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Motivation

Study of dynamics of relativistic spin-1/2 fermions in a rotating black hole

- spacetime via Dirac equation in non-extreme Kerr geometry.
Approaches:

|

Motivation

Il. Scattering theory.

DE in KG 1 Il. Integral spectral representation of Dirac propagator in Hamiltonian
Regular Coords. framework.

Chandrasekhar's mode analysis.

Investigation of

@ decay rates for Dirac spinors.

@ probability estimates for Dirac particles to fall into a Kerr black hole or
escape to infinity.

@ Kerr black hole stability under small fermionic field perturbations.
Spectral Repr

@ scattering and super-radiance.
Summary and
Outlook

Problem: Validity of solutions restricted to coordinate domains.
Usual Boyer—Lindquist coordinates singular at horizons.

= Dynamics near and across horizons not well-defined.
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Preliminaries

DE in KG | —
Regular Coord

Solution: Analytic extension of BLC to advanced Eddington—Finkelstein-type
coordinates.

@ Regularity at horizons.

@ Time function on partial Cauchy surfaces.

Aim 1: Mode analysis in horizon-penetrating coordinates [C.R., GRG, '17].

Issues:

Trafo singular at horizons. = Careful mathematical analysis essential!
Mixing of variables in trafo leads to symmetry breaking of structures
inherent to BLC. = Separation of variables property conserved?

Aim 2: Generalized horizon-penetrating integral spectral representation of Dirac
propagator [F. Finster & C.R., ATMP, '18].

Issues:

Self-adjointness of Dirac Hamiltonian. = Dirac Hamiltonian not uniformly
elliptic!

Construction of well-defined Cauchy problem. = MIT boundary conditions
due to singularity.

Results:

@ Proper understanding of black hole evolution and stability.

@ Propagation of fermions on black hole backgrounds across horizons.
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Preliminaries

o

> 1590 ° The Einstein field equation:

- Lorentzian 4-manifold (91, g) with metric g: Tp,M X T,M — R, p € M, of
signature (1, 3) being non-singular, symmetric, bilinear tensor field of type (0, 2).

Motivation Riemann curvature Riem: T'°° (90, TON)3 — T'°° (M, TIN)

Preliminaries

DE in KG | Riem(vlv ’02)1}3 =V, V13 — Vy, Vo, v3 — V[vl,vz]’US
in -

Regular Coord with Levi-Civita connection W : T (901, T9)2 — T'°° (9, T9N) and v; € TpM.

Einstein field equations

G(g)+Ag=8rT,

@ G(g) :=Ric(g) — %gSc(g) is Einstein tensor

Ricci curvature Ric is partial trace of Riem

]

@ scalar curvature Sc = trg Ric is full trace of Riem
@ T is energy-momentum tensor of matter and fields
o

A is cosmological constant.
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Einstein field equations

are nonlinear, inhomogeneous second-order PDE system for g.
are dynamical equations for gravitational field in GR.

describe gravitation as interaction of geometry with mass-energy content
of spacetime.

@ imply local conservation of energy and momentum if cosmological
constant is vanishing

divT' =0.

Special case under consideration:

Vanishing energy-momentum tensor T' = 0 and zero cosmological constant
A=0.

= Vacuum Einstein field equations

Ric(g) = 0.

Integral Spectral Representation of the Kerr—Dirac Propagator



/ o
SNz

1530

Motivation
Preliminaries
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The non-extreme Kerr geometry:

2-parameter family of vacuum solutions of EFE derived under the assumptions of
stationarity and axial symmetry.

Physical branch with {(M, J)|0 < J/M < M}.

Connected, orientable and time-orientable, smooth, asymptotically flat
Lorentzian 4-manifold (9%, g) with topology S? x R2.

Coordinates (t,x) with t € R and « = (2!, 22, 23) being coordinates on
space-like hypersurface 91 ~ S2 x R.

Metric representation

g =
with

a(z!,2?) dt ® dt + b(z', 2?) (dt ® d2® + d2® @ dt) — (gm(m))ij dz® @ dz?

a,b e C>® (M, TM)

induced Riemannian metric go; on 9N

x3 = ¢ azimuthal angle about axis of symmetry
Killing vector fields K1 = 0; and K2 = 0,.
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Application:

Final equilibrium state of gravitational field of uncharged, rotating black holes.

