

Outline	
Motivation	
Preliminaries	
DE in KG I – Regular Coords.	
DE in KG II – Mode Analysis	
DP in KG I – Hamiltonian	
DP in KG II – Self-adjointness	
DP in KG III – Spectral Repr.	
Summary and Outlook	

An Integral Spectral Representation of the Massive Dirac Propagator in the Kerr Geometry in EF-type Coordinates

Christian Röken

University of Granada, Faculty of Sciences, Department of Geometry and Topology

Image Credit: O. James, E. von Tunzelmann, P. Franklin, and K. Thorne, Classical and Quantum Gravity 32, id. 065001 (2015).

Geometry Seminar 24th September 2019

C. Röken

- Motivation
- Preliminaries
- DE in KG I Regular Coords.
- DE in KG II –
- Mode Analysis
- DP in KG I Hamiltonian
- DP in KG II Self-adjointness
- DP in KG III -
- Spectral Repr.
- Summary and Outlook

Outline of the Talk

- I. Motivation
- II. Preliminaries
 - (i) The Einstein field equation
 - (ii) The non-extreme Kerr geometry
 - (iii) The massive Dirac equation
 - (iv) The Newman-Penrose formalism and the Carter tetrad
- III. The massive Dirac equation in the Kerr geometry
 - (i) Horizon-penetrating coordinates
 - (ii) Chandrasekhar's mode analysis: Separability, asymptotics, and spectral properties
- IV. Integral spectral representation of the massive Dirac propagator
 - (i) Hamiltonian formulation
 - (ii) Self-adjointness of the Dirac Hamiltonian
 - (iii) Spectral theorem, Stone's formula, and derivation of the resolvent
- V. Summary and outlook

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

Motivation

Study of dynamics of relativistic spin-1/2 fermions in a rotating black hole spacetime via Dirac equation in non-extreme Kerr geometry.

Approaches:

- I. Chandrasekhar's mode analysis.
- II. Scattering theory.
- III. Integral spectral representation of Dirac propagator in Hamiltonian framework.

Investigation of

- decay rates for Dirac spinors.
- probability estimates for Dirac particles to fall into a Kerr black hole or escape to infinity.
- Kerr black hole stability under small fermionic field perturbations.
- scattering and super-radiance.

Problem: Validity of solutions restricted to coordinate domains.

Usual Boyer-Lindquist coordinates singular at horizons.

 \Rightarrow Dynamics near and across horizons not well-defined.

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook **Solution:** Analytic extension of BLC to advanced Eddington–Finkelstein-type coordinates.

- Regularity at horizons.
- Time function on partial Cauchy surfaces.

Aim 1: Mode analysis in horizon-penetrating coordinates [C.R., GRG, '17].

Issues:

- I. Trafo singular at horizons. \Rightarrow Careful mathematical analysis essential!
- II. Mixing of variables in trafo leads to symmetry breaking of structures inherent to BLC. \Rightarrow Separation of variables property conserved?

Aim 2: Generalized horizon-penetrating integral spectral representation of Dirac propagator [*F. Finster & C.R., ATMP, '18*].

Issues:

- I. Self-adjointness of Dirac Hamiltonian. \Rightarrow Dirac Hamiltonian not uniformly elliptic!
- II. Construction of well-defined Cauchy problem. \Rightarrow MIT boundary conditions due to singularity.

Results:

- Proper understanding of black hole evolution and stability.
- Propagation of fermions on black hole backgrounds across horizons.

Preliminaries

The Einstein field equation:

Lorentzian 4-manifold (\mathfrak{M}, g) with metric $g: T_p\mathfrak{M} \times T_p\mathfrak{M} \to \mathbb{R}$, $p \in \mathfrak{M}$, of signature (1,3) being non-singular, symmetric, bilinear tensor field of type (0,2).

