Genus-g Helicoids

Brian White (joint work with David Hoffman and Martin Traizet)

June 18, 2013 (Granada)

Goals:
Today: construct many interesting minimal surfaces in $S^{2} \times \mathbf{R}$.
Tomorrow: Let the radius of the \mathbf{S}^{2} tend to ∞ to get interesting examples in \mathbf{R}^{3}.

Goals:
Today: construct many interesting minimal surfaces in $\mathbf{S}^{2} \times \mathbf{R}$. Tomorrow: Let the radius of the S^{2} tend to ∞ to get interesting examples in \mathbf{R}^{3}. (Hardest part: control genus).

Goals:
Today: construct many interesting minimal surfaces in $\mathbf{S}^{2} \times \mathbf{R}$.
Tomorrow: Let the radius of the \mathbf{S}^{2} tend to ∞ to get interesting examples in \mathbf{R}^{3}.

Goals:
Today: construct many interesting minimal surfaces in $\mathbf{S}^{2} \times \mathbf{R}$.
Tomorrow: Let the radius of the \mathbf{S}^{2} tend to ∞ to get interesting examples in \mathbf{R}^{3}. (Hardest part: control genus).

Today's talk

First, I will prove a special, very concrete case of our results about $\mathbf{S}^{2} \times \mathbf{R}$.

Then I will indicate how exactly the same proof gives a more general result.

This curve Γ lies on the boundary $X \times \mathbf{R}$ of a solid cylinder. (Here X is a great circle in \mathbf{S}^{2}.) It consists of the great circle X (at height 0), two vertical segments passing through a pair of diametrically opposite points O and O^{*} on X, and two horizontal great semicircles at heights h and $-h$.

The boundary curve 「

The curve Γ has many symmetries, including reflection μ in a totally geodesic cylinder that switches O and O^{*}. Throughout this talk, all objects (surfaces, jacobi fields, etc) are required to have all of those symmetries.

To show: 「 bounds many embedded minimal surfaces inside the solid cylinder.

Note: in today's talk, all surfaces are embedded. Thus "surface" means "embedded surface having all the symmetries of Γ ".

To show: 「 bounds many embedded minimal surfaces inside the solid cylinder.

Note: in today's talk, all surfaces are embedded. Thus "surface" means "embedded surface having all the symmetries of Γ "

To show: 「 bounds many embedded minimal surfaces inside the solid cylinder.

Note: in today's talk, all surfaces are embedded. Thus "surface" means "embedded surface having all the symmetries of Γ ".

Main Theorem

Suppose 「 is "bumpy", i.e., bounds no minimal surfaces (inside the cylinder) with nontrivial jacobi fields. Let k be an even integer ≤ 2. Then 「 bounds:

Main Theorem

Suppose 「 is "bumpy", i.e., bounds no minimal surfaces (inside the cylinder) with nontrivial jacobi fields. Let k be an even integer ≤ 2. Then 「 bounds:

- an odd number of positive minimal surfaces (inside the cylinder) with Euler characteristic k, and

Main Theorem

Suppose 「 is "bumpy", i.e., bounds no minimal surfaces (inside the cylinder) with nontrivial jacobi fields. Let k be an even integer ≤ 2. Then 「 bounds:

- an odd number of positive minimal surfaces (inside the cylinder) with Euler characteristic k, and
- an odd number of negative minimal surfaces (inside the cylinder) with Euler characteristic k.

Main Theorem

Suppose 「 is "bumpy", i.e., bounds no minimal surfaces (inside the cylinder) with nontrivial jacobi fields. Let k be an even integer ≤ 2. Then 「 bounds:

- an odd number of positive minimal surfaces (inside the cylinder) with Euler characteristic k, and
- an odd number of negative minimal surfaces (inside the cylinder) with Euler characteristic k.

Corollary

Without assuming "bumpiness", the theorem remains true with "an odd number of" replaced by "at least one".