Characteristics and features:

According to Carter—Robinson theorem, Kerr solution is unique.
Kerr geometry is of Petrov type D.

< Weyl tensor has two double eigenbivectors.

< Two double principal null directions.

Special surfaces: Event horizon, Cauchy horizon, and ergosurface (static
limit surface).

Singularity structure: Ring-shaped curvature singularity.
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The massive Dirac equation:

Spinor bundle S on globally hyperbolic Lorentzian 4-manifold (91, g) with
fibers SOt ~ C4, p € M.

Outline

Fibers endowed with indefinite inner product of signature (2, 2)
otivation
<Ylprp: SpMX SM = C,  (P,¢) = 9*¢ for 9,6 €Ct.

Preliminaries

DE in KG |

Regular Coor Dirac operator

D:=iy*V,+B

with general relativistic Dirac matrices (y#), external potential B, and metric
connection V on S

Vu=0u+ é"-’uaﬂ ["/avﬁ‘/ﬁ] )

DP in KG Il . )
Spectral Repr where w is spin connection.
(S-)u:}g’;:y and Dirac matrices related to metric g by anti-commutation relations

{7y =29""1g,om .
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General relativistic, massive Dirac equation
(D—myp=0

— with Dirac 4-spinor 1) € CZ° (9, C*) and invariant fermion rest mass m.
Motivation

Preliminaries q g 3 5 9.8 0 g g 5
Dirac equation describes dynamics of relativistic, massive spin-1/2 fermions.

DE in KG

Regular Coords, . . . 2 g
Hamiltonian formulation of Dirac equation
DE in KG

Mode Analys iatw — Hw

DP in KG . . . .
Hamiltonia with Dirac Hamiltonian

DP in KG II . =10 i . i B8
H o= =)V 8 =) s ]

DP in KG 11l
Spectral Repi
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Outlook
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The Newman—Penrose formalism and Carter tetrad:

Tetrad formalism with local null basis (I, n, m,m), where I, n real-valued and
m,m a conjugate-complex pair. These satisfy:

@l l=n-n=m-m=m-m=0 (null conditions)
@l - m=l-m=n-m=n-m=0  (orthogonality conditions)

@l - n=—-m-m=1 (cross-normalization conditions).

Tetrad arranged to reflect symmetries or adapted to certain aspects of
underlying spacetime.

= Reduction in number of conditional equations and simplified expressions for
primary geometric quantities.

Local, non-degenerate and constant metric

N=ldn+n@l-mem-—-mxm.
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Torsion-free Maurer—Cartan equation of structure de = —w A e in NP formalism:

dl =2Re(e)n Al —2n ARe(km) — 2L ARe([r — @ — B )
utlin
- +2ilm(o) m AT

N dn =2Re(y)n Al —2n ARe([@+ 8 —7]m) + 21 A Re(vm)

DE in KG | - +2ilm(p) mAm
Regular Coords.

DE in KG Il - _

+ @E+2ImM))IAm+AIATm— (G- B)mAm.
Hamilt Spin coefficients constitute connection representation in NP formalism.
DP in KG |

General relativistic Dirac equation in NP formalism:

("0y + € — 0)F1 + (MO + 7 — )F2 = im G1/V2
Qummary and (n*0u + p — 7)F2 + (MHO + B — 7)F1 = im G2/V2

("8 +E—12) 92 — (M"8y + 7 — @) G1 = imFa/V2
(n*0u + 1 —7)G1 — (M0 + B —7) G2 = imF1/V2.

dm=dm=(F+7)nAl+ (2ilm(e) —g)nAm—onAm
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- Carter tetrad: Choose tetrad adapted to
- (i) Petrov type of Kerr geometry. — Tetrad coincides with two principal null
directions of Weyl tensor.

Motivation

o (ii) discrete time and angle reversal isometries of Kerr geometry.
Preliminaries
DE in KG

Regular Coords, Symmetry of frame

DE in KG l— —sign(A)n, n —sign(A)l, m—m, m—m
Mode Analys sign(A)n, n— —sign(A)1, =, —m.

