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Nil3(⌧)

Nil3(⌧), the Heisenberg space, is a three dimensional, simply
connected Lie Group equipped with a left invariant metric.

It represents one of the eight Thurston geometries, that are R3,

H3, S3, H2 ⇥ R, S2 ⇥ R, Nll3, ^PSL2(R), Sol3.

We are able to prove the analogous of some of our results in
Nil3(⌧) also in R3, H2 ⇥ R, ^PSL2(R) (by direct computation with
the suitable metric or by Daniel correspondence).

Nil3(⌧) is also known as an E(, ⌧) space, with  = 0.
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Nil3(⌧)

A model for Nil3(⌧) is R3 endowed with the Riemannian metric

ds2 = (dx2
1 + dx2

2 ) + (dx3 + ⌧(x1dx2 � x2dx1))
2

The projection on the first two coordinates ⇡ : Nil3(⌧) :�! R2 is
a Riemannian submersion with bundle curvature ⌧.

The fibers of the submersion are geodesic and coincide with the
integral curves of the Killing vector field @3 = @

@x3
.

A global orthonormal frame is E1 = @1
� � ⌧x2@3, E2 = @2

� + ⌧x1@3,
E3 = @3.
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ISOMETRIES IN Nil3(⌧)

A set of generators of the isometry group of Nil3(⌧) is

'1(x1, x2, x3) = (x1 + c, x2, x3 + ⌧cx2)
'2(x1, x2, x3) = (x1, x2 + c, x3 � ⌧cx1)

'3(x1, x2, x3) = (x1, x2, x3 + c)
'4(x1, x2, x3) = ((cos ✓)x1 � (sin ✓)x2, (sin ✓)x1 + (cos ✓)x2, x3)

'5(x1, x2, x3) = (x1,�x2,�x3)

The trace of any isometry of Nil3(⌧) on the x1-x2 plane is an
isometry of R2.
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REMARK.

The trace of any isometry of Nil3(⌧) on the x1-x2 plane is an
isometry of R2.

Let � be a curve in the x1-x2 plane. Let ' be any isometry of
Nil3(⌧).

The curve '(�) is not contained in the x1-x2 plane in general.
The projection ⇡('(�)) of such curve on the x1-x2 plane is
obtained from the curve � by an isometry on the Euclidean x1-x2
plane.

If � is convex, then ⇡('(�)) is convex, for any isometry ' of
Nil3(⌧).
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MINIMAL GRAPHS IN Nil3(⌧)

Let ⌦ ⇢ R2. The graph of a C2 function u : ⌦ �! R is a minimal
surface in Nil3(⌧) if and only if u satisfies the minimal surface
equation:

2H(u) := div

 

Gu
p

1 + kGuk2

!

= 0,

where the divergence and the norm are computed in M(), and Gu is
a vector field on ⌦ given in coordinates by Gu = ru + Z where
Z = ⌧x2@1 � ⌧x1@2 and ru is the gradient of u in R2.

Developing the divergence, one gets the following equation

�

1 + (u2 � ⌧x1)
2� u11�2(u1+⌧x2)(u2�⌧x1)u12+

�

1 + (u1 + ⌧x2)
2� u22 = 0
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EXAMPLES OF MINIMAL SURFACES IN Nil3(⌧).

1 Affine planes: u(x1x2) = ax1 + bx2 + c (vertical planes and
umbrellas)

2 Vertical catenoids: The profile is given by a radial function

h : R \ [�E ,E ] �! R such that h0(r) = E
p

1+⌧2r2

2
p

r2�E2
, h(E) = 0.

3 Helicoids, (⌧ = 1
2 ): u(x1, x2) =

1
a arctan x2

x1
, a > 0.

4 Translationally invariant examples (C. Figueroa, F. Mercuri, R.
Pedrosa): c 2 R

uc(x1, x2) = ⌧x1x2 +
sinh(c)

4⌧



2⌧x2

q

1 + 4⌧2x2
2 + arcsinh(2⌧x2)

�

5 Foliated examples (B. Daniel): u(x1, x2) = x1f (x2) where f is a
C2 function on R. The graphs are foliated by Euclidean straight
lines (not geodesic in Nil3(⌧) in general). They are asymptotic to
x3 = 0 on one side and to FMP’s examples on the other side
(x2 �! ±1).