Main Theorem

Suppose 「 is "bumpy", i.e., bounds no minimal surfaces (inside the cylinder) with nontrivial jacobi fields. Let k be an even integer ≤ 2. Then 「 bounds:

- an odd number of positive minimal surfaces (inside the cylinder) with Euler characteristic k, and
- an odd number of negative minimal surfaces (inside the cylinder) with Euler characteristic k.

Corollary

Without assuming "bumpiness", the theorem remains true with "an odd number of" replaced by "at least one".

Remark: Repeated Schwarz reflection gives complete, properly embedded minimal surfaces (without boundary) in $\mathbf{S}^{2} \times \mathbf{R}$.

Positive and negative surfaces

In a neighborhood of O, the curve Γ divides the cylinder $X \times \mathbf{R}$ into four quadrants. We call two of the (non-adjacent) quadrants "positive" and the other two "negative":

A surface M (in the solid cylinder) with boundary Γ is called positive it is tangent to the positive quadrants at O, and negative if it is tangent to the negative quadrants at O.

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces.

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces. Let C be a smooth, simple closed curve in ∂N. Suppose C is bumpy.

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces. Let C be a smooth, simple closed curve in ∂N. Suppose C is bumpy. Then C bounds

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces. Let C be a smooth, simple closed curve in ∂N. Suppose C is bumpy. Then C bounds

- an odd number of embedded minimal disks, and

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces. Let C be a smooth, simple closed curve in ∂N. Suppose C is bumpy. Then C bounds

- an odd number of embedded minimal disks, and
- an even number of embedded surfaces of each other topological type.
(cf. Tomi and Tromba (1978): disks in \mathbf{R}^{3}.
David and I generalized this theorem to N with piecewise smooth boundary, and to curves and surfaces invariant under a group of symmetries of N

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces. Let C be a smooth, simple closed curve in ∂N. Suppose C is bumpy. Then C bounds

- an odd number of embedded minimal disks, and
- an even number of embedded surfaces of each other topological type.
(cf. Tomi and Tromba (1978): disks in \mathbf{R}^{3}.)
David and I generalized this theorem to N with piecewise smooth boundary, and to curves and surfaces invariant under a group of symmetries of N

A key tool

Basic Counting Theorem (W 1986)

Let $N \approx \mathbf{B}^{3}$ be a mean convex, compact Riemannian 3-manifold that contains no closed minimal surfaces. Let C be a smooth, simple closed curve in ∂N. Suppose C is bumpy. Then C bounds

- an odd number of embedded minimal disks, and
- an even number of embedded surfaces of each other topological type.
(cf. Tomi and Tromba (1978): disks in \mathbf{R}^{3}.)
David and I generalized this theorem to N with piecewise smooth boundary, and to curves and surfaces invariant under a group of symmetries of N.

Proof of main theorem

Let $\Gamma(t)$ be obtained from Γ by rounding the corners (as illustrated) to make it embedded. Here $\Gamma(t) \rightarrow \Gamma$ as $t \rightarrow 0$.

(a) The curve Γ

(b) The rounded curve $\Gamma(t)$

Let $S(t)$ be a one-parameter family of minimal surfaces with $\partial S(t)=\Gamma(t)$.

Then as $t \rightarrow 0, S(t)$ converges to a surface S bounded by Γ.

Let $S(t)$ be a one-parameter family of minimal surfaces with $\partial S(t)=\Gamma(t)$.

Then as $t \rightarrow 0, S(t)$ converges to a surface S bounded by Γ.

Question

How are the topologies (i.e, Euler characteristics) of S and $S(t)$ related?

Let $S(t)$ be a one-parameter family of minimal surfaces with $\partial S(t)=\Gamma(t)$.

Then as $t \rightarrow 0, S(t)$ converges to a surface S bounded by Γ.

Question

How are the topologies (i.e, Euler characteristics) of S and $S(t)$ related?
(Note: here S denotes the open surface: $S=\bar{S} \backslash \Gamma$.)

How are the Euler characteristics of S and $S(t)$ related?

