
Nonproper Minimal Surfaces with Arbitrary
Topology in H3

Baris Coskunuzer

Koc University
Mathematics Department

20 June 2013

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H3



Basic Definitions

Let Σ be a surface in a Riemannian manifold M. We call Σ a minimal surface if
the mean curvature is 0 everywhere.

A least area disk is a disk which has the smallest area among the disks with the
same boundary.

A least area plane is a plane such that any compact subdisk in the plane is a
least area disk.

A compact, orientable surface with boundary is called absolutely area
minimizing surface if it has the smallest area among all orientable surfaces
(with no topological restriction) with the same boundary.

A noncompact, orientable surface is called absolutely area minimizing surface
if any compact subsurface is an absolutely area minimizing surface.

Any least area disk, and area minimizing surface is automatically a minimal
surface. The main difference between least area disk and area minimizing
surface is that there is no topological restriction on the surface.
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Calabi-Yau Conjecture in R3

Calabi-Yau Conjecture

A complete, embedded minimal surface in R3 is proper.

Finite Topology case: [Colding-Minicozzi-2004] The conjecture is true for
minimal surfaces with finite genus & finite number of ends in R3.

Finite Genus & Countable ends: [Meeks-Perez-Ros] The conjecture is true for
minimal surfaces with finite genus & countable number of ends in R3.

Finite Genus case: Finite genus & uncountable number of ends case is still
open.

Constant Mean Curvature case: [Meeks-Tinaglia] The conjecture is true for
H-surfaces in R3.
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Calabi-Yau Conjecture in H3

H3 case

If Σ is a complete, embedded minimal surface in H3, then does Σ necessarily
be properly embedded, like in R3 case?

The answer is No.

There exists a complete, nonproper, minimal plane in H3. [C–2011]

Question

Are there other complete nonproper, minimal surfaces in H3?
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Topology of the Complete Minimal Surfaces in H3

Question

What type of surfaces can be minimally and completely embedded in H3?

Finite Topology: [Oliviera-Soret-1998] If S has finite genus and finite
number of ends, then there exists a complete, proper minimal surface Σ
in H3 with Σ ' S.

Arbitrary Topology: [Martin-White-2012] For any S, there exists
complete, proper area minimizing surface Σ in H3 with Σ ' S.

Question

What type of surfaces can be nonproperly embedded in H3 as a complete
minimal surface?
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Main Result:

Theorem:

Any open, orientable surface S can be nonproperly embedded in H3 as a
complete minimal surface.

Outline: Let S be given.

� Let Σ1 be a complete, minimal surface in H3 with Σ1 ' S [MW]

� Let Σ2 be the nonproper minimal plane in H3. [C–]

� ”Place” a bridge µ at infinity between Σ1 and Σ2, i.e. Σ = Σ1]µΣ2

� Σ is both nonproper and Σ ' S.
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Step 1: Nonproper Minimal Plane in H3

Outline:

� Take sequence of circles Cn in S2
∞(H3) limiting on equator.

� Each Cn bounds a geodesic plane Pn in H3

� Connect Pn and Pn+1 with a bridge at infinity (alternating sides).

� Resulting plane Σ1 is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle
at infinity in H3 for stable minimal surfaces.
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H-SURFACES WITH ARBITRARY TOPOLOGY INH3 9

Here, adding a bridge to the same boundary component of a surface
would correspond to the pair of pants case. Adding two bridges succes-
sively to the same boundary component would correspond to the cylinder
with a handle case. In particular, ifC is the boundary component in∂Sn

and the annulusA is a small neighborhood ofC in Sn, thenA ∪ Bn would
be a pair of pants, whereBn is the bridge attached toC. On the other hand,
if B′

n is a smaller bridge connecting the different sides of the bridgeBn, let
Bn ∪B′

n be the handleHn. ThenA∪Hn would be a cylinder with a handle
(See Figure 4).

Notice that by attaching a bridgeBn, we increase the number of bound-
ary components ofSn by 1 and decrease the euler characteristic by1, i.e.

γ

γ1

FIGURE 3. In the simple exhaustion ofS, S1 is a disk, and
Sn+1 − Sn contains a unique nonannular part, which is a pair of
pants (e.g.S4 − S3), or a cylinder with a handle (e.g.S3 − S2).



Step 1: Nonproper Minimal Plane in H3

Outline:

� Take sequence of circles Cn in S2
∞(H3) limiting on equator.

� Each Cn bounds a geodesic plane Pn in H3

� Connect Pn and Pn+1 with a bridge at infinity (alternating sides).

� Resulting plane Σ1 is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle
at infinity in H3 for stable minimal surfaces.

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H3



Step 1: Nonproper Minimal Plane in H3

Outline:

� Take sequence of circles Cn in S2
∞(H3) limiting on equator.