6 Horizontal catenoids (B. Daniel, L. Hauswirth):
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It is a one parameter, family C↵, ↵ > 0, of properly embedded
surfaces such that

1 C↵ is conformally equivalent to C \ {0}.

2

⇡(C↵) =
n

(x1, x2) 2 R2 | |x1|  ↵ cosh
⇣x2

↵

⌘o

3 The projections ⇡(C↵) are obtained one from the other by a
homothety and, next to the waist, they become flatter as ↵
increases.

4 C↵ \ {x2 = c} is a closed embedded convex curve containing the
x2-axis.

5 C↵ is invariant by rotation of angle ⇡ around all the axis.
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EXISTENCE ON BOUNDED DOMAINS

For finite boundary data, on bounded domain the more general
existence result is established for convex boundary and piecewise
continuous boundary data. Before this result, there were existence
result with more restrictive assumptions (L. Alias, M. Dajczer, J.H. De
Lira, -, H. Rosenberg, R. Sa Earp, E. Toubiana).



SCHERK TYPE SURFACES

Let T be a triangle with sides ↵, �, � and let ' : ↵ [ � �! R a
continuous function.

-, R. Sa Earp, E. Toubiana proved the existence of a unique
minimal extension of ' over T assuming the value 1 in the
interior of �.

Let W✓ be a wedge of angle ✓.

For ✓ 2 (0,⇡), S.Cartier proved existence of minimal graphs
on W✓ with zero boundary value and with linear growth
(deformation of an umbrella).
For ✓ 2 (⇡2 ,⇡), -, R. Sa Earp, E. Toubiana proved existence
of minimal graphs on W✓ with zero boundary value and with
at least quadratic growth.

These results are in contrast with the R3 case, where a minimal
solutions with zero boundary value on a wedge of angle < ⇡ is
zero (H.Rosenberg, R. Sa Earp).
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GRAPHS ON UNBOUNDED DOMAINS

THEOREM ( -, R. SA EARP, E. TOUBIANA)

Let ⌦ ⇢ R2 be an unbounded, convex domain different from an
half-plane. Let ' be a continuous function on � = @⌦ except at a
discrete set of points where ' has left and right limit. Then there
exists a minimal extension u of ' over ⌦̄. Moreover the boundary
of the graph of u contains the vertical segments between the left
and the right limits of ' at the discontinuity points.

Let ⌦ be a half-plane and let � = @⌦. Let ' be a bounded
function on �, continuous except at a discrete set of points where
' has left and right limit. Then there exists a 1-parameter family
of minimal extensions u of ' over ⌦̄. Moreover the boundary of
the graph of u contains the vertical segments between the left
and the right limits of ' at the discontinuity points.

In the half-plane case, we can relax the assumption on '. For
example, if the half plane is x2 > 0 : '(x1, 0) = cx1 for |x1| > n.
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MAIN STEPS AND TOOLS OF THE PROOF

1 ⌦n relatively compact domains exhausting ⌦. Choose boundary
data 'n on each @⌦n. Then solve the Dirichlet problem on ⌦n :
solutions un.

2 Prove that there is a subsequence of un converging to a minimal
solution u on ⌦ on any compact subset of ⌦.

3 In order to get convergence, it is enough to prove that the
sequence un is uniformly bounded in the C2,↵ topology on any
compact subset of ⌦.

4 Schauder: C1,� implies C2,↵.

5 Ladyzhenskaya-Ural’ceva: C1 implies C1,� .
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MAIN STEPS AND TOOLS OF THE PROOF

C1 follows from
Theorem (H. Rosenberg, R. Souam, E. Toubiana) Let ⌦ ⇢ R2 be
a relatively compact domain and let u : ⌦ �! R satisfy the
minimal surface equation. Then, for any positive constant C1,
C2, there exists a constant ↵ = ↵(C1,C2,⌦) such that for any
p 2 ⌦ with d(p, @⌦) � C2 and |u| < C1 on ⌦, we have

|ru(p)| < ↵

for any p 2 ⌦.

Uniform height estimates implies convergence

Then one has to use barrier in order to prove that boundary data
are right.
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GEOMETRIC IDEA OF THE PROOF IN THE HALFPLANE CASE

Assume that the half-plane is

⌦ = {(x1, x2) 2 R2 | x2 > d}.

Consider x3 = ax2 + b, where a > 0, b > sup{x2=d} '.

