizing surface** if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.

A noncompact, orientable surface is called **absolutely area minimizing surface** if any compact subsurface is an absolutely area minimizing surface.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A **least area plane** is a plane such that any compact subdisk in the plane is a least area disk.

A compact, orientable surface with boundary is called **absolutely area minimizing surface** if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.

A noncompact, orientable surface is called **absolutely area minimizing surface** if any compact subsurface is an absolutely area minimizing surface.

 Any least area disk, and area minimizing surface is automatically a minimal surface. The main difference between least area disk and area minimizing surface is that there is no topological restriction on the surface.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A complete, embedded minimal surface in \mathbf{R}^3 is proper.

A complete, embedded minimal surface in \mathbf{R}^3 is proper.

• Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in **R**³.

• • • • • • • • • • • • •

A complete, embedded minimal surface in \mathbf{R}^3 is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in **R**³.
- Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus & countable number of ends in **R**³.

A complete, embedded minimal surface in \mathbf{R}^3 is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in **R**³.
- Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus & countable number of ends in **R**³.
- Finite Genus case: Finite genus & uncountable number of ends case is still open.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

A complete, embedded minimal surface in \mathbf{R}^3 is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus & finite number of ends in **R**³.
- Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus & countable number of ends in **R**³.
- Finite Genus case: Finite genus & uncountable number of ends case is still open.
- **Constant Mean Curvature case:** [Meeks-Tinaglia] The conjecture is true for *H*-surfaces in **R**³.

• • • • • • • • • • • • •

If Σ is a complete, embedded minimal surface in **H**³, then does Σ necessarily be properly embedded, like in **R**³ case?

If Σ is a complete, embedded minimal surface in **H**³, then does Σ necessarily be properly embedded, like in **R**³ case?

The answer is No.

A (1) > A (2) > A

If Σ is a complete, embedded minimal surface in **H**³, then does Σ necessarily be properly embedded, like in **R**³ case?

The answer is No.

• There exists a complete, nonproper, minimal plane in H³. [C-2011]

If Σ is a complete, embedded minimal surface in **H**³, then does Σ necessarily be properly embedded, like in **R**³ case?

• The answer is No.

• There exists a complete, nonproper, minimal plane in H³. [C-2011]

Question

Are there other complete nonproper, minimal surfaces in H³?

Question

What type of surfaces can be minimally and completely embedded in H³?

< 同 > < 回 > < 回

Question

What type of surfaces can be minimally and completely embedded in H³?

• Finite Topology: [Oliviera-Soret-1998] If *S* has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in H³ with $\Sigma \simeq S$.

A (10) A (10) A (10)

Question

What type of surfaces can be minimally and completely embedded in H³?

- Finite Topology: [Oliviera-Soret-1998] If *S* has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in H³ with $\Sigma \simeq S$.
- Arbitrary Topology: [Martin-White-2012] For any *S*, there exists complete, proper area minimizing surface Σ in H³ with $\Sigma \simeq S$.

A (1) > A (2) > A

Question

What type of surfaces can be minimally and completely embedded in H³?

- Finite Topology: [Oliviera-Soret-1998] If *S* has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in H³ with $\Sigma \simeq S$.
- Arbitrary Topology: [Martin-White-2012] For any *S*, there exists complete, proper area minimizing surface Σ in H³ with $\Sigma \simeq S$.

Question

What type of surfaces can be **nonproperly** embedded in \mathbf{H}^3 as a complete minimal surface?

(日)

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

• Outline: Let S be given.

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

• **Outline:** Let *S* be given.

 \diamond Let Σ_1 be a complete, minimal surface in **H**³ with $\Sigma_1 \simeq S$ [MW]

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

• **Outline:** Let *S* be given.

 \diamond Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \simeq S~~[MW]$

 \diamond Let Σ_2 be the nonproper minimal plane in $\textbf{H}^3.$ [C–]

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

• **Outline:** Let *S* be given.

 \diamond Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \simeq S~~[MW]$

 \diamond Let Σ_2 be the nonproper minimal plane in \mathbf{H}^3 . [C–]

 \diamond "Place" a bridge μ at infinity between Σ_1 and Σ_2 , i.e. $\Sigma = \Sigma_1 \sharp_{\mu} \Sigma_2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Any open, orientable surface S can be **nonproperly** embedded in H^3 as a complete minimal surface.

• **Outline:** Let *S* be given.

 \diamond Let Σ_1 be a complete, minimal surface in H^3 with $\Sigma_1 \simeq S~~[MW]$

 \diamond Let Σ_2 be the nonproper minimal plane in \mathbf{H}^3 . [C–]

 \diamond "Place" a bridge μ at infinity between Σ_1 and Σ_2 , i.e. $\Sigma = \Sigma_1 \sharp_{\mu} \Sigma_2$

 $\diamond \Sigma$ is both nonproper and $\Sigma \simeq S$.