Riemann curvature Riem: $\Gamma^{\infty}(\mathfrak{M}, T\mathfrak{M})^3 \to \Gamma^{\infty}(\mathfrak{M}, T\mathfrak{M})$

$$\mathsf{Riem}(\boldsymbol{v}_1,\boldsymbol{v}_2)\boldsymbol{v}_3 := \boldsymbol{\nabla}_{\boldsymbol{v}_1}\boldsymbol{\nabla}_{\boldsymbol{v}_2}\boldsymbol{v}_3 - \boldsymbol{\nabla}_{\boldsymbol{v}_2}\boldsymbol{\nabla}_{\boldsymbol{v}_1}\boldsymbol{v}_3 - \boldsymbol{\nabla}_{[\boldsymbol{v}_1,\boldsymbol{v}_2]}\boldsymbol{v}_3$$

with Levi-Civita connection $\nabla \colon \Gamma^{\infty}(\mathfrak{M}, T\mathfrak{M})^2 \to \Gamma^{\infty}(\mathfrak{M}, T\mathfrak{M})$ and $\boldsymbol{v}_i \in T_p\mathfrak{M}$.

Einstein field equations

$$\boldsymbol{G}(\boldsymbol{g}) + \Lambda\,\boldsymbol{g} = 8\pi\,\boldsymbol{T}\,,$$

where

- $G(g) := \operatorname{Ric}(g) \frac{1}{2}g\operatorname{Sc}(g)$ is Einstein tensor
- Ricci curvature Ric is partial trace of Riem
- scalar curvature $Sc = tr_g Ric$ is full trace of Riem
- ullet T is energy-momentum tensor of matter and fields
- Λ is cosmological constant.

Outline

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III –

Spectral Repr. Summary and

Outlook

Einstein field equations

- \bullet are nonlinear, inhomogeneous second-order PDE system for g.
- are dynamical equations for gravitational field in GR.
- describe gravitation as interaction of geometry with mass-energy content of spacetime.
- imply local conservation of energy and momentum if cosmological constant is vanishing

 $\operatorname{div} \boldsymbol{T} = 0 \, .$

Special case under consideration:

Vanishing energy-momentum tensor ${\boldsymbol T}={\boldsymbol 0}$ and zero cosmological constant $\Lambda=0.$

 \Rightarrow Vacuum Einstein field equations

 $\operatorname{Ric}(\boldsymbol{g}) = \boldsymbol{0}$.

C. Röken

Outline

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III -

Spectral Repr.

Summary and Outlook

Motivation

Preliminaries

DE in KG I – Regular Co<u>ords.</u>

DE in KG II -

Mode Analysis DP in KG I –

Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and

Outlook

The non-extreme Kerr geometry:

2-parameter family of vacuum solutions of EFE derived under the assumptions of stationarity and axial symmetry.

Physical branch with $\{(M, J) | 0 \leq J/M < M\}$.

Connected, orientable and time-orientable, smooth, asymptotically flat Lorentzian 4-manifold (\mathfrak{M}, g) with topology $S^2 \times \mathbb{R}^2$.

Coordinates (t, x) with $t \in \mathbb{R}$ and $x = (x^1, x^2, x^3)$ being coordinates on space-like hypersurface $\mathfrak{N} \simeq S^2 \times \mathbb{R}$.

Metric representation

 $oldsymbol{g} = a(x^1,x^2) \,\mathrm{d}t\otimes\mathrm{d}t + b(x^1,x^2) \left(\mathrm{d}t\otimes\mathrm{d}x^3 + \mathrm{d}x^3\otimes\mathrm{d}t\right) - \left(oldsymbol{g}_{\mathfrak{N}}(oldsymbol{x})
ight)_{ij} \,\mathrm{d}x^i\otimes\mathrm{d}x^j$ with

- $a, b \in C^{\infty}(\mathfrak{M}, T\mathfrak{M})$
- ullet induced Riemannian metric $g_{\mathfrak{N}}$ on \mathfrak{N}
- $\bullet \ x^3 = \varphi \text{ azimuthal angle about axis of symmetry}$
- Killing vector fields $K_1 = \partial_t$ and $K_2 = \partial_{\varphi}$.