For any n 2 N, consider the strip

⌦n = {(x1, x2) 2 R2 | d < x2 < n}
and the continuous function

'n(p) =
⇢

'(p), p = (x1, d)
an + b, p = (x1, n)

Exhaust ⌦n by rectangles

Rn,k = {(x1, x2) 2 R2 | |x1| < k , d < x2 < n}

and define 'n,k (p) = 'n(p) for p 2 @⌦n \ @Rn,k , and it is
monotone on the vertical sides of Rn,k that is
{(x1, x2) 2 R̄n,k , x1 = ±k}.
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GEOMETRIC IDEA OF THE PROOF IN THE HALFPLANE CASE

We solve the Dirichlet problem on Rn,k with boundary values
equal to 'n,k . Let {un,k}k2N be the solution.

un,k are uniformely bounded on Rn,k , because, by the maximum
principle, un,k (x1, x2)  ax2 + b, for all (x1, x2) 2 Rn,k , for all n, k ,
that is uniform upper bound. For uniform lower bound it is
analogous.
By the compactness theorem, for k �! 1, un,k converges to a
solution un defined on ⌦n . Moreover each un is between two
planes.
Then we let n �! 1 and we get a subsequence of un
converging to a solution on the halfplane.
One proves that all the solutions un and u take the right
boundary value at continuity points using the technique of
barriers, and at the discontinuity points, by hand.
The existence of one parameter family of solutions is achieved
by changing the slope of the initial plane that one uses as
supersolution.
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A NON EXISTENCE RESULT

THEOREM ( -, R. SA EARP, E. TOUBIANA)
Let ⌦ be a domain such that � = @⌦ is a non convex Ck curve, k � 0.
If either:

⌦ is bounded, or

⌦ is unbounded and contained either in a wedge or in a strip.

Then there exists a Ck function ' on � that does not admit a minimal
extension over ⌦̄.

Our proof holds in R3 as well.

In R3, for ⌦ bounded, the
analogous statement is by R. Finn (continuous boundary data),
H. Jenkins and J. Serrin (C2 boundary data, with arbitrary small
absolute value); for ⌦ unbounded we did not find a statement in
the literature.

The proof uses horizontal catenoids and geometric maximum
principle.
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TWO TYPES OF AREA GROWTH OF A GRAPH G IN Nil3(⌧)

Let p0 2 G and let B(p0,R) be a geodesic ball in Nil3(⌧) of radius
R centered at p0. Let ↵ > 0 and assume

lim inf
R!1

Area(G \ B(p0,R))

R↵
> 0,

✓

lim sup
R!1
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AREA GROWTH OF SOME ENTIRE GRAPHS

Umbrellas: u(x1, x2) = ax1 + bx2. Extrinsic (and cylindrical):
cubic. Intrinsic: cubic. Conformal type: hyperbolic.

Translationally invariant examples (C. Figueroa, F. Mercuri, R.
Pedrosa): c 2 R

uc(x1, x2) = ⌧x1x2 +
sinh(c)

4⌧



2⌧x2

q

1 + 4⌧2x2
2 + arcsinh(2⌧x2)

�

Extrinsic (and cylindrical): cubic. Intrinsic: cubic. Conformal
type: parabolic.

Daniel examples: u(x1, x2) = x1f (x2) where f is a C2 function on
R. Extrinsic (and cylindrical): cubic. Intrinsic: ???. Conformal
type: parabolic.
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GEODESIC BALLS IN Nil3(⌧)

LEMMA ( M. MANZANO, -)
Given R > 0, let BR(0) be the geodesic ball in Nil3(⌧) centered at the
origin and let DR(0) = {(x1, x2) 2 R2 : x2

1 + x2
2 < R2}.

If R  ⇡
2⌧ , then BR(0) ⇢ DR(0)⇥]� R,R[.

If R > ⇡
2⌧ , then BR(0) ⇢ DR(0)⇥]� ⇡2+4⌧2R2

4⌧⇡ , ⇡2+4⌧2R2

4⌧⇡ [.

For the proof, we write the explicit equations of the geodesics in
Nil3(⌧) and we estimates their maximal height in the ball BR(0).

For R small there were results by C. Jang, J. Park, K. Park
(2010).
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ESTIMATES ON AREA GROWTH

THEOREM ( M. MANZANO, -)

(C) Let ⌃ ⇢ Nil3 be a minimal entire graph. Then ⌃ has at least
cubic and at most quartic cylindrical area growth.

