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Motivation

Study of dynamics of relativistic spin-1/2 fermions in a rotating black hole
spacetime via Dirac equation in non-extreme Kerr geometry.

Approaches:

I. Chandrasekhar’s mode analysis.

II. Scattering theory.

III. Integral spectral representation of Dirac propagator in Hamiltonian
framework.

Investigation of

decay rates for Dirac spinors.

probability estimates for Dirac particles to fall into a Kerr black hole or
escape to infinity.

Kerr black hole stability under small fermionic field perturbations.

scattering and super-radiance.

Problem: Validity of solutions restricted to coordinate domains.

Usual Boyer–Lindquist coordinates singular at horizons.

⇒ Dynamics near and across horizons not well-defined.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Solution: Analytic extension of BLC to advanced Eddington–Finkelstein-type
coordinates.

Regularity at horizons.

Time function on partial Cauchy surfaces.

Aim 1: Mode analysis in horizon-penetrating coordinates [C.R., GRG, ’17 ].

Issues:

I. Trafo singular at horizons. ⇒ Careful mathematical analysis essential!

II. Mixing of variables in trafo leads to symmetry breaking of structures
inherent to BLC. ⇒ Separation of variables property conserved?

Aim 2: Generalized horizon-penetrating integral spectral representation of Dirac
propagator [F. Finster & C.R., ATMP, ’18 ].

Issues:

I. Self-adjointness of Dirac Hamiltonian. ⇒ Dirac Hamiltonian not uniformly
elliptic!

II. Construction of well-defined Cauchy problem. ⇒ MIT boundary conditions
due to singularity.

Results:

Proper understanding of black hole evolution and stability.

Propagation of fermions on black hole backgrounds across horizons.
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Preliminaries

The Einstein field equation:

Lorentzian 4-manifold (M, g) with metric g : TpM× TpM→ R, p ∈M, of
signature (1, 3) being non-singular, symmetric, bilinear tensor field of type (0, 2).

Riemann curvature Riem : Γ∞(M, TM)3 → Γ∞(M, TM)

Riem(v1,v2)v3 := ∇v1∇v2v3 −∇v2∇v1v3 −∇[v1,v2]v3

with Levi-Civita connection ∇ : Γ∞(M, TM)2 → Γ∞(M, TM) and vi ∈ TpM.

Einstein field equations

G(g) + Λ g = 8π T ,

where

G(g) := Ric(g)− 1
2
g Sc(g) is Einstein tensor

Ricci curvature Ric is partial trace of Riem

scalar curvature Sc = trg Ric is full trace of Riem

T is energy-momentum tensor of matter and fields

Λ is cosmological constant.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator



Outline

Motivation

Preliminaries

DE in KG I –
Regular Coords.

DE in KG II –
Mode Analysis

DP in KG I –
Hamiltonian

DP in KG II –
Self-adjointness

DP in KG III –
Spectral Repr.

Summary and
Outlook

Einstein field equations

are nonlinear, inhomogeneous second-order PDE system for g.

are dynamical equations for gravitational field in GR.

describe gravitation as interaction of geometry with mass-energy content
of spacetime.

imply local conservation of energy and momentum if cosmological
constant is vanishing

divT = 0 .

Special case under consideration:

Vanishing energy-momentum tensor T = 0 and zero cosmological constant
Λ = 0.

⇒ Vacuum Einstein field equations

Ric(g) = 0 .
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The non-extreme Kerr geometry:

2-parameter family of vacuum solutions of EFE derived under the assumptions of
stationarity and axial symmetry.

Physical branch with {(M,J) | 0 ≤ J/M < M}.

Connected, orientable and time-orientable, smooth, asymptotically flat
Lorentzian 4-manifold (M, g) with topology S2 × R2.

Coordinates (t,x) with t ∈ R and x = (x1, x2, x3) being coordinates on
space-like hypersurface N ' S2 × R.

Metric representation

g = a
(
x1, x2

)
dt⊗ dt+ b

(
x1, x2

)(
dt⊗ dx3 + dx3 ⊗ dt

)
−
(
gN(x)

)
ij

dxi ⊗ dxj

with

a, b ∈ C∞(M, TM)

induced Riemannian metric gN on N

x3 = ϕ azimuthal angle about axis of symmetry

Killing vector fields K1 = ∂t and K2 = ∂ϕ.
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Application:

Final equilibrium state of gravitational field of uncharged, rotating black holes.