DP in KG
Hamiltonia = Only six independent spin coefficients as solution of first Maurer—Cartan

DP in KG Il equation of structure.
Self-ad 53

DP in KG 11l
Spectral Repi
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Outlook
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The Massive Dirac Equation in the Kerr Geometry

”

Horizon-penetrating coordinates:

Kerr metric in BLC
teR, r €Rso, 0 € (0,7), and ¢ € [0, 2m)

(trb.0) with

-
in2 (0

% ([r? + a?] dp — adt)

DE in KG | —
Regular Coords. A
egular Coords == (dt—asi112 (9) ng) ® (dt—asin2 (9) d<p) _

o
Is3

by
p)
®([r2+a2]dgo—adt)—Zdr®dr—2d0®d9,

where
@ mass M and angular momentum aM for which 0 < a < M

@ event and Cauchy horizons r4 := M + v M?2 — a2

@ horizon function A = A(r) := (r —r4)(r —r—) =12 — 2Mr + a?

Summary a
Outlook
@ ¥ =3(r0):=1r2+a’cos? (0).

Integral Spectral Representation of the Kerr—Dirac Propagator




Relations for time/azimuthal angle and radial coordinate along principal null

geodesics

dt r2 4 a? r2 4 a?

—=t—— & t=x | ——dr+cqt = Fry +cx
Outli d a a a r—r
Lol o gp::t/—dr-&—c;:::tiln —El+d
ar ~*a A T
Preliminaries g
Preiiminarics [N
DE in KG | - ri+a’ rl +a?
ol @t ryi=r4+ ——Inlr—ry|— —— In|r —r_|.

egular Loords. T+—7'7 /r-+_147

DE in KG Il -
Mode Anal Relations for ingoing principal null geodesics motivate transformation from BLC

to advanced Eddington—Finkelstein-type coordinates

RXR>0 X (Oﬁ 7T) X [O’ 27") — RxRxo % (Oﬁ 7T) X [07 27") ) (ta 0, ‘P) =2 (7—7 .0, ¢)

with
Ti—l—aQ r2_+a2
Ti=t4+ri—r=t+ ——h|lr—ry|— ——Injr—r_|
T4+ —7T— r4 —r—
a r—r
p:=p+———1In Cd i
Ty —T_ r—r_

AEFTC free of singularities at horizons and spatio-temporal characteristics
across horizons conserved.
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Kerr metric in AEFTC

2M 2M
g= <1 — Er>dr®d‘r — TT([dT — asin? (0) d¢] ® dr

2M
+dr ® [dr — asin® (6) dg]) — (1 + T) (dr — asin® (6) dg)
® (dr — asin® (8) d¢) — £df ® df — Ssin? () do @ déb.
DE in KG | —

Regular Coords.

DE in KG Il - Substituting Carter tetrad in AEFTC
Mode Analysis 1 .
TR I:WT“([A+4M7']8T+A0T+2CL8¢)

Hamiltonian r
+ /- .
n= (0r — Or)

V23
N 1
DP in KG Il - _ d : ]
Spectral Repr. = \/ﬁ (Ia SIN (0) 87' + 89 +icsc (9) 8¢)
Summary and 1 ( (0) 5 5 (6) 9 )
Outlook m = ——— (iasin - — +icsc
o3> 0 ¢

into — and solving — torsion-free Maurer—Cartan equation of structure yields
regular spin coefficients.
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Chandrasekhar’s mode analysis:

Method:
Kerr geometry in NP formalism described by regular Carter tetrad in AEFTC.

Dirac equation in chiral representation in 2-spinor form with NP dyad basis.

Separability into radial and angular ODE systems via weighted mode ansatz.

Analysis of:
I. Asymptotic radial solutions at infinity, event horizon, and Cauchy horizon.
Il. Decay of associated errors.

Il. Set of eigenfunctions and eigenvalue spectrum of angular system.

Basis for:

@ Hamiltonian formulation of massive Dirac equation in non-extreme Kerr
geometry in horizon-penetrating coordinates.

