Nonproper Minimal Surfaces with Arbitrary Topology in \mathbf{H}^{3}

Baris Coskunuzer

Koc University
Mathematics Department

20 June 2013

Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.

Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a least area disk.

Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a least area disk.

- A compact, orientable surface with boundary is called absolutely area minimizing surface if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.

A noncompact, orientable surface is called absolutely area minimizing surface if any compact subsurface is an absolutely area minimizing surface.

Basic Definitions

- Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if the mean curvature is 0 everywhere.
- A least area disk is a disk which has the smallest area among the disks with the same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a least area disk.

- A compact, orientable surface with boundary is called absolutely area minimizing surface if it has the smallest area among all orientable surfaces (with no topological restriction) with the same boundary.
A noncompact, orientable surface is called absolutely area minimizing surface if any compact subsurface is an absolutely area minimizing surface.
- Any least area disk, and area minimizing surface is automatically a minimal surface. The main difference between least area disk and area minimizing surface is that there is no topological restriction on the surface.

Calabi-Yau Conjecture in \mathbf{R}^{3}

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbf{R}^{3} is proper.

Calabi-Yau Conjecture in \mathbf{R}^{3}

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbf{R}^{3} is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus \& finite number of ends in \mathbf{R}^{3}.

Calabi-Yau Conjecture in \mathbf{R}^{3}

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbf{R}^{3} is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus \& finite number of ends in \mathbf{R}^{3}.
- Finite Genus \& Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus \& countable number of ends in \mathbf{R}^{3}.

Calabi-Yau Conjecture in \mathbf{R}^{3}

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbf{R}^{3} is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus \& finite number of ends in \mathbf{R}^{3}.
- Finite Genus \& Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus \& countable number of ends in \mathbf{R}^{3}.
- Finite Genus case: Finite genus \& uncountable number of ends case is still open.

Calabi-Yau Conjecture in \mathbf{R}^{3}

Calabi-Yau Conjecture

A complete, embedded minimal surface in \mathbf{R}^{3} is proper.

- Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for minimal surfaces with finite genus \& finite number of ends in \mathbf{R}^{3}.
- Finite Genus \& Countable ends: [Meeks-Perez-Ros] The conjecture is true for minimal surfaces with finite genus \& countable number of ends in \mathbf{R}^{3}.
- Finite Genus case: Finite genus \& uncountable number of ends case is still open.
- Constant Mean Curvature case: [Meeks-Tinaglia] The conjecture is true for H-surfaces in \mathbf{R}^{3}.

Calabi-Yau Conjecture in \mathbf{H}^{3}

H^{3} case

If Σ is a complete, embedded minimal surface in \mathbf{H}^{3}, then does Σ necessarily be properly embedded, like in \mathbf{R}^{3} case?

Calabi-Yau Conjecture in \mathbf{H}^{3}

H^{3} case

If Σ is a complete, embedded minimal surface in \mathbf{H}^{3}, then does Σ necessarily be properly embedded, like in \mathbf{R}^{3} case?

- The answer is No.

Calabi-Yau Conjecture in \mathbf{H}^{3}

H^{3} case

If Σ is a complete, embedded minimal surface in \mathbf{H}^{3}, then does Σ necessarily be properly embedded, like in \mathbf{R}^{3} case?

- The answer is No.
- There exists a complete, nonproper, minimal plane in \mathbf{H}^{3}. [C-2011]

Calabi-Yau Conjecture in \mathbf{H}^{3}

H^{3} case

If Σ is a complete, embedded minimal surface in \mathbf{H}^{3}, then does Σ necessarily be properly embedded, like in \mathbf{R}^{3} case?

- The answer is No.
- There exists a complete, nonproper, minimal plane in \mathbf{H}^{3}. [C-2011]

Question

Are there other complete nonproper, minimal surfaces in \mathbf{H}^{3} ?

Topology of the Complete Minimal Surfaces in \mathbf{H}^{3}

Question

What type of surfaces can be minimally and completely embedded in \mathbf{H}^{3} ?

