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Basic Definitions

@ Let X be a surface in a Riemannian manifold M. We call ¥ a minimal surface if
the mean curvature is 0 everywhere.
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@ Let X be a surface in a Riemannian manifold M. We call ¥ a minimal surface if
the mean curvature is 0 everywhere.

@ A least area disk is a disk which has the smallest area among the disks with the
same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a
least area disk.
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Basic Definitions

@ Let T be a surface in a Riemannian manifold M. We call ¥ a minimal surface if
the mean curvature is 0 everywhere.

@ A least area disk is a disk which has the smallest area among the disks with the
same boundary.
A least area plane is a plane such that any compact subdisk in the plane is a

least area disk.

@ A compact, orientable surface with boundary is called absolutely area
minimizing surface if it has the smallest area among all orientable surfaces
(with no topological restriction) with the same boundary.

A noncompact, orientable surface is called absolutely area minimizing surface
if any compact subsurface is an absolutely area minimizing surface.
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Basic Definitions

@ Let T be a surface in a Riemannian manifold M. We call ¥ a minimal surface if
the mean curvature is 0 everywhere.

@ A least area disk is a disk which has the smallest area among the disks with the
same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a
least area disk.

@ A compact, orientable surface with boundary is called absolutely area
minimizing surface if it has the smallest area among all orientable surfaces
(with no topological restriction) with the same boundary.

A noncompact, orientable surface is called absolutely area minimizing surface
if any compact subsurface is an absolutely area minimizing surface.

@ Any least area disk, and area minimizing surface is automatically a minimal
surface. The main difference between least area disk and area minimizing
surface is that there is no topological restriction on the surface.
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Calabi-Yau Conjecture in R3

Calabi-Yau Conjecture

A complete, embedded minimal surface in R® is proper.
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Calabi-Yau Conjecture

A complete, embedded minimal surface in R® is proper.

@ Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for
minimal surfaces with finite genus & finite number of ends in R3.
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Calabi-Yau Conjecture in R3

Calabi-Yau Conjecture

A complete, embedded minimal surface in R® is proper.

@ Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for
minimal surfaces with finite genus & finite number of ends in R3.

@ Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for
minimal surfaces with finite genus & countable number of ends in R3.
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Calabi-Yau Conjecture in R3

Calabi-Yau Conjecture

A complete, embedded minimal surface in R® is proper.

@ Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for
minimal surfaces with finite genus & finite number of ends in R3.

@ Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for
minimal surfaces with finite genus & countable number of ends in R3.

@ Finite Genus case: Finite genus & uncountable number of ends case is still
open.
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Calabi-Yau Conjecture in R3

Calabi-Yau Conjecture

A complete, embedded minimal surface in R® is proper.

@ Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for
minimal surfaces with finite genus & finite number of ends in R3.

@ Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for
minimal surfaces with finite genus & countable number of ends in R3.

@ Finite Genus case: Finite genus & uncountable number of ends case is still
open.

@ Constant Mean Curvature case: [Meeks-Tinaglia] The conjecture is true for
H-surfaces in R3.
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Calabi-Yau Conjecture in H3

H? case

If ¥ is a complete, embedded minimal surface in H?, then does ¥ necessarily
be properly embedded, like in R® case?
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Calabi-Yau Conjecture in H3

H? case

If ¥ is a complete, embedded minimal surface in H?, then does ¥ necessarily
be properly embedded, like in R® case?

@ The answer is No.
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Calabi-Yau Conjecture in H3

H? case

If ¥ is a complete, embedded minimal surface in H?, then does ¥ necessarily
be properly embedded, like in R® case?

@ The answer is No.

@ There exists a complete, nonproper, minimal plane in H3. [C-2011]

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H®



Calabi-Yau Conjecture in H3

H? case

If ¥ is a complete, embedded minimal surface in H?, then does ¥ necessarily
be properly embedded, like in R® case?

@ The answer is No.

@ There exists a complete, nonproper, minimal plane in H3. [C-2011]

Question

Are there other complete nonproper, minimal surfaces in H3?
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Topology of the Complete Minimal Surfaces in H3

What type of surfaces can be minimally and completely embedded in H3?
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Topology of the Complete Minimal Surfaces in H3

What type of surfaces can be minimally and completely embedded in H3?

@ Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite
number of ends, then there exists a complete, proper minimal surface
in H® with ¥ ~ S.
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Topology of the Complete Minimal Surfaces in H3

What type of surfaces can be minimally and completely embedded in H3?

@ Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite
number of ends, then there exists a complete, proper minimal surface
in H® with ¥ ~ S.

@ Arbitrary Topology: [Martin-White-2012] For any S, there exists
complete, proper area minimizing surface ¥ in H® with ¥ ~ S.
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Topology of the Complete Minimal Surfaces in H3

What type of surfaces can be minimally and completely embedded in H3?

@ Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite
number of ends, then there exists a complete, proper minimal surface
in H® with ¥ ~ S.

@ Arbitrary Topology: [Martin-White-2012] For any S, there exists
complete, proper area minimizing surface ¥ in H® with ¥ ~ S.

What type of surfaces can be nonproperly embedded in H® as a complete
minimal surface?
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Main Result:

Any open, orientable surface S can be nonproperly embedded in H® as a
complete minimal surface.
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Main Result:

Any open, orientable surface S can be nonproperly embedded in H® as a
complete minimal surface.

@ Outline: Let S be given.
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Main Result:

Any open, orientable surface S can be nonproperly embedded in H® as a
complete minimal surface.

@ Outline: Let S be given.

o Let ¥4 be a complete, minimal surface in H® with &y ~ S [MW]
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Main Result:

Any open, orientable surface S can be nonproperly embedded in H® as a
complete minimal surface.

@ Outline: Let S be given.
o Let ¥4 be a complete, minimal surface in H® with &y ~ S [MW]

o Let ¥, be the nonproper minimal plane in H®.  [C-]
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Main Result:

Any open, orientable surface S can be nonproperly embedded in H® as a
complete minimal surface.

@ Outline: Let S be given.
o Let ¥4 be a complete, minimal surface in H® with &y ~ S [MW]
o Let ¥, be the nonproper minimal plane in H®.  [C-]

o "Place” a bridge . at infinity between Xy and X, i.e. ¥ = X1§,Y»
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Main Result:

Any open, orientable surface S can be nonproperly embedded in H® as a
complete minimal surface.

@ Outline: Let S be given.
o Let ¥4 be a complete, minimal surface in H® with &y ~ S [MW]
o Let ¥, be the nonproper minimal plane in H®.  [C-]
o "Place” a bridge . at infinity between Xy and X, i.e. ¥ = X1§,Y»

© X is both nonproper and X ~ S.
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Step 1: Nonproper Minimal Plane in H3

@ Outline:
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Step 1: Nonproper Minimal Plane in H3

@ Outline:

o Take sequence of circles C, in S, (H®) limiting on equator.
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Step 1: Nonproper Minimal Plane in H3

@ Outline:

o Take sequence of circles C, in S, (H®) limiting on equator.

o Each C, bounds a geodesic plane P, in H®
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Step 1: Nonproper Minimal Plane in H3

@ Outline:

o Take sequence of circles C, in S, (H®) limiting on equator.
o Each C, bounds a geodesic plane P, in H®

o Connect P, and P,.1 with a bridge at infinity (alternating sides).
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Step 1: Nonproper Minimal Plane in H3

@ Outline:

o Take sequence of circles C, in S, (H®) limiting on equator.
o Each C, bounds a geodesic plane P, in H®
o Connect P, and P,.1 with a bridge at infinity (alternating sides).

< Resulting plane X1 is nonproperly embedded.
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Step 1: Nonproper Minimal Plane in H3

@ Outline:

o Take sequence of circles C, in S, (H®) limiting on equator.
o Each C, bounds a geodesic plane P, in H®
o Connect P, and P,.1 with a bridge at infinity (alternating sides).

< Resulting plane X1 is nonproperly embedded.

@ The construction is not trivial since we do not have the bridge principle
at infinity in H® for stable minimal surfaces.
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Step 2: Minimal Surfaces of Desired Topology in H3

@ [Martin-White] Outline: Let S be given.
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Step 2: Minimal Surfaces of Desired Topology in H3

@ [Martin-White] Outline: Let S be given.

¢ Start with a simple exhaustion of S [FMM].

ie. S=UJ;2,Sn where SiCc S C..C S C.
Sni1 — Sp contains either pair of pants or cylinder with handle.
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Step 2: Minimal Surfaces of Desired Topology in H3

@ [Martin-White] Outline: Let S be given.