� Each Cn bounds a geodesic plane Pn in H3

� Connect Pn and Pn+1 with a bridge at infinity (alternating sides).

� Resulting plane Σ1 is nonproperly embedded.

The construction is not trivial since we do not have the bridge principle
at infinity in H3 for stable minimal surfaces.

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H3



8 BARIS COSKUNUZER

Notice that by lemma 2.7,St ∩ Ss = ∅ for t 6= s, and henceVt ∩ Vs = ∅ for
t 6= s.

Now, consider a short arc segmentη in H
3 with one endpoint is inSt1

and the other end point is inSt2 where0 < t1 < t2 < ǫ′. Hence,η intersects
all minimizingH-surfacesSt with ∂∞St = Γt wheret1 ≤ t ≤ t2. Now for
t1 < s < t2, define thethicknessλs of Vs asλs = |η ∩ Vs|, i.e. λs is the
length of the piece ofη in Vs.Hence, ifΓs bounds more than oneH-surface,
then the thickness is not0. In other words, ifλs = 0, thenΓs bounds a
uniqueH-surface inH3.

As Vt ∩ Vs = ∅ for t 6= s,
∑t2

t1
λs < |η|. Hence, for only countably many

s ∈ [t1, t2], λs > 0. This implies for all but countably manys ∈ [t1, t2],
λs = 0, and henceΓs bounds a unique minimizingH-surface. Similarly,
this implies for all but countably manys ∈ [0, ǫ′], Γs bounds a uniqueH-
surface. The proof follows.

Step 1 and Step 2 implies the existence of a nearby (0 < t < ǫ′) smooth
curveΓt to Γ ∪ α whereΓt bounds a unique minimizingH-surfaceSt, and
St has the desired topology, i.e.St ≃ S ∪ N̂ǫ(α).

γ

γ1

FIGURE 3. In the simple exhaustion ofS, S1 is a disk, and
Sn+1 − Sn contains a unique nonannular part, which is a pair of
pants (e.g.S4 − S3), or a cylinder with a handle (e.g.S3 − S2).
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λ1

Π1

α′
1

γ2

γ1

R1

T1

FIGURE 7. Π1 is the least area plane inY1 = H
3 − T1 where

∂∞Π1 = λ1. In particular,Π1 = P−
1 ♯α′

1
P+
2 andλ1 = γ−1 ♯α′

1
γ+2 .

Similarly, one can iterate this process by using appropriate isometryφn

such thatλn = φn(λ1) = γ−n ♯α′

n
γ+n+1 is a simple closed curve in the region

betweenγn andγn+1. Here,α′
2n−1 is a line segment in the linex = −C

with endpoints(−C, r−2n−1, 0) and(−C, r+2n, 0), whileα′
2n is a line segment

in the linex = −C with endpoints(−C,−r−2n, 0) and(−C,−r+2n+1, 0). In
particular, the bridgesα′

2n−1 andα′
2n are alternating sides (See Figure 6).

Then, letΠn = φn(Π1) andRn = φn(R1). Hence, defineXn+1 = Xn−Rn.
Notice thatXn is a mean convex subspace ofH

3.
Other than being mean convex, we will require one more property on

X2. By the construction of the least area planeΠ1 ∼ P−
1 ♯α′

1
P+

2 , for smaller
choice ofρ, we get a thinner bridge inΠ1 connectingP1 andP2. In par-
ticular, if λm1 = γ−1 ♯

ρm
α′

1

γ+2 is the simple closed curve obtained by connect-

ing γ−1 andγ+2 along a bridge alongα′
1 with thicknessρm ց 0, then let

Πm
1 be the least area plane inY1 with ∂∞Πm

1 = λm1 . By the construction,
Πm

1 → P−
1 ∪ P+

2 asn→ ∞.



Step 2: Minimal Surfaces of Desired Topology in H3

[Martin-White] Outline: Let S be given.

� Start with a simple exhaustion of S [FMM].

i.e. S =
⋃∞

n=1 Sn where S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ ..
Sn+1 − Sn contains either pair of pants or cylinder with handle.

� Bridge principle at infinity for uniquely minimizing surfaces in H3.

� Let Ŝ1 be a geodesic plane in H3.

Define the area minimizing surface Ŝn in H3 with Ŝn ' Sn inductively:

� Ŝn+1 = Ŝn]Bn where Bn is either one bridge or two successive bridges.

� Σ2 = lim Ŝn is an area minimizing surface in H3 with Σ2 ' S.
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whereg(.) represents the genus of the surface. Similarly by attachinga
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χ(Sn+1) = χ(Sn) − 2. This impliesg(Sn+1) = g(Sn) + 1 with the same
number of boundary components.