@ Construction of integral spectral representation of Dirac propagator
yielding dynamics outside, across, and inside EH, up to CH.
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Separability of Dirac equation via weighted mode ansatz

F1 (7,0 T R () T(0
1(7-77‘7 7¢)_ |A|[r7iacos(9)] +(7”) +( )
e—i(w7+k¢>)

Falrr0,0) = — g (1)7_(6)
r4+/T —iacos (6)

9 e*i(w7+k(/>) ® .
S1(r,7,6,¢) = v Tacos(0) —74(1) T4 (0)
e—i(wT+ko)

Ga(r,7,0,0) = Ry (r)T-(6),

|A] [r + ia cos (0)]

where frequency w € R and wave number k € Z + 1/2, into first-order radial and
angular ODE systems

i(w[A+4Mr] + 2ak VIA| (€ + imr)
oOrR = 1( ( ) >31

A\ sign(A) VA (€ — imr) —iwA
. cot (0) .
ma cos (0) —0p — —5— + awsin (0) + kcsc(0)
T =¢T
dg + %@ + aw sin (0) + kesc(6) —mea cos (0)

with constant of separation & .
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Every nontrivial solution of the radial ODE system for |w| > m is asymptotically

as r — oo of the oscillatory form
) o)

R(r4) = Roo(T+) + Eoo (%) = Do f(oi) omid— () + Eoo(r4),
DE in KG | (1/2)
Regular Coords. where Doo, foo are non-zero constants and
DE in KG Il — 2
Mode Analysis qf)i (r*) = sign(w) —V w?2 — m?2 Tx + M(i 2w — %) In (7’*):| .
w? —m

The error Eo, has polynomial decay

a
[Eoo (rll < —

*

DP in KG IlI

for a suitable constant a € Rsg. In the case |w| < m, the non-trivial solution R
. . . _ 2_.,2

Summary and has both contributions that show exponential decay ~ e~ V™" ~“" "« and

Outlook 5 5

exponential growth ~ eV ™" =@ x|
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Lemma:

- Every nontrivial solution of the radial ODE system is asymptotically as r \, r+
of the form

Outline e 2i(wtreE))r
R(re) = Reg (r2) + Brg (r) = | 75  Era )
i

(1/2)

AN with non-zero constants g,/ “’ and an error E;., with exponential decay

Regular Coords.

DE in KG Il — NEry (re)l < Pt eta£T+
Mode Analysis

DP in KG | for r sufficiently close to r+ and suitable constants p+,q+ € R~o.
Hamiltoni

DR in KG Il Proposition:

For any w € R and k € Z + 1/2, the angular operator has a complete set of
orthonormal eigenfunctions (T )nez in L2 ((0,7),sin (6) d@)2 that are bounded
and smooth away from the poles. The corresponding eigenvalues &, are
real-valued and non-degenerate, and can thus be ordered as &, < £, +1. Both
the eigenfunctions and the eigenvalues depend smoothly on w.
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Integral Spectral Representation of the Dirac Propagator

Hamiltonian formulation:

Dirac equation in Hamiltonian form
i0-(7, ) = HY(r,) with H:=—i(y")"'4/V; + (zot.) =af 9; + V.
Scalar product on space-like hypersurfaces 91 := {7 = const.,r, 0, ¢}
O e
with future-directed, time-like normal v and invariant measure dusy on M.
Independent of choice of M. <= Gauss’ theorem and current conservation.

Requirement for spectral theorem: Self-adjointness of H w.r.t. scalar product.

Evaluation of principal symbol shows H not (uniformly) elliptic at horizons.
= Standard methods of proof from elliptic theory cannot be employed.

New method for mixed initial-boundary value problems combining results from
theory of symmetric hyperbolic systems with near-boundary elliptic methods
[F. Finster & C.R., AMSA, '16].
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Self-adjointness of the Dirac Hamiltonian:

1530

Consider subset
M :={r,r >1r9,0,0} CM for 1o <r_

with time-like boundary
oM = (rr = 0,0,0}.
Foliation of space-like hypersurfaces

DE in KG | -

Regular Coord N = (NT)TER , where N;:= {T = const.,r > 1o, 0, d)},
II\D/IEde Kfa:; with boundaries
. ~ Q2

L

Hamilto - . q 5

Killing field time-like near M
DP in KG Il -
Self-adjointness K :=0; + bo 8¢ with constant [y = 50(7”0) (S R\{O} 5

DP in KG Il —
Spectral Repr. Spinor bundle SM of M with fibers S, M ~ C*, where p € M.

Summary and ) i i
Outlook Dirac Hamiltonian

H:aj8j+\7 on N,

symmetric w.r.t. to scalar product (.|.)n.
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Radial Dirichlet-type boundary condition on time-like hypersurface inside CH

(% —)hjonm =0,

where n is inner normal to OM.

Consequences:

@ Dirac particles reflected at OM.

@ Without effect on dynamics
outside CH.

@ Unitary time evolution.