Characteristics and features:

I. According to Carter–Robinson theorem, Kerr solution is unique.

II. Kerr geometry is of Petrov type D.

⇔ Weyl tensor has two double eigenbivectors.

⇔ Two double principal null directions.

III. Special surfaces: Event horizon, Cauchy horizon, and ergosurface (static
limit surface).

IV. Singularity structure: Ring-shaped curvature singularity.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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The massive Dirac equation:

Spinor bundle SM on globally hyperbolic Lorentzian 4-manifold (M, g) with
fibers SpM ' C4, p ∈M.

Fibers endowed with indefinite inner product of signature (2, 2)

≺ψ|φ�p : SpM× SpM→ C , (ψ, φ) 7→ ψ?φ for ψ, φ ∈ C4 .

Dirac operator

D := i γµ∇µ + B

with general relativistic Dirac matrices (γµ), external potential B, and metric
connection ∇ on SM

∇µ = ∂µ + 1
8
ωµαβ

[
γα, γβ

]
,

where ω is spin connection.

Dirac matrices related to metric g by anti-commutation relations

{γµ, γν} = 2gµν11SpM .

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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General relativistic, massive Dirac equation

(D −m)ψ = 0

with Dirac 4-spinor ψ ∈ C∞sc (M,C4) and invariant fermion rest mass m.

Dirac equation describes dynamics of relativistic, massive spin-1/2 fermions.

Hamiltonian formulation of Dirac equation

i∂tψ = Hψ

with Dirac Hamiltonian

H := −(γt)−1(iγj∇j + B−m)−
i

8
ωtαβ

[
γα, γβ

]
.
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The Newman–Penrose formalism and Carter tetrad:

Tetrad formalism with local null basis (l,n,m,m), where l,n real-valued and
m,m a conjugate-complex pair. These satisfy:

l · l = n · n = m ·m = m ·m = 0 (null conditions)

l ·m = l ·m = n ·m = n ·m = 0 (orthogonality conditions)

l · n = −m ·m = 1 (cross-normalization conditions).

Tetrad arranged to reflect symmetries or adapted to certain aspects of
underlying spacetime.

⇒ Reduction in number of conditional equations and simplified expressions for
primary geometric quantities.

Local, non-degenerate and constant metric

η = l⊗ n+ n⊗ l−m⊗m−m⊗m .
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Torsion-free Maurer–Cartan equation of structure de = −ω ∧ e in NP formalism:

dl = 2 Re(ε)n ∧ l− 2n ∧ Re(κm)− 2 l ∧ Re
(
[τ − α− β]m

)
+ 2i Im(%)m ∧m

dn = 2 Re(γ)n ∧ l− 2n ∧ Re
(
[α+ β − π]m

)
+ 2 l ∧ Re(νm)

+ 2i Im(µ)m ∧m

dm = dm = (π + τ)n ∧ l+
(
2i Im(ε)− %

)
n ∧m− σn ∧m

+
(
µ+ 2i Im(γ)

)
l ∧m+ λ l ∧m− (α− β)m ∧m .

Spin coefficients constitute connection representation in NP formalism.

General relativistic Dirac equation in NP formalism:

(lµ∂µ + ε− %)F1 + (mµ∂µ + π − α)F2 = imG1/
√

2

(nµ∂µ + µ− γ)F2 + (mµ∂µ + β − τ)F1 = imG2/
√

2

(lµ∂µ + ε− %)G2 − (mµ∂µ + π − α)G1 = imF2/
√

2

(nµ∂µ + µ− γ)G1 − (mµ∂µ + β − τ)G2 = imF1/
√

2 .
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Carter tetrad: Choose tetrad adapted to

(i) Petrov type of Kerr geometry. → Tetrad coincides with two principal null
directions of Weyl tensor.

(ii) discrete time and angle reversal isometries of Kerr geometry.

Symmetry of frame

l 7→ −sign(∆)n , n 7→ −sign(∆) l , m 7→m , m 7→m .

⇒ Only six independent spin coefficients as solution of first Maurer–Cartan
equation of structure.
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The Massive Dirac Equation in the Kerr Geometry

Horizon-penetrating coordinates:

Kerr metric in BLC

(t, r, θ, ϕ) with t ∈ R, r ∈ R>0, θ ∈ (0, π) , and ϕ ∈ [0, 2π)

given by

g =
∆

Σ

(
dt− a sin2 (θ) dϕ

)
⊗
(
dt− a sin2 (θ) dϕ

)
−

sin2 (θ)

Σ

(
[r2 + a2] dϕ− a dt

)
⊗
(
[r2 + a2] dϕ− a dt

)
−

Σ

∆
dr ⊗ dr − Σ dθ ⊗ dθ ,

where

mass M and angular momentum aM for which 0 ≤ a < M

event and Cauchy horizons r± := M ±
√
M2 − a2

horizon function ∆ = ∆(r) := (r − r+)(r − r−) = r2 − 2Mr + a2

Σ = Σ(r, θ) := r2 + a2 cos2 (θ) .