¢ Start with a simple exhaustion of S [FMM].

ie. S=UJ;2,Sn where SiCc S C..C S C.
Sni1 — Sp contains either pair of pants or cylinder with handle.

© Bridge principle at infinity for uniquely minimizing surfaces in H°.
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Step 2: Minimal Surfaces of Desired Topology in H3

@ [Martin-White] Outline: Let S be given.

¢ Start with a simple exhaustion of S [FMM].

ie. S=UJ;2,Sn where SiCc S C..C S C.
Sni1 — Sp contains either pair of pants or cylinder with handle.

© Bridge principle at infinity for uniquely minimizing surfaces in H°.

o Let Sy be a geodesic plane in H®.

Define the area minimizing surface S,inH with S, ~ S, inductively:

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H3



Step 2: Minimal Surfaces of Desired Topology in H3

@ [Martin-White] Outline: Let S be given.

¢ Start with a simple exhaustion of S [FMM].

ie. S=UJ;2,Sn where SiCc S C..C S C.
Sni1 — Sp contains either pair of pants or cylinder with handle.

© Bridge principle at infinity for uniquely minimizing surfaces in H°.
o Let Sy be a geodesic plane in H®.

Define the area minimizing surface S,inH with S, ~ S, inductively:

o Spi1 = ShiBB, where B, is either one bridge or two successive bridges.
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Step 2: Minimal Surfaces of Desired Topology in H3

@ [Martin-White] Outline: Let S be given.

¢ Start with a simple exhaustion of S [FMM].

ie. S=UJ;2,Sn where SiCc S C..C S C.
Sni1 — Sp contains either pair of pants or cylinder with handle.

© Bridge principle at infinity for uniquely minimizing surfaces in H°.
o Let Sy be a geodesic plane in H®.

Define the area minimizing surface S,inH with S, ~ S, inductively:
o Spi1 = ShiBB, where B, is either one bridge or two successive bridges.

o ¥ = lim S, is an area minimizing surface in H® with ¥, ~ S.

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H®



Step 3: The Sequence

@ Define a sequence of minimal surfaces { T,} inductively.
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Step 3: The Sequence

@ Define a sequence of minimal surfaces { T,} inductively.

@ T,=5and T, = Sif,Ps. Let 9., T, = .
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Step 3: The Sequence

@ Define a sequence of minimal surfaces { T,} inductively.
@ /=5 and T = Si#,Ps. Let 9oo T = T

@ Toni1 = TontiBn  (T2n Uniquely minimizing)
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Step 3: The Sequence

@ Define a sequence of minimal surfaces { T,} inductively.
@ T,=5and T, = Sif,Ps. Let 9., T, = .
@ Toni1 = TontiBn  (T2n Uniquely minimizing)

@ Ton = Ton—1far Pn
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Step 3: The Sequence

@ Define a sequence of minimal surfaces { T,} inductively.
@ /=5 and T = Si#,Ps. Let 9oo T = T

@ Toni1 = TonBn (T2, uniquely minimizing)

@ Ton = Ton—1far Pn

PROBLEM

Tan_1 U P, may not be area minimizing in H3.
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Step 3: The Sequence

@ Define a sequence of minimal surfaces { T,} inductively.
@ /=5 and T = Si#,Ps. Let 9oo T = T

@ Toni1 = TonBn (T2, uniquely minimizing)

@ Ton = Ton—1far Pn

PROBLEM

Tan_1 U P, may not be area minimizing in H3.

NEED

Mean Convex Subspaces X, in H® where T,,_1 U P, is uniquely minimizing in Xp.
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Step 4: Mean Convex Subspaces X, in H3

@ We want Tz,_1 U P, to be uniquely minimizing in X, ¢ H°.
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Step 4: Mean Convex Subspaces X, in H3

@ We want Tz,_1 U P, to be uniquely minimizing in X, ¢ H°.