Topology of the Complete Minimal Surfaces in \mathbf{H}^{3}

Question

What type of surfaces can be minimally and completely embedded in \mathbf{H}^{3} ?

- Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in \mathbf{H}^{3} with $\Sigma \simeq S$.

Topology of the Complete Minimal Surfaces in \mathbf{H}^{3}

Question

What type of surfaces can be minimally and completely embedded in \mathbf{H}^{3} ?

- Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in \mathbf{H}^{3} with $\Sigma \simeq S$.
- Arbitrary Topology: [Martin-White-2012] For any S, there exists complete, proper area minimizing surface Σ in \mathbf{H}^{3} with $\Sigma \simeq S$.

Topology of the Complete Minimal Surfaces in \mathbf{H}^{3}

Question

What type of surfaces can be minimally and completely embedded in \mathbf{H}^{3} ?

- Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite number of ends, then there exists a complete, proper minimal surface Σ in \mathbf{H}^{3} with $\Sigma \simeq S$.
- Arbitrary Topology: [Martin-White-2012] For any S, there exists complete, proper area minimizing surface Σ in \mathbf{H}^{3} with $\Sigma \simeq S$.

Question

What type of surfaces can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface?

Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface.

Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface.

- Outline: Let S be given.

Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface.

- Outline: Let S be given.
\diamond Let Σ_{1} be a complete, minimal surface in \mathbf{H}^{3} with $\Sigma_{1} \simeq S \quad[\mathrm{MW}]$

Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface.

- Outline: Let S be given.
\diamond Let Σ_{1} be a complete, minimal surface in \mathbf{H}^{3} with $\Sigma_{1} \simeq S \quad[\mathrm{MW}]$
\diamond Let Σ_{2} be the nonproper minimal plane in \mathbf{H}^{3}. [C-]

Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface.

- Outline: Let S be given.
\diamond Let Σ_{1} be a complete, minimal surface in \mathbf{H}^{3} with $\Sigma_{1} \simeq S \quad[\mathrm{MW}]$
\diamond Let Σ_{2} be the nonproper minimal plane in \mathbf{H}^{3}. [C-]
\diamond "Place" a bridge μ at infinity between Σ_{1} and Σ_{2}, i.e. $\Sigma=\Sigma_{1} \not H_{\mu} \Sigma_{2}$

Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in \mathbf{H}^{3} as a complete minimal surface.

- Outline: Let S be given.
\diamond Let Σ_{1} be a complete, minimal surface in \mathbf{H}^{3} with $\Sigma_{1} \simeq S \quad[M W]$
\diamond Let Σ_{2} be the nonproper minimal plane in \mathbf{H}^{3}. [C-]
\diamond "Place" a bridge μ at infinity between Σ_{1} and Σ_{2}, i.e. $\Sigma=\Sigma_{1} \not \sharp_{\mu} \Sigma_{2}$
$\diamond \Sigma$ is both nonproper and $\Sigma \simeq S$.

Step 1: Nonproper Minimal Plane in H^{3}

- Outline:

Step 1: Nonproper Minimal Plane in H^{3}

- Outline:
\diamond Take sequence of circles C_{n} in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ limiting on equator.

Step 1: Nonproper Minimal Plane in H^{3}

- Outline:
\diamond Take sequence of circles C_{n} in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ limiting on equator.
Each C_{n} bounds a geodesic plane P_{n} in \mathbf{H}^{3}

Step 1: Nonproper Minimal Plane in \mathbf{H}^{3}

- Outline:
\diamond Take sequence of circles C_{n} in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ limiting on equator.
\diamond Each C_{n} bounds a geodesic plane P_{n} in \mathbf{H}^{3}
\diamond Connect P_{n} and P_{n+1} with a bridge at infinity (alternating sides).

Step 1: Nonproper Minimal Plane in \mathbf{H}^{3}

- Outline:
\diamond Take sequence of circles C_{n} in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ limiting on equator.
\diamond Each C_{n} bounds a geodesic plane P_{n} in \mathbf{H}^{3}
\diamond Connect P_{n} and P_{n+1} with a bridge at infinity (alternating sides).
\diamond Resulting plane Σ_{1} is nonproperly embedded.