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator



Outline

Motivation

Preliminaries

DE in KG I –
Regular Coords.

DE in KG II –
Mode Analysis

DP in KG I –
Hamiltonian

DP in KG II –
Self-adjointness

DP in KG III –
Spectral Repr.

Summary and
Outlook

Relations for time/azimuthal angle and radial coordinate along principal null
geodesics

dt

dr
= ±

r2 + a2

∆
⇔ t = ±

∫
r2 + a2

∆
dr + c± = ±r? + c±

dϕ

dr
= ±

a

∆
⇔ ϕ = ±

∫
a

∆
dr + c′± = ±

a

r+ − r−
ln

∣∣∣∣ r − r+r − r−

∣∣∣∣+ c′±

with

r? := r +
r2
+ + a2

r+ − r−
ln |r − r+| −

r2
− + a2

r+ − r−
ln |r − r−| .

Relations for ingoing principal null geodesics motivate transformation from BLC
to advanced Eddington–Finkelstein-type coordinates

R×R>0×(0, π)× [0, 2π)→ R×R>0×(0, π)× [0, 2π) , (t, r, θ, ϕ) 7→ (τ, r, θ, φ)

with

τ := t+ r? − r = t+
r2
+ + a2

r+ − r−
ln |r − r+| −

r2
− + a2

r+ − r−
ln |r − r−|

φ := ϕ+
a

r+ − r−
ln

∣∣∣∣ r − r+r − r−

∣∣∣∣ .
AEFTC free of singularities at horizons and spatio-temporal characteristics
across horizons conserved.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Kerr metric in AEFTC

g =

(
1−

2Mr

Σ

)
dτ ⊗ dτ −

2Mr

Σ

(
[dr − a sin2 (θ) dφ]⊗ dτ

+ dτ ⊗ [dr − a sin2 (θ) dφ]
)
−
(

1 +
2Mr

Σ

)(
dr − a sin2 (θ) dφ

)
⊗
(
dr − a sin2 (θ) dφ

)
− Σ dθ ⊗ dθ − Σ sin2 (θ) dφ⊗ dφ .

Substituting Carter tetrad in AEFTC

l =
1

√
2 Σ r+

(
[∆ + 4Mr] ∂τ + ∆ ∂r + 2a ∂φ

)
n =

r+√
2 Σ

(∂τ − ∂r)

m =
1
√

2 Σ

(
ia sin (θ) ∂τ + ∂θ + i csc (θ) ∂φ

)
m = −

1
√

2 Σ

(
ia sin (θ) ∂τ − ∂θ + i csc (θ) ∂φ

)
into – and solving – torsion-free Maurer–Cartan equation of structure yields
regular spin coefficients.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Chandrasekhar’s mode analysis:

Method:

Kerr geometry in NP formalism described by regular Carter tetrad in AEFTC.

Dirac equation in chiral representation in 2-spinor form with NP dyad basis.

Separability into radial and angular ODE systems via weighted mode ansatz.

Analysis of:

I. Asymptotic radial solutions at infinity, event horizon, and Cauchy horizon.

II. Decay of associated errors.

III. Set of eigenfunctions and eigenvalue spectrum of angular system.

Basis for:

Hamiltonian formulation of massive Dirac equation in non-extreme Kerr
geometry in horizon-penetrating coordinates.

