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Goals:

Today: construct many interesting minimal surfaces in S2 × R.

Tomorrow: Let the radius of the S2 tend to ∞ to get interesting
examples in R3. (Hardest part: control genus).
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Today’s talk

First, I will prove a special, very concrete case of our results about
S2 × R.

Then I will indicate how exactly the same proof gives a more
general result.



The boundary curve Γ

This curve Γ lies on the boundary X × R of a solid cylinder. (Here
X is a great circle in S2.) It consists of the great circle X (at
height 0), two vertical segments passing through a pair of
diametrically opposite points O and O∗ on X , and two horizontal
great semicircles at heights h and −h.



The boundary curve Γ

The curve Γ has many symmetries, including reflection µ in a
totally geodesic cylinder that switches O and O∗. Throughout this
talk, all objects (surfaces, jacobi fields, etc) are required to have all
of those symmetries.



To show: Γ bounds many embedded minimal surfaces inside the
solid cylinder.

Note: in today’s talk, all surfaces are embedded. Thus “surface”
means “embedded surface having all the symmetries of Γ”.
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Main Theorem

Suppose Γ is “bumpy”, i.e., bounds no minimal surfaces (inside the
cylinder) with nontrivial jacobi fields. Let k be an even integer
≤ 2. Then Γ bounds:
• an odd number of positive minimal surfaces (inside the cylinder)
with Euler characteristic k, and
• an odd number of negative minimal surfaces (inside the cylinder)
with Euler characteristic k.

Corollary

Without assuming “bumpiness”, the theorem remains true with
“an odd number of” replaced by “at least one”.

Remark: Repeated Schwarz reflection gives complete, properly
embedded minimal surfaces (without boundary) in S2 × R.
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Positive and negative surfaces

In a neighborhood of O, the curve Γ divides the cylinder X × R
into four quadrants. We call two of the (non-adjacent) quadrants
“positive” and the other two “negative”:

A surface M (in the solid cylinder) with boundary Γ is called
positive it is tangent to the positive quadrants at O, and negative
if it is tangent to the negative quadrants at O.



A key tool

Basic Counting Theorem (W 1986)

Let N ≈ B3 be a mean convex, compact Riemannian 3-manifold
that contains no closed minimal surfaces. Let C be a smooth,
simple closed curve in ∂N. Suppose C is bumpy. Then C bounds
• an odd number of embedded minimal disks, and
• an even number of embedded surfaces of each other topological
type.

(cf. Tomi and Tromba (1978): disks in R3.)

David and I generalized this theorem to N with piecewise smooth
boundary, and to curves and surfaces invariant under a group of
symmetries of N.
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Proof of main theorem

Let Γ(t) be obtained from Γ by rounding the corners (as
illustrated) to make it embedded. Here Γ(t)→ Γ as t → 0.

(a) The curve Γ (b) The rounded curve Γ(t)



Let S(t) be a one-parameter family of minimal surfaces with
∂S(t) = Γ(t).

Then as t → 0, S(t) converges to a surface S bounded by Γ.

Question

How are the topologies (i.e, Euler characteristics) of S and S(t)
related?

(Note: here S denotes the open surface: S = S \ Γ.)
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How are the Euler characteristics of S and S(t) related?

It depends on the sign of S :

If S is negative, then S and S(t) are homeomorphic, so
χ(S) = χ(S(t)).

If S is positive, then χ(S) = χ(S(t)) + 2.
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Let F (k ,+) be the number of positive minimal surfaces of Euler
characteristic k bounded by Γ. Similarly define F (k ,−).

Goal: Show that F (k,+) and F (k ,−) are odd for all even k ≤ 2.
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Claim

For small t,

#(minimal surfaces bounded by Γ(t) with χ = k)

=

F (k ,−) + F (k + 2,+).

For k < 2, the first number is even (by the Hoffman-White
counting theorem).

Thus
F (k ,−) ∼= F (k + 2,+) mod 2.

Similarly
F (k ,+) ∼= F (k + 2,−) mod 2.

So: once we know that F (2,+) and F (2,−) are odd, it follows
that F (k,±) is odd for every even k ≤ 2.
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What about F (2,±)?

Recall

Claim

For small t,

#(minimal surfaces bounded by Γ(t) with χ = k)

is equal to
F (k ,−) + F (k + 2,+).

In the case k = 2, this becomes:
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What about F (2,±)?

Claim

For small t,

#(minimal surfaces bounded by Γ(t) with χ = 2)

is equal to
F (2,−) + F (4,+).

The first number is odd (by the Hoffman-White counting
theorem). Also, F (4,+) = 0 (trivially). So F (2,−) is odd.
Similarly for F (2,+).
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The general case

In the preceding argument, the cylinder in S2 × R can be replaced
by any helicoid H in S2 × R.

The argument above shows that the curve Γ bounds positive and
negative embedded minimal surfaces S (lying on one side of H) of
each Euler characteristic ≤ 2. Reflecting in Z (or equivalently Z ∗)
gives a surface M bounded by two horizontal great circles, at
heights ±h.

Letting h→∞ gives a properly embedded minimal surface M∗

such that
M∗ ∩ H = X ∪ Z ∪ Z ∗.

In this way, for each helicoid H, each sign ±, and each even genus
g , we get at least one M∗ with the specified sign and genus.

(Odd genus is also OK, but one gives up the µ symmetry.)
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Where are the handles?

When taking limits (as in Martin’s talk tomorrow), it is important
for us to have the handles lined up along the y -axis, i.e., that the
surfaces we produce be “Y -surfaces” (as defined in David’s talk
yesterday).

The inductive argument above works equally well if we restrict
ourselves to Y -surfaces.
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Another key tool: controlling area-blowup

Let Mi be a sequence of minimal surfaces in a Riemannian
manifold Ω. Let Z be the area blowup set: Z is the set of points p
such that

lim sup area(Mi ∩ B(p, r)) =∞ for every r > 0.

Theorem (W)

Suppose the boundaries ∂Mi have locally uniformly bounded
length:

sup
i

length(U ∩ ∂Mi ) <∞ for U ⊂⊂ Ω.

Then Z obeys the same maximum principles that hold for properly
embedded minimal surfaces without boundary.

In particular, if Z lies on one side of a connected minimal surface
M and if Z and M touch at a point, then Z contains M.

(Reference: “Controlling area-blowup...” on ArXiv.)
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Corollary (Halfspace Theorem)

Suppose Ω = R3 and that Z is contained in a half space. Suppose
also that Z contains no plane. Then Z = ∅.

The corollary follows from the theorem because the
Hoffman-Meeks proof of their halfspace theorem only uses the
maximum principle, and hence the same proof works for area
blowup sets Z .
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Example

Here is one example of how we use the area blowup theorem.

When we take a limit M (as sets) of genus g helicoids Mi in
S2(R)× R as R →∞, we first show that M converges nicely
outside of some (possibly very large) solid cylinder C about the
z-axis. Thus the area blowup set Z lies in the solid cylinder C .

Now C is contained in a halfspace and does not contain a plane, so
the same is true for the blowup set Z . But now by the halfspace
theorem, Z must be empty.
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Alternate argument

Alternatively, one can argue as follows. Let Σ be a catenoid whose
axis is the z-axis and that is disjoint from C . If the area blowup
set Z were nonempty, we could shrink Σ until it just touched Z ,
violating the maximum principle. Hence Z is empty.