S1

S2

S3
S4

S5

FIGURE 3. In the simple exhaustion ofS, S1 is a disk, and
Sn+1 − Sn contains a unique nonannular part, which is a pair of
pants (e.g.S4 − S3), or a cylinder with a handle (e.g.S3 − S2).



Step 2: Minimal Surfaces of Desired Topology in H3

[Martin-White] Outline: Let S be given.

� Start with a simple exhaustion of S [FMM].

i.e. S =
⋃∞

n=1 Sn where S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ ..
Sn+1 − Sn contains either pair of pants or cylinder with handle.

� Bridge principle at infinity for uniquely minimizing surfaces in H3.
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� Ŝn+1 = Ŝn]Bn where Bn is either one bridge or two successive bridges.

� Σ2 = lim Ŝn is an area minimizing surface in H3 with Σ2 ' S.

Baris Coskunuzer Nonproper Minimal Surfaces with Arbitrary Topology in H3



Step 2: Minimal Surfaces of Desired Topology in H3

[Martin-White] Outline: Let S be given.

� Start with a simple exhaustion of S [FMM].

i.e. S =
⋃∞

n=1 Sn where S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ ..
Sn+1 − Sn contains either pair of pants or cylinder with handle.

� Bridge principle at infinity for uniquely minimizing surfaces in H3.
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want. Hence, in the Poincare ball model, we can get an increasing sequence
rn ր ∞ such thatBrn(0) ∩ Σn+1 ≃ Sn andBrn+1

(0) ∩ Σn+1 ≃ Sn+1.
Now, assume thatSn+1−Sn contains a cylinder with a handle. Again, let

γ be the component of∂Sn where the cylinder with handle attached, and let
γ′ ⊂ S2

∞(H3) be the corresponding component in∂∞Σn. LetD be the disk
in S2

∞(H3) with ∂D = γ′ andD ∩Γn = γ′. Like before, letβn be a smooth
arc segment inD with βn∩Γn = ∂βn ⊂ γ′, andβn ⊥ γ′. Now, by Theorem
3.1, we get a uniquely minimizingH-surfaceΣ′

n+1. Again, by choosing the
bridge sufficiently thin, we can make sure thatBrn ∩ Σ′

n+1 ≃ Sn. Now, let
β ′
n be the small smooth arc inD connecting the opposite sides of the bridge
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n to Σ′
n+1 and get a uniquely minimizingH surfaceΣn+1 where

Σn+1 ≃ Sn+1. Like before, we can find sufficiently largern+1 > rn with
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Sn

Bn

Sn
Bn

B′
n

FIGURE 4. If Sn+1 − Sn contains a pair of pants in the simple
exhaustion, we add a bridgeBn so thatSn ∪ Bn ≃ Sn+1 (left).
If Sn+1 − Sn contains a cylinder with a handle, then we add a
handleHn so thatSn ∪ Hn ≃ Sn+1. Here the handleHn is just
successive two bridges, i.eHn = Bn ∪ B′

n (right).
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♯(∂Sn+1) = ♯(∂Sn)+1 andχ(Sn+1) = χ(Sn)−1. Hence,g(Sn) = g(Sn+1)
whereg(.) represents the genus of the surface. Similarly by attachinga
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in H

3 bounding a round circleΓ1 in S2
∞(H3). Hence,Σ1 ≃ S1. Now, we
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with βn∩Γn = ∂βn ⊂ γ′, andβn ⊥ γ′. Now, asΣn is uniquely minimizing
H-surface, andβn satisfies the conditions by using the Theorem 3.1, we
get a uniquely minimizingH-surfaceΣn+1 with Σn+1 ≃ Sn+1. Note also
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rn ր ∞ such thatBrn(0) ∩ Σn+1 ≃ Sn andBrn+1

(0) ∩ Σn+1 ≃ Sn+1.
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∞(H3) be the corresponding component in∂∞Σn. LetD be the disk
in S2

∞(H3) with ∂D = γ′ andD ∩Γn = γ′. Like before, letβn be a smooth
arc segment inD with βn∩Γn = ∂βn ⊂ γ′, andβn ⊥ γ′. Now, by Theorem
3.1, we get a uniquely minimizingH-surfaceΣ′

n+1. Again, by choosing the

S2
∞

Σ1♯B1

S2
∞

Σ1♯H1

FIGURE 5. Σ1 is a uniquely minimizingH-surface where
∂∞Σ1 is a round circle. IfS2 − S1 contains a pair of pants, we
attach one bridgeB1 alongβ1 toΣ1, and getΣ2 = Σ1♯B1 (left). If
S2 − S1 contains a cylinder with a handle, we attach two bridges
successively toΣ1 and getΣ2 = Σ1♯H1 (right).