How are the Euler characteristics of S and $S(t)$ related?
It depends on the sign of S :
f S is negative, then S and $S(t)$ are homeomorphic, so

How are the Euler characteristics of S and $S(t)$ related?
It depends on the sign of S :
If S is negative, then S and $S(t)$ are homeomorphic, so
$\chi(S)=\chi(S(t))$.
If S is positive, then $\chi(S)=\chi(S(t))+2$.

How are the Euler characteristics of S and $S(t)$ related?
It depends on the sign of S :
If S is negative, then S and $S(t)$ are homeomorphic, so $\chi(S)=\chi(S(t))$.

If S is positive, then $\chi(S)=\chi(S(t))+2$.

Let $F(k,+)$ be the number of positive minimal surfaces of Euler characteristic k bounded by Γ. Similarly define $F(k,-)$.

Let $F(k,+)$ be the number of positive minimal surfaces of Euler characteristic k bounded by Γ. Similarly define $F(k,-)$.

Goal: Show that $F(k,+)$ and $F(k,-)$ are odd for all even $k \leq 2$.

Claim

For small t,

$$
\begin{gathered}
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k) \\
= \\
F(k,-)+F(k+2,+)
\end{gathered}
$$

Claim

For small t,

$$
\begin{gathered}
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k) \\
= \\
F(k,-)+F(k+2,+)
\end{gathered}
$$

For $k<2$, the first number is even (by the Hoffman-White counting theorem).

Claim

For small t,

$$
\begin{gathered}
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k) \\
= \\
F(k,-)+F(k+2,+)
\end{gathered}
$$

For $k<2$, the first number is even (by the Hoffman-White counting theorem).

Thus

$$
F(k,-) \cong F(k+2,+) \quad \bmod 2 .
$$

Claim

For small t,

$$
\begin{gathered}
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k) \\
= \\
F(k,-)+F(k+2,+)
\end{gathered}
$$

For $k<2$, the first number is even (by the Hoffman-White counting theorem).

Thus

$$
F(k,-) \cong F(k+2,+) \quad \bmod 2 .
$$

Similarly

$$
F(k,+) \cong F(k+2,-) \quad \bmod 2
$$

Claim

For small t,

$$
\begin{gathered}
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k) \\
= \\
F(k,-)+F(k+2,+)
\end{gathered}
$$

For $k<2$, the first number is even (by the Hoffman-White counting theorem).

Thus

$$
F(k,-) \cong F(k+2,+) \quad \bmod 2 .
$$

Similarly

$$
F(k,+) \cong F(k+2,-) \quad \bmod 2 .
$$

So: once we know that $F(2,+)$ and $F(2,-)$ are odd, it follows that $F(k, \pm)$ is odd for every even $k \leq 2$.

What about $F(2, \pm)$?

Recall

cham

For small t,
\#(minimal surfaces bounded by $\Gamma(t)$ with $\chi=k)$
is equal to

$$
F(k,-)+F(k+2,+) .
$$

In the case $k=2$, this becomes:

What about $F(2, \pm)$?

Recall
Claim
For small t,

$$
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k)
$$

is equal to

$$
F(k,-)+F(k+2,+) .
$$

What about $F(2, \pm)$?

Recall
Claim
For small t,

$$
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=k)
$$

is equal to

$$
F(k,-)+F(k+2,+) .
$$

In the case $k=2$, this becomes:

What about $F(2, \pm)$?

Claim

For small t,

$$
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=2)
$$

is equal to

$$
F(2,-)+F(4,+)
$$

What about $F(2, \pm)$?

Claim

For small t,

$$
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=2)
$$

is equal to

$$
F(2,-)+F(4,+)
$$

The first number is odd (by the Hoffman-White counting theorem). Also, $F(4,+)=0$ (trivially). So $F(2,-)$ is odd. Similarly for $F(2,+)$.

What about $F(2, \pm)$?