(日)

Outline:

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H³

Outline:

 \diamond Take sequence of circles C_n in $S^2_{\infty}(\mathbf{H}^3)$ limiting on equator.

Outline:

- \diamond Take sequence of circles C_n in $S^2_{\infty}(\mathbf{H}^3)$ limiting on equator.
- \diamond Each C_n bounds a geodesic plane P_n in \mathbf{H}^3

< ∰ > < ≣ >

Outline:

- \diamond Take sequence of circles C_n in $S^2_{\infty}(\mathbf{H}^3)$ limiting on equator.
- \diamond Each C_n bounds a geodesic plane P_n in \mathbf{H}^3
- \diamond Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).

(□) < □) </p>

Outline:

- \diamond Take sequence of circles C_n in $S^2_{\infty}(\mathbf{H}^3)$ limiting on equator.
- \diamond Each C_n bounds a geodesic plane P_n in \mathbf{H}^3
- \diamond Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).
- \diamond Resulting plane Σ_1 is nonproperly embedded.

<日本

<b

Outline:

- \diamond Take sequence of circles C_n in $S^2_{\infty}(\mathbf{H}^3)$ limiting on equator.
- \diamond Each C_n bounds a geodesic plane P_n in \mathbf{H}^3
- \diamond Connect P_n and P_{n+1} with a bridge at infinity (alternating sides).
- \diamond Resulting plane Σ_1 is nonproperly embedded.
- The construction is not trivial since we do not have *the bridge principle at infinity* in **H**³ for stable minimal surfaces.

| 4 同 🕨 🗧 🖹 🖌 🦉

Step 2: Minimal Surfaces of Desired Topology in H³

• [Martin-White] Outline: Let S be given.

Step 2: Minimal Surfaces of Desired Topology in H³

• [Martin-White] Outline: Let S be given.

◊ Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset ... \subset S_n \subset ..$ $S_{n+1} - S_n$ contains either *pair of pants* or *cylinder with handle*.

< 同 > < 回 > < 回

- [Martin-White] Outline: Let S be given.
 - ◊ Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset ... \subset S_n \subset ...$

- $S_{n+1} S_n$ contains either *pair of pants* or *cylinder with handle*.
- ◊ Bridge principle at infinity for uniquely minimizing surfaces in H³.

(4月) (4日) (4日)

- [Martin-White] Outline: Let S be given.
 - ◊ Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset ... \subset S_n \subset ..$

- $S_{n+1} S_n$ contains either *pair of pants* or *cylinder with handle*.
- ◊ Bridge principle at infinity for uniquely minimizing surfaces in H³.

 \diamond Let \widehat{S}_1 be a geodesic plane in **H**³.

Define the area minimizing surface \widehat{S}_n in \mathbf{H}^3 with $\widehat{S}_n \simeq S_n$ inductively:

(日本)

• [Martin-White] Outline: Let S be given.

◊ Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset ... \subset S_n \subset ..$ $S_{n+1} - S_n$ contains either pair of pants or cylinder with handle.

◊ Bridge principle at infinity for uniquely minimizing surfaces in H³.

♦ Let \hat{S}_1 be a geodesic plane in **H**³.

Define the area minimizing surface \widehat{S}_n in \mathbf{H}^3 with $\widehat{S}_n \simeq S_n$ inductively:

 $\hat{S}_{n+1} = \hat{S}_n \sharp B_n$ where B_n is either one bridge or two successive bridges.

• [Martin-White] Outline: Let S be given.

◊ Start with a simple exhaustion of S [FMM].

i.e. $S = \bigcup_{n=1}^{\infty} S_n$ where $S_1 \subset S_2 \subset ... \subset S_n \subset ..$ $S_{n+1} - S_n$ contains either *pair of pants* or *cylinder with handle*.

◊ Bridge principle at infinity for uniquely minimizing surfaces in H³.

♦ Let \hat{S}_1 be a geodesic plane in **H**³.

Define the area minimizing surface \widehat{S}_n in \mathbf{H}^3 with $\widehat{S}_n \simeq S_n$ inductively:

 $\circ \widehat{S}_{n+1} = \widehat{S}_n \sharp \mathcal{B}_n$ where \mathcal{B}_n is either one bridge or two successive bridges.

 $\circ \Sigma_2 = \lim \widehat{S}_n$ is an area minimizing surface in \mathbf{H}^3 with $\Sigma_2 \simeq S$.