Construction of integral spectral representation of Dirac propagator
yielding dynamics outside, across, and inside EH, up to CH.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Separability of Dirac equation via weighted mode ansatz

F1(τ, r, θ, φ) =
e−i(ωτ+kφ)√
|∆| [r − ia cos (θ)]

R+(r) T+(θ)

F2(τ, r, θ, φ) =
e−i(ωτ+kφ)

r+
√
r − ia cos (θ)

R−(r) T−(θ)

G1(τ, r, θ, φ) =
e−i(ωτ+kφ)

r+
√
r + ia cos (θ)

R−r+(r) T+(θ)

G2(τ, r, θ, φ) =
e−i(ωτ+kφ)√
|∆| [r + ia cos (θ)]

R+(r) T−(θ) ,

where frequency ω ∈ R and wave number k ∈ Z + 1/2, into first-order radial and
angular ODE systems

∂rR =
1

∆

(
i
(
ω [∆ + 4Mr] + 2ak

) √
|∆| (ξ + imr)

sign(∆)
√
|∆| (ξ − imr) −iω∆

)
R

(
ma cos (θ) −∂θ −

cot (θ)
2

+ aω sin (θ) + kcsc(θ)

∂θ +
cot (θ)

2
+ aω sin (θ) + kcsc(θ) −ma cos (θ)

)
T = ξT

with constant of separation ξ .

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Lemma:

Every nontrivial solution of the radial ODE system for |ω| > m is asymptotically
as r →∞ of the oscillatory form

R(r?) = R∞(r?) + E∞(r?) = D∞

(
f
(1)
∞ eiφ+(r?)

f
(2)
∞ e−iφ−(r?)

)
+ E∞(r?) ,

where D∞, f
(1/2)
∞ are non-zero constants and

φ±(r?) := sign(ω)

[
−
√
ω2 −m2 r? +M

(
± 2ω −

m2

√
ω2 −m2

)
ln (r?)

]
.

The error E∞ has polynomial decay

‖E∞(r?)‖ ≤
a

r?

for a suitable constant a ∈ R>0. In the case |ω| < m, the non-trivial solution R

has both contributions that show exponential decay ∼ e−
√
m2−ω2 r? and

exponential growth ∼ e
√
m2−ω2 r? .

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Lemma:

Every nontrivial solution of the radial ODE system is asymptotically as r ↘ r±
of the form

R(r?) = Rr± (r?) + Er± (r?) =

(
g
(1)
r± e

2i
(
ω+kΩ

(±)
Kerr

)
r?

g
(2)
r±

)
+ Er± (r?)

with non-zero constants g
(1/2)
r± and an error Er± with exponential decay

‖Er± (r?)‖ ≤ p± e±q±r?

for r sufficiently close to r± and suitable constants p±, q± ∈ R>0.

Proposition:

For any ω ∈ R and k ∈ Z + 1/2, the angular operator has a complete set of

orthonormal eigenfunctions (Tn)n∈Z in L2
(
(0, π), sin (θ) dθ

)2
that are bounded

and smooth away from the poles. The corresponding eigenvalues ξn are
real-valued and non-degenerate, and can thus be ordered as ξn < ξn+1. Both
the eigenfunctions and the eigenvalues depend smoothly on ω.

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Integral Spectral Representation of the Dirac Propagator

Hamiltonian formulation:

Dirac equation in Hamiltonian form

i∂τψ(τ,x) = Hψ(τ,x) with H := −i(γτ )−1γj∇j + (z.o.t.) = αj ∂j + V .

Scalar product on space-like hypersurfaces N := {τ = const., r, θ, φ}

(ψ|φ)N :=

∫
N
≺ψ|/νφ�p dµN

with future-directed, time-like normal ν and invariant measure dµN on N.

Independent of choice of N. ⇐ Gauss’ theorem and current conservation.

Requirement for spectral theorem: Self-adjointness of H w.r.t. scalar product.

Evaluation of principal symbol shows H not (uniformly) elliptic at horizons.
⇒ Standard methods of proof from elliptic theory cannot be employed.

New method for mixed initial-boundary value problems combining results from
theory of symmetric hyperbolic systems with near-boundary elliptic methods
[F. Finster & C.R., AMSA, ’16 ].
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Self-adjointness of the Dirac Hamiltonian:

Consider subset

M := {τ, r > r0, θ, φ} ⊂M for r0 < r−

with time-like boundary

∂M := {τ, r = r0, θ, φ} .

Foliation of space-like hypersurfaces

N = (Nτ )τ∈R , where Nτ := {τ = const., r > r0, θ, φ} ,

with boundaries

∂Nτ := ∂M ∩Nτ ' S2 .

Killing field time-like near ∂M

K := ∂τ + β0 ∂φ with constant β0 = β0(r0) ∈ R\{0} .

Spinor bundle SM of M with fibers SpM ' C4, where p ∈M .

Dirac Hamiltonian

H = αj∂j + V on N ,

symmetric w.r.t. to scalar product ( . | . )N .