@ Need to kill the possible competitors Y with 0oc Y = M2p—1 U Cp
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Step 4: Mean Convex Subspaces X, in H3

@ We want Tz,_1 U P, to be uniquely minimizing in X, ¢ H°.
@ Need to kill the possible competitors Y with 0oc Y = M2p—1 U Cp

@ Igloo Trick: Let M, = PP, .. Let Z, be the component of H® — .
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@ We want Tz,_1 U P, to be uniquely minimizing in X, ¢ H°.
@ Need to kill the possible competitors Y with 0oc Y = M2p—1 U Cp
@ Igloo Trick: Let M, = PP, .. Let Z, be the component of H® — .

@ Let Xy = H® and Xpp1 = Xn — Zon.
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Step 4: Mean Convex Subspaces X, in H3

@ We want Tz,_1 U P, to be uniquely minimizing in X, ¢ H°.
@ Need to kill the possible competitors Y with 0oc Y = M2p—1 U Cp
@ Igloo Trick: Let M, = PP, .. Let Z, be the component of H® — .

@ Let Xy = H® and Xpp1 = Xn — Zon.

Ton—1 U Py is uniquely minimizing in X,.
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Step 4: Mean Convex Subspaces X, in H3

@ We want Tz,_1 U P, to be uniquely minimizing in X, ¢ H°.
@ Need to kill the possible competitors Y with 0oc Y = M2p—1 U Cp
@ Igloo Trick: Let M, = PP, .. Let Z, be the component of H® — .

@ Let Xy = H® and Xpp1 = Xn — Zon.

Ton—1 U Py is uniquely minimizing in X,.

Ton = Ton—14Pn is uniquely minimizing in Xj.
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Nonproper Minimal Surface of Desired Topology

@ LetX =IlimT,.
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Nonproper Minimal Surface of Desired Topology

@ LetX =IlimT,.

@ Y is area minimizing in X = X»
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Nonproper Minimal Surface of Desired Topology

@ LetX =IlimT,.
@ Y is area minimizing in X = X»

@ Y is just a minimal surface in H®.
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Nonproper Minimal Surface of Desired Topology

@ LetX =IlimT,.
@ Y is area minimizing in X = X»
@ Y is just a minimal surface in H®.

@ ~ ZﬂjuZz.
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Nonproper Minimal Surface of Desired Topology

@ LetX =IlimT,.

@ Y is area minimizing in X = X»
@ Y is just a minimal surface in H®.
Y~ Y, Yo

@Yy ~3Y>,~S§S
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Nonproper Minimal Surface of Desired Topology

@ LetX =IlimT,.

@ Y is area minimizing in X = X»
@ Y is just a minimal surface in H®.
° Y~ ¥if,Ys.

@Y ~3)Y>,~S

@ Y isnonproperas ¥ O ¥4 D P..
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Final Remarks

@ The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the
Igloo Trick.
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Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H®



Final Remarks

@ The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the
Igloo Trick.

@ Generalization to H-surfaces: 2 cases.

& Properly Embedded H-surfaces with arbitrary topology

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H®



Final Remarks

@ The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the
Igloo Trick.

@ Generalization to H-surfaces: 2 cases.
& Properly Embedded H-surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in H® as a minimizing H-surface.
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@ The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the
Igloo Trick.

@ Generalization to H-surfaces: 2 cases.
& Properly Embedded H-surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in H® as a minimizing H-surface.

& Nonproperly Embedded H-surfaces with arbitrary topology

o Unfortunately these techniques do not generalize to non-proper H-surfaces
because of the orientation problem!
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@ Generalization to H-surfaces: 2 cases.
& Properly Embedded H-surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in H® as a minimizing H-surface.

& Nonproperly Embedded H-surfaces with arbitrary topology

o Unfortunately these techniques do not generalize to non-proper H-surfaces
because of the orientation problem!

o [C—, Meeks, Tinaglia] For 0 < H < 1, 3 a nonproperly embedded H-plane.
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Final Remarks

@ The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the
Igloo Trick.

@ Generalization to H-surfaces: 2 cases.
& Properly Embedded H-surfaces with arbitrary topology

Theorem [C-]

Any S can be properly embedded in H® as a minimizing H-surface.

& Nonproperly Embedded H-surfaces with arbitrary topology

o Unfortunately these techniques do not generalize to non-proper H-surfaces
because of the orientation problem!

o [C—, Meeks, Tinaglia] For 0 < H < 1, 3 a nonproperly embedded H-plane.

o [Meeks-Tinaglia] For H > 1, Calabi-Yau Conjecture is true for H-surfaces in H3.
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