Step 1: Nonproper Minimal Plane in \mathbf{H}^{3}

- Outline:
\diamond Take sequence of circles C_{n} in $S_{\infty}^{2}\left(\mathbf{H}^{3}\right)$ limiting on equator.
\diamond Each C_{n} bounds a geodesic plane P_{n} in \mathbf{H}^{3}
\diamond Connect P_{n} and P_{n+1} with a bridge at infinity (alternating sides).
\diamond Resulting plane Σ_{1} is nonproperly embedded.
- The construction is not trivial since we do not have the bridge principle at infinity in \mathbf{H}^{3} for stable minimal surfaces.

Step 2: Minimal Surfaces of Desired Topology in H^{3}

- [Martin-White] Outline: Let S be given.

Step 2: Minimal Surfaces of Desired Topology in \mathbf{H}^{3}

- [Martin-White] Outline: Let S be given.
\diamond Start with a simple exhaustion of S [FMM].
i.e. $S=\bigcup_{n=1}^{\infty} S_{n}$ where $S_{1} \subset S_{2} \subset \ldots \subset S_{n} \subset .$.
$S_{n+1}-S_{n}$ contains either pair of pants or cylinder with handle.

Step 2: Minimal Surfaces of Desired Topology in \mathbf{H}^{3}

- [Martin-White] Outline: Let S be given.
\diamond Start with a simple exhaustion of S [FMM].
i.e. $S=\bigcup_{n=1}^{\infty} S_{n}$ where $S_{1} \subset S_{2} \subset \ldots \subset S_{n} \subset .$.
$S_{n+1}-S_{n}$ contains either pair of pants or cylinder with handle.
\diamond Bridge principle at infinity for uniquely minimizing surfaces in \mathbf{H}^{3}.

Step 2: Minimal Surfaces of Desired Topology in \mathbf{H}^{3}

- [Martin-White] Outline: Let S be given.
\diamond Start with a simple exhaustion of S [FMM].
i.e. $S=\bigcup_{n=1}^{\infty} S_{n}$ where $S_{1} \subset S_{2} \subset \ldots \subset S_{n} \subset .$.
$S_{n+1}-S_{n}$ contains either pair of pants or cylinder with handle.
\diamond Bridge principle at infinity for uniquely minimizing surfaces in \mathbf{H}^{3}.
\diamond Let \widehat{S}_{1} be a geodesic plane in \mathbf{H}^{3}.
Define the area minimizing surface \widehat{S}_{n} in \mathbf{H}^{3} with $\widehat{S}_{n} \simeq S_{n}$ inductively:

Step 2: Minimal Surfaces of Desired Topology in \mathbf{H}^{3}

- [Martin-White] Outline: Let S be given.
\diamond Start with a simple exhaustion of S [FMM].
i.e. $S=\bigcup_{n=1}^{\infty} S_{n}$ where $S_{1} \subset S_{2} \subset \ldots \subset S_{n} \subset .$.
$S_{n+1}-S_{n}$ contains either pair of pants or cylinder with handle.
\diamond Bridge principle at infinity for uniquely minimizing surfaces in \mathbf{H}^{3}.
\diamond Let \widehat{S}_{1} be a geodesic plane in \mathbf{H}^{3}.
Define the area minimizing surface \widehat{S}_{n} in \mathbf{H}^{3} with $\widehat{S}_{n} \simeq S_{n}$ inductively:
$\diamond \widehat{S}_{n+1}=\widehat{S}_{n} \sharp \mathcal{B}_{n}$ where \mathcal{B}_{n} is either one bridge or two successive bridges.