Step 2: Minimal Surfaces of Desired Topology in H3

[Martin-White] Outline: Let S be given.

� Start with a simple exhaustion of S [FMM].

i.e. S =
⋃∞

n=1 Sn where S1 ⊂ S2 ⊂ ... ⊂ Sn ⊂ ..
Sn+1 − Sn contains either pair of pants or cylinder with handle.

� Bridge principle at infinity for uniquely minimizing surfaces in H3.

� Let Ŝ1 be a geodesic plane in H3.

Define the area minimizing surface Ŝn in H3 with Ŝn ' Sn inductively:

� Ŝn+1 = Ŝn]Bn where Bn is either one bridge or two successive bridges.

� Σ2 = lim Ŝn is an area minimizing surface in H3 with Σ2 ' S.
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Step 3: The Sequence

Define a sequence of minimal surfaces {Tn} inductively.

T1 = Ŝ1 and T2 = Ŝ1]µP1. Let ∂∞Tn = Γn.

T2n+1 = T2n]Bn (T2n uniquely minimizing)

T2n = T2n−1]α′
n
Pn

PROBLEM

T2n−1 ∪ Pn may not be area minimizing in H3.

NEED

Mean Convex Subspaces Xn in H3 where T2n−1 ∪ Pn is uniquely minimizing in Xn.
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Step 4: Mean Convex Subspaces Xn in H3

We want T2n−1 ∪ Pn to be uniquely minimizing in Xn ⊂ H3.

Need to kill the possible competitors Y with ∂∞Y = Γ2n−1 ∪ Cn

Igloo Trick: Let Πn = P+
n ]P−n−1. Let In be the component of H3 − Πn.

Let X1 = H3 and Xn+1 = Xn − In.

Lemma

T2n−1 ∪ Pn is uniquely minimizing in Xn.

Theorem

T2n = T2n−1]Pn is uniquely minimizing in Xn.
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λ1

Π1

α′
1

γ2

γ1

R1

T1

FIGURE 7. Π1 is the least area plane inY1 = H
3 − T1 where

∂∞Π1 = λ1. In particular,Π1 = P−
1 ♯α′

1
P+
2 andλ1 = γ−1 ♯α′

1
γ+2 .

Similarly, one can iterate this process by using appropriate isometryφn

such thatλn = φn(λ1) = γ−n ♯α′

n
γ+n+1 is a simple closed curve in the region

betweenγn andγn+1. Here,α′
2n−1 is a line segment in the linex = −C

with endpoints(−C, r−2n−1, 0) and(−C, r+2n, 0), whileα′
2n is a line segment

in the linex = −C with endpoints(−C,−r−2n, 0) and(−C,−r+2n+1, 0). In
particular, the bridgesα′

2n−1 andα′
2n are alternating sides (See Figure 6).

Then, letΠn = φn(Π1) andRn = φn(R1). Hence, defineXn+1 = Xn−Rn.
Notice thatXn is a mean convex subspace ofH

3.
Other than being mean convex, we will require one more property on

X2. By the construction of the least area planeΠ1 ∼ P−
1 ♯α′

1
P+

2 , for smaller
choice ofρ, we get a thinner bridge inΠ1 connectingP1 andP2. In par-
ticular, if λm1 = γ−1 ♯

ρm
α′

1

γ+2 is the simple closed curve obtained by connect-

ing γ−1 andγ+2 along a bridge alongα′
1 with thicknessρm ց 0, then let

Πm
1 be the least area plane inY1 with ∂∞Πm

1 = λm1 . By the construction,
Πm

1 → P−
1 ∪ P+

2 asn→ ∞.
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Nonproper Minimal Surface of Desired Topology

Let Σ = lim Tn.

Σ is area minimizing in X∞ =
⋂

Xn

Σ is just a minimal surface in H3.

Σ ∼ Σ1]µΣ2.

Σ ' Σ2 ' S

Σ is nonproper as Σ ⊃ Σ1 ⊃ P∞.
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Final Remarks

The Bridge Principle at Infinity for Complete Stable Minimal Surfaces and the
Igloo Trick.

Generalization to H-surfaces: 2 cases.

♣ Properly Embedded H-surfaces with arbitrary topology

Theorem [C–]

Any S can be properly embedded in H3 as a minimizing H-surface.

♣ Nonproperly Embedded H-surfaces with arbitrary topology

� Unfortunately these techniques do not generalize to non-proper H-surfaces
because of the orientation problem!

� [C–, Meeks, Tinaglia] For 0 ≤ H < 1, ∃ a nonproperly embedded H-plane.

� [Meeks-Tinaglia] For H ≥ 1, Calabi-Yau Conjecture is true for H-surfaces in H3.
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