(E) Let ⌃ ⇢ Nil3 be an entire minimal graph. Then ⌃ has at least
quadratic and at most cubic extrinsic area growth.

The at least part in (C) is based on

area(⌃ \ CR(x0))) � area(⌃0 \ CR(x0)).

where ⌃0 is the horizontal umbrella centered at p0 such that
⇡(p0) = x0.

The at most in (E) part comes form

area(⌃ \ BR(0)) 
Z

⌦(R)
(1 + |Z |) + h(R)length(@⌦(R)).

where ⌃ is a graph over ⌦ by a function u, ⌦(R) = ⌦ \ DR(0)
and BR(0) ⇢ DR(0)⇥ [�h(R), h(R)] for some positive function h.
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The at most part in (C) and the at least part in (E) is based on
height estimate LATER.

The estimate from above on the extrinsic area growth, yields that
the intrinsic area growth is at most cubic.

As a byproduct of the previous inequality: in R3, the intrinsic
area growth is at most quadratic.
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THEOREM (HEIGHT GROWTH)
(Manzano, -) Let ⌃ be an entire minimal graph in Nil3(⌧), given by a
function u 2 C1(R) and let r =

q

x2
1 + x2

2 . Then

1 There exists B > 0 such that
|Gu| :=

p

(u1 + ⌧x2)2 + (u2 � ⌧x!)2  B(1 + r2).

2 There exists C > 0 such that |u|  C(1 + r2)
3
2 .

As far as we know, there is no example with more than quadratic
height growth.

CONJECTURE
The height growth of an entire minimal graph in Nil3(⌧) is at most
quadratic.
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SKETCH OF THE PROOF OF THE HEIGHT GROWTH

The proof relies on a gradient estimate for entire space like
graphs in Lorentz-Minkowski space L3, with constant mean
curvature, related to our graphs by the Calabi-type
correspondence (M. Manzano, H. Lee).

The Calabi-type correspondence implies that there exists
v 2 C1(R2) such that the graph of v is a space-like surface in
L3 with constant mean curvature ⌧. Moreover v satisfies
(1 � |rv |2)(1 + |Gu|2) = 1 ( rv in R2).

Using the properties of space-like constant mean curvature
surfaces in L3, one can prove that the exists a constant A > 0
such that |rv |2  1 � A

(1+r2)2 .

This yields that 1 + |Gu|2  A�1(1 + r2)2 and this easily gives
that |Gu|  B(1 + r2). The height growth easily follows.
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SCKETCH OF THE PROOF THAT AN ENTIRE MINIMAL GRAPH
⌃ IN Nil3(⌧) HAS AT LEAST QUADRATIC EXTRINSIC AREA
GROWTH.

One has

area(⌃ \ BR(0)) ⇠ area(⌃ \ DR(0)⇥]� 2CR2, 2CR2[)

� area(⌃ \ D
R

2
3
(0)⇥]� 2CR2, 2CR2[)

(the distance in Nil3(⌧) from the origin to p = (x1, x2, x3) is
equivalent to �p2C(p) = max{

q

x2
1 + x2

2 ,
1p
2C

p

|x3|}, )

As |u|  C(1 + r2)
3
2 on D

R
2
3
(0) and C(1 + r

4
3 )

3
2  2CR2

⌃ \ D
R

2
3
(0)⇥]� 2CR2, 2CR2[= ⌃ \ C

R
2
3
(0)

But one knows that the cylindrical area growth is at least as
(R

2
3 )3, that gives the desired estimate.
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But one knows that the cylindrical area growth is at least as
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Recall the

CONJECTURE
The height growth of an entire minimal graph in Nil3(⌧) is at most
quadratic.

If the conjecture is true, then the extrinsic area growth of an
entire minimal graph in Nil3(⌧) would be cubic.
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THEOREM (COLLIN-KRUST TYPE RESULT)
(Manzano, -)
Let ⌦ ⇢ R2 be an unbounded domain and let u 2 C1(⌦) be a
solution in ⌦ of the minimal surface equation in Nil3(⌧), such that
u|@⌦ = 0. Denote M(r) = sup⇢r |u|, then

lim sup
r!1

M(r)
r

> 0.

Let A = {x 2 ⌦ : u(x) > 0} and ⇤r = {x 2 A : ⇢(x) = r}. If there
exists a positive constant C such that Length(⇤r ) < C, then

lim sup
r�!1

M(r)
r2 > 0

The result is sharp because of the plane and the catenoid (there
is a previous non sharp result in Nil3(⌧) by C. Leandro and H.
Rosenberg).