C. Röken Integral Spectral Representation of the Kerr–Dirac Propagator
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Radial Dirichlet-type boundary condition on time-like hypersurface inside CH

(/n− i)ψ|∂M = 0 ,

where n is inner normal to ∂M .

Consequences:

Dirac particles reflected at ∂M .

Without effect on dynamics
outside CH.

Unitary time evolution.

Limiting case where boundary
coincides with CH.

Domain of Dirac Hamiltonian

Dom(H) =
{
ψ ∈ C∞0 (N,SM)

∣∣ (/n− i)ψ|∂N = 0
}
.
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Lemma:

The Cauchy problem for the Dirac equation in the Kerr geometry in AEFTC

i∂τψ = Hψ , ψ|τ=0 =: ψ0 ∈ C∞0 (Nτ=0, SM)

with the radial Dirichlet-type boundary condition at ∂M given by

(/n− i)ψ|∂M = 0 ,

where the initial data ψ0 is smooth, compactly supported outside, across, and
inside the event horizon, up to the Cauchy horizon, and is compatible with the
boundary condition, i.e.,

(/n− i)(Hpψ0)|∂Nτ = 0 for all p ∈ N0 ,

has a unique, global solution ψ in the class of smooth functions with spatially
compact support C∞sc (M,SM). Evaluating this solution at subsequent times τ
and τ ′ gives rise to a unique unitary propagator

Uτ
′, τ : C∞0 (Nτ , SM)→ C∞0 (Nτ ′ , SM) .

Theorem:

The Dirac Hamiltonian H in the non-extreme Kerr geometry in AEFTC with

Dom(H) =
{
ψ ∈ C∞0 (Nτ , SM)

∣∣ (/n− i)(Hpψ)|∂Nτ = 0 for all p ∈ N0

}
is essentially self-adjoint.
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Spectral theorem, Stone’s formula, and derivation of the resolvent:

Derivation of explicit expression for spectral measure in formal spectral
decomposition of Dirac propagator

ψ(τ,x) = e−iτHψ0(x) =

∫
R
e−iωτψ0(x) dEω

with spectral measure dEω and initial data ψ0 ∈ C∞0
(
(r0,∞)× S2, SM

)
.

Employing Stone’s formula relating spectral projector of H to resolvent yields

ψ(τ,x) =
1

2πi

∑
k∈Z

e−ikφ
∫
R
e−iωτ lim

ε↘0

[
Reskω+iε − Reskω−iε

]
ψ0,k(r, θ) dω .

Computation of resolvents for fixed k-modes on upper/lower complex half-planes:

(i) Factoring out azimuthal angle modes.

(ii) Projecting H onto finite-dim., invariant spectral eigenspace of angular
operator from Chandrasekhar’s separation of variables.

(iii) Two-dim. radial Green’s matrix from Chandrasekhar’s separation of
variables in terms of Jost-type solutions.

(iv) Summation over angular modes and evaluation of ε-limit.
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Summary and Outlook

Results: Dirac equation in Kerr geometry in horizon-penetrating coordinates.

I. Chandrasekhar’s mode analysis: Separability, radial asymptotics, and
spectral properties.

II. Hamiltonian formulation.

III. Essential self-adjointness of Dirac Hamiltonian.

IV. Generalized integral spectral representation of Dirac propagator.

Current research: Formulation of AQFT for Dirac fields in BH spacetimes.

I. Construction of fermionic signature operator.

Symmetric operator on solution space of massive Dirac equation in
globally hyperbolic spacetimes.

Gives rise to (pure, quasi-free) fermionic Fock ground state.

Physically sensible provided it is of Hadamard form.

II. Construction of Fock spaces.

Construction of ground state via Araki’s construction applied to
projection operator onto negative spectral subspace of FSO.

Anti-commutation relations for creation and annihilation operators.

Analysis of resulting many-particle quantum states.
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Status quo: Construction of FSO in exterior Schwarzschild geometry and
analysis of Fock ground state for Dirac field [F. Finster & C.R., AHP, ’19 ].

Main obstacle: Boundary term for event horizon.

Finding: Fock ground state coincides with Hadamard state obtained by
usual frequency splitting for observer at infinity.

Work in progress:

I. FSO in Kruskal extension of Schwarzschild geometry.

Main obstacle: Boundary term for curvature singularity.

Expectation: FSO no longer yields frequency splitting. ⇒ Thermal
Hawking–Unruh state up to spin-gravity coupling corrections.

II. Generalization to non-extreme Kerr geometry.

Overall aim: New derivation of Hawking effect.
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