(日)

• Define a sequence of minimal surfaces {*T_n*} inductively.

- Define a sequence of minimal surfaces $\{T_n\}$ inductively.
- $T_1 = \widehat{S}_1$ and $T_2 = \widehat{S}_1 \sharp_{\mu} P_1$. Let $\partial_{\infty} T_n = \Gamma_n$.

(日)

- Define a sequence of minimal surfaces $\{T_n\}$ inductively.
- $T_1 = \widehat{S}_1$ and $T_2 = \widehat{S}_1 \sharp_{\mu} P_1$. Let $\partial_{\infty} T_n = \Gamma_n$.
- $T_{2n+1} = T_{2n} \sharp B_n$ (T_{2n} uniquely minimizing)

- Define a sequence of minimal surfaces $\{T_n\}$ inductively.
- $T_1 = \widehat{S}_1$ and $T_2 = \widehat{S}_1 \sharp_{\mu} P_1$. Let $\partial_{\infty} T_n = \Gamma_n$.
- $T_{2n+1} = T_{2n} \sharp B_n$ (T_{2n} uniquely minimizing)

•
$$T_{2n} = T_{2n-1} \sharp_{\alpha'_n} P_n$$

- Define a sequence of minimal surfaces { *T_n*} inductively.
- $T_1 = \widehat{S}_1$ and $T_2 = \widehat{S}_1 \sharp_{\mu} P_1$. Let $\partial_{\infty} T_n = \Gamma_n$.
- $T_{2n+1} = T_{2n} \sharp B_n$ (T_{2n} uniquely minimizing)

•
$$T_{2n} = T_{2n-1} \sharp_{\alpha'_n} P_n$$

PROBLEM

 $T_{2n-1} \cup P_n$ may not be area minimizing in **H**³.

- Define a sequence of minimal surfaces { *T_n*} inductively.
- $T_1 = \widehat{S}_1$ and $T_2 = \widehat{S}_1 \sharp_{\mu} P_1$. Let $\partial_{\infty} T_n = \Gamma_n$.
- $T_{2n+1} = T_{2n} \sharp B_n$ (T_{2n} uniquely minimizing)

•
$$T_{2n} = T_{2n-1} \sharp_{\alpha'_n} P_n$$

PROBLEM

 $T_{2n-1} \cup P_n$ may not be area minimizing in **H**³.

NEED

Mean Convex Subspaces X_n in \mathbf{H}^3 where $T_{2n-1} \cup P_n$ is uniquely minimizing in X_n .

• We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbf{H}^3$.

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H³

▲冊 ▶ ▲ 臣 ▶ ▲ 臣

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbf{H}^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$

| 4 同 🕨 🗸 三 🖌 🦉 三

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbf{H}^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$
- Igloo Trick: Let $\Pi_n = P_n^+ \sharp P_{n-1}^-$. Let \mathcal{I}_n be the component of $\mathbf{H}^3 \Pi_n$.

▲□ ▶ ▲ □ ▶ ▲ □

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbf{H}^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$
- Igloo Trick: Let $\Pi_n = P_n^+ \sharp P_{n-1}^-$. Let \mathcal{I}_n be the component of $\mathbf{H}^3 \Pi_n$.

• Let
$$X_1 = \mathbf{H}^3$$
 and $X_{n+1} = X_n - \mathcal{I}_n$.

▲□ ▶ ▲ □ ▶ ▲ □

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbf{H}^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$
- Igloo Trick: Let $\Pi_n = P_n^+ \sharp P_{n-1}^-$. Let \mathcal{I}_n be the component of $\mathbf{H}^3 \Pi_n$.

• Let
$$X_1 = \mathbf{H}^3$$
 and $X_{n+1} = X_n - \mathcal{I}_n$.

Lemma

 $T_{2n-1} \cup P_n$ is uniquely minimizing in X_n .

- We want $T_{2n-1} \cup P_n$ to be uniquely minimizing in $X_n \subset \mathbf{H}^3$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y = \Gamma_{2n-1} \cup C_n$
- Igloo Trick: Let $\Pi_n = P_n^+ \sharp P_{n-1}^-$. Let \mathcal{I}_n be the component of $\mathbf{H}^3 \Pi_n$.

• Let
$$X_1 = \mathbf{H}^3$$
 and $X_{n+1} = X_n - \mathcal{I}_n$.

Lemma

 $T_{2n-1} \cup P_n$ is uniquely minimizing in X_n .

Theorem

 $T_{2n} = T_{2n-1} \sharp P_n$ is uniquely minimizing in X_n .

• Let $\Sigma = \lim T_n$.