THEOREM (COLLIN-KRUST TYPE RESULT)
(Manzano, -)
Let ⌦ ⇢ R2 be an unbounded domain and let u 2 C1(⌦) be a
solution in ⌦ of the minimal surface equation in Nil3(⌧), such that
u|@⌦ = 0. Denote M(r) = sup⇢r |u|, then

lim sup
r!1

M(r)
r

> 0.

Let A = {x 2 ⌦ : u(x) > 0} and ⇤r = {x 2 A : ⇢(x) = r}. If there
exists a positive constant C such that Length(⇤r ) < C, then

lim sup
r�!1

M(r)
r2 > 0

The result is sharp because of the plane and the catenoid (there
is a previous non sharp result in Nil3(⌧) by C. Leandro and H.
Rosenberg).



THEOREM (COLLIN-KRUST TYPE RESULT)
(Manzano, -)
Let ⌦ ⇢ R2 be an unbounded domain and let u 2 C1(⌦) be a
solution in ⌦ of the minimal surface equation in Nil3(⌧), such that
u|@⌦ = 0. Denote M(r) = sup⇢r |u|, then

lim sup
r!1

M(r)
r

> 0.

Let A = {x 2 ⌦ : u(x) > 0} and ⇤r = {x 2 A : ⇢(x) = r}. If there
exists a positive constant C such that Length(⇤r ) < C, then

lim sup
r�!1

M(r)
r2 > 0

The result is sharp because of the plane and the catenoid (there
is a previous non sharp result in Nil3(⌧) by C. Leandro and H.
Rosenberg).



Contents
• Nil(�)!

• Examples!

• Existence!

• Area Growth!

• Height Growth!

• An Open Problem



AN OPEN PROBLEM (STRONG HALF-SPACE THEOREM)

CONJECTURE (B. DANIEL, W.H. MEEKS, H. ROSENBERG).

Two properly immersed minimal surfaces in Nil3 that do not intersect
are either two parallel vertical planes or an entire minimal graph and
its image by a vertical translation.

The conjecture is proved provided one of the surfaces is either a
graph or a vertical plane (Daniel-Meeks-Rosenberg (2011),
Daniel-Hauswirth (2009)).

On the way to prove the conjecture, one is led to study complete
stable minimal surfaces in Nil3(⌧).

M. Manzano, J. Perez, M. Rodriguez (2011) classified complete
stable immersed minimal surfaces, provided the surfaces are
parabolic (and so the conjecture is proved in this case).

S. Y. Cheng, S.T. Yau (1975) proved that if a surface has
quadratic (intrinsic) area growth, then it is parabolic.

We showed many examples with intrinsic cubic area growth.
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As a little step in understanding the problem, we are able prove
the following result.

THEOREM (M. MANZANO, -)
Let ⌃ be a minimal stable surface in Nil3(⌧). If the angle function
⌫ = hE3,Ni is such that ⌫2 2 L1(⌃), then ⌃ is a vertical plane.

The proof depends on the gradient estimate that we got before
that prevents ⌃ to be a graph when ⌫2 2 L1(⌃). Then we use a
classification theorem by J. M. Espinar (2013).
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SUMMARY

Surface Curvature Space EAG CAG IAG CT

Umbrellas H = 0 Nil3(⌧) R3 R3 R3
Hyperb.

 < 0 eR
p

� eR
p

� eR
p

�

FMP surfaces H = 0 Nil3(⌧) R3 R3 R3

Parab.Ideal Scherk
4H2 +  < 0

E(, ⌧)  R2
 R2

k -noids H2() ⇥ R (H = 0)

Entire graphs

H = 0 Nil3(⌧) � R2, R3 � R3, R4  R3

4H2 +  = 0
 < 0

� eR
p

�  R3

4H2 +  < 0 � eR
p

�  ReR
q

��4H2

H = 0  ReR
p

� � eR
p

�  ReR
p

�

Graphs with
H = 0

R3  R2  R2

zero boundary Nil3(⌧)  R3  R3

values  < 0  ReR
p

�  ReR
p

�

TABLE : EAG=Extrinsic Area Growth, CAG=Cylindrical Area Growth,
IAG= Intrinsic Area Growth, CT= Conformal Type
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