Step 2: Minimal Surfaces of Desired Topology in \mathbf{H}^{3}

- [Martin-White] Outline: Let S be given.
\diamond Start with a simple exhaustion of S [FMM].
i.e. $S=\bigcup_{n=1}^{\infty} S_{n}$ where $S_{1} \subset S_{2} \subset \ldots \subset S_{n} \subset .$.
$S_{n+1}-S_{n}$ contains either pair of pants or cylinder with handle.
\diamond Bridge principle at infinity for uniquely minimizing surfaces in \mathbf{H}^{3}.
\diamond Let \widehat{S}_{1} be a geodesic plane in \mathbf{H}^{3}.
Define the area minimizing surface \widehat{S}_{n} in \mathbf{H}^{3} with $\widehat{S}_{n} \simeq S_{n}$ inductively:
$\diamond \widehat{S}_{n+1}=\widehat{S}_{n} \sharp \mathcal{B}_{n}$ where \mathcal{B}_{n} is either one bridge or two successive bridges.
$\diamond \Sigma_{2}=\lim \widehat{S}_{n}$ is an area minimizing surface in \mathbf{H}^{3} with $\Sigma_{2} \simeq S$.

Step 3: The Sequence

- Define a sequence of minimal surfaces $\left\{T_{n}\right\}$ inductively.

Step 3: The Sequence

- Define a sequence of minimal surfaces $\left\{T_{n}\right\}$ inductively.
- $T_{1}=\widehat{S}_{1}$ and $T_{2}=\widehat{S}_{1} \not \sharp_{\mu} P_{1}$. Let $\partial_{\infty} T_{n}=\Gamma_{n}$.

Step 3: The Sequence

- Define a sequence of minimal surfaces $\left\{T_{n}\right\}$ inductively.
- $T_{1}=\widehat{S}_{1}$ and $T_{2}=\widehat{S}_{1} \not H_{\mu} P_{1}$. Let $\partial_{\infty} T_{n}=\Gamma_{n}$.
- $T_{2 n+1}=T_{2 n \sharp} \mathcal{B}_{n} \quad$ ($T_{2 n}$ uniquely minimizing)

Step 3: The Sequence

- Define a sequence of minimal surfaces $\left\{T_{n}\right\}$ inductively.
- $T_{1}=\widehat{S}_{1}$ and $T_{2}=\widehat{S}_{1} \not H_{\mu} P_{1}$. Let $\partial_{\infty} T_{n}=\Gamma_{n}$.
- $T_{2 n+1}=T_{2 n \sharp} \mathcal{B}_{n} \quad$ ($T_{2 n}$ uniquely minimizing)
- $T_{2 n}=T_{2 n-1} \not \alpha_{n}^{\prime} P_{n}$

Step 3: The Sequence

- Define a sequence of minimal surfaces $\left\{T_{n}\right\}$ inductively.
- $T_{1}=\widehat{S}_{1}$ and $T_{2}=\widehat{S}_{1} \not H_{\mu} P_{1}$. Let $\partial_{\infty} T_{n}=\Gamma_{n}$.
- $T_{2 n+1}=T_{2 n \sharp \mathcal{B}_{n}} \quad$ ($T_{2 n}$ uniquely minimizing)
- $T_{2 n}=T_{2 n-1 \sharp \alpha_{n}^{\prime}} P_{n}$

PROBLEM

$T_{2 n-1} \cup P_{n}$ may not be area minimizing in \mathbf{H}^{3}.

Step 3: The Sequence

- Define a sequence of minimal surfaces $\left\{T_{n}\right\}$ inductively.
- $T_{1}=\widehat{S}_{1}$ and $T_{2}=\widehat{S}_{1} \not H_{\mu} P_{1}$. Let $\partial_{\infty} T_{n}=\Gamma_{n}$.
- $T_{2 n+1}=T_{2 n \sharp \mathcal{B}_{n}} \quad$ ($T_{2 n}$ uniquely minimizing)
- $T_{2 n}=T_{2 n-1 \sharp \alpha_{n}^{\prime}} P_{n}$

PROBLEM

$T_{2 n-1} \cup P_{n}$ may not be area minimizing in \mathbf{H}^{3}.

NEED

Mean Convex Subspaces X_{n} in \mathbf{H}^{3} where $T_{2 n-1} \cup P_{n}$ is uniquely minimizing in X_{n}.

Step 4: Mean Convex Subspaces X_{n} in H^{3}

- We want $T_{2 n-1} \cup P_{n}$ to be uniquely minimizing in $X_{n} \subset \mathbf{H}^{3}$.