Claim

For small t,

$$
\#(\text { minimal surfaces bounded by } \Gamma(t) \text { with } \chi=2)
$$

is equal to

$$
F(2,-)+F(4,+)
$$

The first number is odd (by the Hoffman-White counting theorem). Also, $F(4,+)=0$ (trivially). So $F(2,-)$ is odd. Similarly for $F(2,+)$.

The general case

In the preceding argument, the cylinder in $\mathbf{S}^{2} \times \mathbf{R}$ can be replaced by any helicoid H in $\mathbf{S}^{2} \times \mathbf{R}$.

The argument above shows that the curve Γ bounds positive and negative embedded minimal surfaces S (lying on one side of H) of each Euler characteristic ≤ 2. Reflecting in Z (or equivalently Z^{*}) gives a surface M bounded by two horizontal great circles, at heights $\pm h$.

Letting $h \rightarrow \infty$ gives a properly embedded minimal surface M^{*} such that

$$
M^{*} \cap H=X \cup Z \cup Z^{*}
$$

In this way, for each helicoid H, each sign \pm, and each even genus g, we get at least one M^{*} with the specified sign and genus.
(Odd genus is also OK, but one gives up the μ symmetry.)

The general case

In the preceding argument, the cylinder in $\mathbf{S}^{2} \times \mathbf{R}$ can be replaced by any helicoid H in $\mathbf{S}^{2} \times \mathbf{R}$.

The argument above shows that the curve Γ bounds positive and negative embedded minimal surfaces S (lying on one side of H) of each Euler characteristic ≤ 2. Reflecting in Z (or equivalently Z^{*}) gives a surface M bounded by two horizontal great circles, at heights $\pm h$.

Letting $h \rightarrow \infty$ gives a properly embedded minimal surface M^{*} such that

$$
M^{*} \cap H=X \cup Z \cup Z^{*} .
$$

In this way, for each helicoid H, each sign \pm, and each even genus g, we get at least one M^{*} with the specified sign and genus.
(Odd genus is also OK, but one gives up the μ symmetry.)

Where are the handles?

When taking limits (as in Martin's talk tomorrow), it is important for us to have the handles lined up along the y-axis, i.e., that the surfaces we produce be " Y-surfaces" (as defined in David's talk yesterday).

Where are the handles?

When taking limits (as in Martin's talk tomorrow), it is important for us to have the handles lined up along the y-axis, yesterday).

The inductive argument above works equally well if we restrict ourselves to Y-surfaces.

Where are the handles?

When taking limits (as in Martin's talk tomorrow), it is important for us to have the handles lined up along the y-axis, i.e., that the surfaces we produce be " Y-surfaces" (as defined in David's talk yesterday).
 ourselves to Y-surfaces.

Where are the handles?

When taking limits (as in Martin's talk tomorrow), it is important for us to have the handles lined up along the y-axis, i.e., that the surfaces we produce be " Y-surfaces" (as defined in David's talk yesterday).

The inductive argument above works equally well if we restrict ourselves to Y-surfaces.

Another key tool: controlling area-blowup

Let M_{i} be a sequence of minimal surfaces in a Riemannian manifold Ω. Let Z be the area blowup set: Z is the set of points p such that

$$
\lim \sup \operatorname{area}\left(M_{i} \cap \mathbf{B}(p, r)\right)=\infty \quad \text { for every } r>0 .
$$

Another key tool: controlling area-blowup

Let M_{i} be a sequence of minimal surfaces in a Riemannian manifold Ω. Let Z be the area blowup set: Z is the set of points p such that

$$
\lim \sup \operatorname{area}\left(M_{i} \cap \mathbf{B}(p, r)\right)=\infty \quad \text { for every } r>0
$$

Theorem (W)

Suppose the boundaries ∂M_{i} have locally uniformly bounded length:

$$
\underset{i}{\sup \text { length }\left(U \cap \partial M_{i}\right)<\infty \quad \text { for } U \subset \subset \Omega . . ~}
$$

Then Z obeys the same maximum principles that hold for properly embedded minimal surfaces without boundary.