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H³

- Let $\Sigma = \lim T_n$.
- Σ is area minimizing in $X_{\infty} = \bigcap X_n$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let $\Sigma = \lim T_n$.
- Σ is area minimizing in $X_{\infty} = \bigcap X_n$
- Σ is just a minimal surface in **H**³.

A D N A D N A D N A D

- Let $\Sigma = \lim T_n$.
- Σ is area minimizing in $X_{\infty} = \bigcap X_n$
- Σ is just a minimal surface in **H**³.
- $\Sigma \sim \Sigma_1 \sharp_\mu \Sigma_2$.

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Let $\Sigma = \lim T_n$.
- Σ is area minimizing in $X_{\infty} = \bigcap X_n$
- Σ is just a minimal surface in **H**³.
- $\Sigma \sim \Sigma_1 \sharp_\mu \Sigma_2$.
- $\Sigma \simeq \Sigma_2 \simeq S$

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- Let $\Sigma = \lim T_n$.
- Σ is area minimizing in $X_{\infty} = \bigcap X_n$
- Σ is just a minimal surface in **H**³.
- $\Sigma \sim \Sigma_1 \sharp_\mu \Sigma_2$.
- $\Sigma \simeq \Sigma_2 \simeq S$
- Σ is nonproper as $\overline{\Sigma} \supset \overline{\Sigma_1} \supset P_{\infty}$.

• The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to *H*-surfaces: 2 cases.

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
 - Properly Embedded H-surfaces with arbitrary topology

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
 - Properly Embedded H-surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in H^3 as a minimizing *H*-surface.

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
 - Properly Embedded H-surfaces with arbitrary topology

Theorem [C–]

Any S can be properly embedded in H^3 as a minimizing H-surface.

Nonproperly Embedded H-surfaces with arbitrary topology

◇ Unfortunately these techniques do not generalize to non-proper *H*-surfaces because of the orientation problem!

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
 - Properly Embedded H-surfaces with arbitrary topology

Theorem [C–]

Any S can be properly embedded in H^3 as a minimizing H-surface.

Nonproperly Embedded H-surfaces with arbitrary topology

◇ Unfortunately these techniques do not generalize to non-proper *H*-surfaces because of the orientation problem!

 \diamond [C−, Meeks, Tinaglia] For 0 ≤ *H* < 1, ∃ a nonproperly embedded *H*-plane.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
 - Properly Embedded H-surfaces with arbitrary topology

Theorem [C–]

Any *S* can be properly embedded in H^3 as a minimizing *H*-surface.

Nonproperly Embedded H-surfaces with arbitrary topology

◇ Unfortunately these techniques do not generalize to non-proper *H*-surfaces because of the orientation problem!

 \diamond [C–, Meeks, Tinaglia] For 0 ≤ *H* < 1, ∃ a nonproperly embedded *H*-plane.

♦ [Meeks-Tinaglia] For $H \ge 1$, Calabi-Yau Conjecture is true for H-surfaces in H^3 .

< 日 > < 回 > < 回 > < 回 > < 回 > <

- T.H. Colding and W.P. Minicozzi, The Calabi-Yau conjectures for embedded surfaces, Ann. of Math. (2) 167 (2008) 211–243.
- 2 B. Coskunuzer, H-Surfaces with Arbitrary Topology in Hyperbolic 3-Space, preprint.
- 3 B. Coskunuzer, Non-properly Embedded Minimal Planes in H³, Comm. Contemp. Math. 13 (2011) 727-739.
- 4 B. Coskunuzer, W. Meeks, and G. Tinaglia, Non-properly Embedded H-Planes in H³, preprint.
- 5 L. Ferrer, F. Martin and W. H. Meeks III. Existence of proper minimal surfaces of arbitrary topological type, Advances in Math. 231 (2012) 378–413.
- 6 F. Martin and B. White, Properly Embedded Area Minimizing Surfaces in Hyperbolic 3-space, arXiv:1302.5159.
- 7 W.H. Meeks, J. Perez and A. Ros, The embedded Calabi-Yau Conjectures for finite genus, preprint.
- 8 W.H. Meeks, and G. Tinaglia, Curvature estimates for constant mean curvature surfaces, preprint.
- 9 W.H. Meeks, and G. Tinaglia, Embedded Calabi-Yau problem in hyperbolic 3-manifolds, preprint.
- 10 G. de Oliveira and M. Soret, Complete minimal surfaces in hyperbolic space, Math. Ann. 311 (1998) 397-419.
- 11 B. White, The bridge principle for stable minimal surfaces, Calc. Var. Par. Diff. Eqns. 2 (1994) 405–425.

(日)