Step 4: Mean Convex Subspaces X_{n} in H^{3}

- We want $T_{2 n-1} \cup P_{n}$ to be uniquely minimizing in $X_{n} \subset \mathbf{H}^{3}$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y=\Gamma_{2 n-1} \cup C_{n}$

Step 4: Mean Convex Subspaces X_{n} in H^{3}

- We want $T_{2 n-1} \cup P_{n}$ to be uniquely minimizing in $X_{n} \subset \mathbf{H}^{3}$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y=\Gamma_{2 n-1} \cup C_{n}$
- Igloo Trick: Let $\Pi_{n}=P_{n}^{+} \sharp P_{n-1}^{-}$. Let \mathcal{I}_{n} be the component of $\mathbf{H}^{3}-\Pi_{n}$.

Step 4: Mean Convex Subspaces X_{n} in H^{3}

- We want $T_{2 n-1} \cup P_{n}$ to be uniquely minimizing in $X_{n} \subset \mathbf{H}^{3}$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y=\Gamma_{2 n-1} \cup C_{n}$
- Igloo Trick: Let $\Pi_{n}=P_{n}^{+} \sharp P_{n-1}^{-}$. Let \mathcal{I}_{n} be the component of $\mathbf{H}^{3}-\Pi_{n}$.
- Let $X_{1}=\mathbf{H}^{3}$ and $X_{n+1}=X_{n}-\mathcal{I}_{n}$.

Step 4: Mean Convex Subspaces X_{n} in H^{3}

- We want $T_{2 n-1} \cup P_{n}$ to be uniquely minimizing in $X_{n} \subset \mathbf{H}^{3}$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y=\Gamma_{2 n-1} \cup C_{n}$
- Igloo Trick: Let $\Pi_{n}=P_{n}^{+} \sharp P_{n-1}^{-}$. Let \mathcal{I}_{n} be the component of $\mathbf{H}^{3}-\Pi_{n}$.
- Let $X_{1}=\mathbf{H}^{3}$ and $X_{n+1}=X_{n}-\mathcal{I}_{n}$.

Lemma

$T_{2 n-1} \cup P_{n}$ is uniquely minimizing in X_{n}.

Step 4: Mean Convex Subspaces X_{n} in H^{3}

- We want $T_{2 n-1} \cup P_{n}$ to be uniquely minimizing in $X_{n} \subset \mathbf{H}^{3}$.
- Need to kill the possible competitors Y with $\partial_{\infty} Y=\Gamma_{2 n-1} \cup C_{n}$
- Igloo Trick: Let $\Pi_{n}=P_{n}^{+} \sharp P_{n-1}^{-}$. Let \mathcal{I}_{n} be the component of $\mathbf{H}^{3}-\Pi_{n}$.
- Let $X_{1}=\mathbf{H}^{3}$ and $X_{n+1}=X_{n}-\mathcal{I}_{n}$.

Lemma

$T_{2 n-1} \cup P_{n}$ is uniquely minimizing in X_{n}.

Theorem

$T_{2 n}=T_{2 n-1 \sharp} \sharp P_{n}$ is uniquely minimizing in X_{n}.

Nonproper Minimal Surface of Desired Topology

- Let $\Sigma=\lim T_{n}$.

Nonproper Minimal Surface of Desired Topology

- Let $\Sigma=\lim T_{n}$.
- Σ is area minimizing in $X_{\infty}=\bigcap X_{n}$

Nonproper Minimal Surface of Desired Topology

- Let $\Sigma=\lim T_{n}$.
- Σ is area minimizing in $X_{\infty}=\bigcap X_{n}$
- Σ is just a minimal surface in \mathbf{H}^{3}.

Nonproper Minimal Surface of Desired Topology

- Let $\Sigma=\lim T_{n}$.
- Σ is area minimizing in $X_{\infty}=\bigcap X_{n}$
- Σ is just a minimal surface in \mathbf{H}^{3}.
- $\Sigma \sim \Sigma_{1 \not \sharp_{\mu}} \Sigma_{2}$.