Another key tool: controlling area-blowup

Let M_{i} be a sequence of minimal surfaces in a Riemannian manifold Ω. Let Z be the area blowup set: Z is the set of points p such that

$$
\lim \sup \operatorname{area}\left(M_{i} \cap \mathbf{B}(p, r)\right)=\infty \quad \text { for every } r>0
$$

Theorem (W)

Suppose the boundaries ∂M_{i} have locally uniformly bounded length:

$$
\underset{i}{\sup \text { length }\left(U \cap \partial M_{i}\right)<\infty \quad \text { for } U \subset \subset \Omega . . ~}
$$

Then Z obeys the same maximum principles that hold for properly embedded minimal surfaces without boundary.

In particular, if Z lies on one side of a connected minimal surface M and if Z and M touch at a point, then Z contains M.

Another key tool: controlling area-blowup

Let M_{i} be a sequence of minimal surfaces in a Riemannian manifold Ω. Let Z be the area blowup set: Z is the set of points p such that

$$
\lim \sup \operatorname{area}\left(M_{i} \cap \mathbf{B}(p, r)\right)=\infty \quad \text { for every } r>0
$$

Theorem (W)

Suppose the boundaries ∂M_{i} have locally uniformly bounded length:

$$
\underset{i}{\sup \text { length }\left(U \cap \partial M_{i}\right)<\infty \quad \text { for } U \subset \subset \Omega . . ~}
$$

Then Z obeys the same maximum principles that hold for properly embedded minimal surfaces without boundary.

In particular, if Z lies on one side of a connected minimal surface M and if Z and M touch at a point, then Z contains M.
(Reference: "Controlling area-blowup..." on ArXiv.)

Corollary (Halfspace Theorem)

Suppose $\Omega=\mathbf{R}^{3}$ and that Z is contained in a half space. Suppose also that Z contains no plane.

The corollary follows from the theorem because the Hoffman-Meeks proof of their halfspace theorem onlv uses the maximum principle, and hence the same proof works for area blowup sets Z.

Corollary (Halfspace Theorem)

Suppose $\Omega=\mathbf{R}^{3}$ and that Z is contained in a half space. Suppose also that Z contains no plane. Then $Z=\emptyset$.

The corollary follows from the theorem because the Hoffman-Meeks proof of their halfspace theorem only uses the maximum principle, and hence the same proof works for area

Corollary (Halfspace Theorem)

Suppose $\Omega=\mathbf{R}^{3}$ and that Z is contained in a half space. Suppose also that Z contains no plane. Then $Z=\emptyset$.

The corollary follows from the theorem because the Hoffman-Meeks proof of their halfspace theorem only uses the maximum principle, and hence the same proof works for area blowup sets Z.

Example

Here is one example of how we use the area blowup theorem.
When we take a limit M (as sets) of genus g helicoids M_{i} in $\mathbf{S}^{2}(R) \times \mathbf{R}$ as $R \rightarrow \infty$, we first show that M converges nicely outside of some (possibly very large) solid cylinder C about the z-axis. Thus the area blowup set Z lies in the solid cylinder C.

Now C is contained in a halfspace and does not contain a plane, so the same is true for the blowup set Z. But now by the halfspace theorem, Z must be empty.

Example

Here is one example of how we use the area blowup theorem.
When we take a limit M (as sets) of genus g helicoids M_{i} in $\mathbf{S}^{2}(R) \times \mathbf{R}$ as $R \rightarrow \infty$, we first show that M converges nicely outside of some (possibly very large) solid cylinder C about the z-axis. Thus the area blowup set Z lies in the solid cylinder C.

Now C is contained in a halfspace and does not contain a plane, so the same is true for the blowup set Z. But now by the halfspace theorem, Z must be empty.

Alternate argument

Alternatively, one can argue as follows. Let Σ be a catenoid whose axis is the z-axis and that is disjoint from C. If the area blowup set Z were nonempty, we could shrink Σ until it just touched Z, violating the maximum principle. Hence Z is empty.