@ Limiting case where boundary
coincides with CH.

Domain of Dirac Hamiltonian

Dom(H) = {¢ € C§°(N,SM) | (b — i)pjon = O} .

Integral Spectral Representation of the Kerr—Dirac Propagator



Lemma:

T The Cauchy problem for the Dirac equation in the Kerr geometry in AEFTC
with the radial Dirichlet-type boundary condition at 9M given by
(# —)hjon =0,
where the initial data g is smooth, compactly supported outside, across, and

DE in KG | — inside the event horizon, up to the Cauchy horizon, and is compatible with the
Regular Coords. boundary condition, i.e.,

(1 — 1) (HPo)jan, =0 forall p€Ng,

has a unique, global solution v in the class of smooth functions with spatially
Hamiltonian compact support CX (M, SM). Evaluating this solution at subsequent times 7

DP in KG Il — and 7/ gives rise to a unique unitary propagator
Self-adjointness

T', To oo 1e%)
DP in KG Il — U ": C§° (N, SM) — C§°(N,/,SM) .
Spectral Rep
mary
o) . o ) _ -
oo The Dirac Hamiltonian H in the non-extreme Kerr geometry in AEFTC with

Dom(H) = {¢ € C§°(N+, SM) | (s — i)(HP¥)jgn, =0 forall peNo}

is essentially self-adjoint.
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Spectral theorem, Stone’s formula, and derivation of the resolvent:

Derivation of explicit expression for spectral measure in formal spectral
decomposition of Dirac propagator

P(r, ) = e THyg(x) = / e T oo (x) dE,,
R
with spectral measure dE,, and initial data ¥ € C5°((ro, 00) x S2%,SM).
Employing Stone's formula relating spectral projector of H to resolvent yields

1 ) )
1/1(7—7 m) = % e~ iko Ae—lwf El{r(l) [Resfz_,'_i€ — Resi—ie]wo,k(r? 9) dw .
keZ *

Computation of resolvents for fixed k-modes on upper/lower complex half-planes:

(i) Factoring out azimuthal angle modes.

(ii) Projecting H onto finite-dim., invariant spectral eigenspace of angular
operator from Chandrasekhar's separation of variables.

(iii) Two-dim. radial Green's matrix from Chandrasekhar’s separation of
variables in terms of Jost-type solutions.

Summation over angular modes and evaluation of e-limit.

Integral Spectral Representation of the Kerr—Dirac Propagator



Summary and Outlook

Results: Dirac equation in Kerr geometry in horizon-penetrating coordinates.

2 )
I. Chandrasekhar's mode analysis: Separability, radial asymptotics, and

- spectral properties.

Il. Hamiltonian formulation.
"
'

DE in KG |
Regular Coor

Essential self-adjointness of Dirac Hamiltonian.

IV. Generalized integral spectral representation of Dirac propagator.

Current research: Formulation of AQFT for Dirac fields in BH spacetimes.
I. Construction of fermionic signature operator.

@ Symmetric operator on solution space of massive Dirac equation in
globally hyperbolic spacetimes.

@ Gives rise to (pure, quasi-free) fermionic Fock ground state.

DP in KG 111 @ Physically sensible provided it is of Hadamard form.

Spectral Repr.

Il. Construction of Fock spaces.
Summary and . ; . i i
Outlook @ Construction of ground state via Araki's construction applied to

projection operator onto negative spectral subspace of FSO.

@ Anti-commutation relations for creation and annihilation operators.

@ Analysis of resulting many-particle quantum states.

Integral Spectral Representation of the Kerr—Dirac Propagator
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Status quo: Construction of FSO in exterior Schwarzschild geometry and

- analysis of Fock ground state for Dirac field [F. Finster & C.R., AHP, '19].

Outline @ Main obstacle: Boundary term for event horizon.

@ Finding: Fock ground state coincides with Hadamard state obtained by

usual frequency splitting for observer at infinity.
DE in KG | -

Regular Coord .
Work in progress:
I. FSO in Kruskal extension of Schwarzschild geometry.
@ Main obstacle: Boundary term for curvature singularity.

@ Expectation: FSO no longer yields frequency splitting. = Thermal
Hawking—Unruh state up to spin-gravity coupling corrections.

Il. Generalization to non-extreme Kerr geometry.

Summary and
Outlook

Overall aim: New derivation of Hawking effect.
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