Nonproper Minimal Surface of Desired Topology

- Let $\Sigma=\lim T_{n}$.
- Σ is area minimizing in $X_{\infty}=\bigcap X_{n}$
- Σ is just a minimal surface in \mathbf{H}^{3}.
- $\Sigma \sim \Sigma_{1} \sharp_{\mu} \Sigma_{2}$.
- $\Sigma \simeq \Sigma_{2} \simeq S$

Nonproper Minimal Surface of Desired Topology

- Let $\Sigma=\lim T_{n}$.
- Σ is area minimizing in $X_{\infty}=\bigcap X_{n}$
- Σ is just a minimal surface in \mathbf{H}^{3}.
- $\Sigma \sim \Sigma_{1 \not \sharp_{\mu}} \Sigma_{2}$.
- $\Sigma \simeq \Sigma_{2} \simeq S$
- Σ is nonproper as $\bar{\Sigma} \supset \overline{\Sigma_{1}} \supset P_{\infty}$.

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
\& Properly Embedded H -surfaces with arbitrary topology

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
\& Properly Embedded H -surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in \mathbf{H}^{3} as a minimizing H-surface.

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
\& Properly Embedded H -surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in \mathbf{H}^{3} as a minimizing H -surface.
\& Nonproperly Embedded H -surfaces with arbitrary topology
\diamond Unfortunately these techniques do not generalize to non-proper H -surfaces because of the orientation problem!

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
\& Properly Embedded H -surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in \mathbf{H}^{3} as a minimizing H-surface.
\& Nonproperly Embedded H-surfaces with arbitrary topology
\diamond Unfortunately these techniques do not generalize to non-proper H -surfaces because of the orientation problem!
$\diamond[\mathrm{C}-$, Meeks, Tinaglia] For $0 \leq H<1, \exists$ a nonproperly embedded H-plane.

Final Remarks

- The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the Igloo Trick.
- Generalization to H-surfaces: 2 cases.
\& Properly Embedded H -surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in \mathbf{H}^{3} as a minimizing H-surface.
\& Nonproperly Embedded H -surfaces with arbitrary topology
\diamond Unfortunately these techniques do not generalize to non-proper H -surfaces because of the orientation problem!
$\diamond[\mathrm{C}-$, Meeks, Tinaglia] For $0 \leq H<1, \exists$ a nonproperly embedded H-plane.
$\diamond\left[\right.$ Meeks-Tinaglia] For $H \geq 1$, Calabi-Yau Conjecture is true for H-surfaces in \mathbf{H}^{3}.

References

1 T.H. Colding and W.P. Minicozzi, The Calabi-Yau conjectures for embedded surfaces, Ann. of Math. (2) 167 (2008) 211-243.

2 B. Coskunuzer, H-Surfaces with Arbitrary Topology in Hyperbolic 3-Space, preprint.
3 B. Coskunuzer, Non-properly Embedded Minimal Planes in H3 , Comm. Contemp. Math. 13 (2011) 727-739.
4 B. Coskunuzer, W. Meeks, and G. Tinaglia, Non-properly Embedded H-Planes in \mathbf{H}^{3}, preprint.
5 L. Ferrer, F. Martin and W. H. Meeks III. Existence of proper minimal surfaces of arbitrary topological type, Advances in Math. 231 (2012) 378-413.

6 F. Martin and B. White, Properly Embedded Area Minimizing Surfaces in Hyperbolic 3-space, arXiv:1302.5159.
7 W.H. Meeks, J. Perez and A. Ros, The embedded Calabi-Yau Conjectures for finite genus, preprint.
8 W.H. Meeks, and G. Tinaglia, Curvature estimates for constant mean curvature surfaces, preprint.
9 W.H. Meeks, and G. Tinaglia, Embedded Calabi-Yau problem in hyperbolic 3-manifolds, preprint.
G. de Oliveira and M. Soret, Complete minimal surfaces in hyperbolic space, Math. Ann. 311 (1998) 397-419.

11
B. White, The bridge principle for stable minimal surfaces, Calc. Var. Par. Diff. Eqns. 2 (1994) 405-425.