Outline Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II -

Mode Analysis DP in KG I –

Hamiltonian DP in KG II –

Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

Application:

Final equilibrium state of gravitational field of uncharged, rotating black holes.

Characteristics and features:

- I. According to Carter-Robinson theorem, Kerr solution is unique.
- II. Kerr geometry is of Petrov type D.
 - \Leftrightarrow Weyl tensor has two double eigenbivectors.
 - \Leftrightarrow Two double principal null directions.
- III. Special surfaces: Event horizon, Cauchy horizon, and ergosurface (static limit surface).
- IV. Singularity structure: Ring-shaped curvature singularity.

Motivation Preliminaries DE in KG I –

Regular Coords. DE in KG II – Mode Analysis

DP in KG I -

Spectral Repr. Summary and

Outlook

Hamiltonian DP in KG II – Self-adjointness DP in KG III –

The massive Dirac equation:

Spinor bundle $S\mathfrak{M}$ on globally hyperbolic Lorentzian 4-manifold (\mathfrak{M}, g) with fibers $S_p\mathfrak{M} \simeq \mathbb{C}^4$, $p \in \mathfrak{M}$.

Fibers endowed with indefinite inner product of signature (2,2)

$$\prec \psi | \phi \succ_p : \ S_p \mathfrak{M} \times S_p \mathfrak{M} \to \mathbb{C} \,, \quad (\psi, \phi) \mapsto \psi^* \phi \quad \text{for} \quad \psi, \phi \in \mathbb{C}^4 \,.$$

Dirac operator

$$\mathcal{D} := \mathsf{i} \, \gamma^{\mu} \nabla_{\mu} + \mathcal{B}$$

with general relativistic Dirac matrices (γ^{μ}) , external potential \mathcal{B} , and metric connection ∇ on $S\mathfrak{M}$

$$\nabla_{\mu} = \partial_{\mu} + \frac{1}{8} \,\omega_{\mu\alpha\beta} \big[\gamma^{\alpha}, \gamma^{\beta} \big] \,,$$

where ω is spin connection.

Dirac matrices related to metric \boldsymbol{g} by anti-commutation relations

$$\{\gamma^\mu,\gamma^\nu\}=2g^{\mu\nu}1\!\!1_{S_p\mathfrak{M}}\,.$$

Outline Motivation Preliminaries DE in KG I – Regular Coords. DE in KG II –

Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook General relativistic, massive Dirac equation

$$(\mathcal{D}-m)\psi=\mathbf{0}$$

with Dirac 4-spinor $\psi \in C^{\infty}_{sc}(\mathfrak{M}, \mathbb{C}^4)$ and invariant fermion rest mass m.

Dirac equation describes dynamics of relativistic, massive spin-1/2 fermions.

Hamiltonian formulation of Dirac equation

$$\mathrm{i}\partial_t\psi = H\psi$$

with Dirac Hamiltonian

$$H := -(\gamma^t)^{-1} (i\gamma^j \nabla_j + \mathcal{B} - m) - \frac{i}{8} \omega_{t\alpha\beta} \left[\gamma^\alpha, \gamma^\beta \right].$$

Outline
Motivation
Preliminaries
DE in KG I – Regular Coords.
DE in KG II –

Mode Analysis DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

The Newman–Penrose formalism and Carter tetrad:

Tetrad formalism with local null basis (l, n, m, \overline{m}) , where l, n real-valued and m, \overline{m} a conjugate-complex pair. These satisfy:

• $l \cdot l = n \cdot n = m \cdot m = \overline{m} \cdot \overline{m} = 0$ (null conditions)

- $l \cdot m = l \cdot \overline{m} = n \cdot m = n \cdot \overline{m} = 0$ (orthogonality conditions)
- $l \cdot n = -m \cdot \overline{m} = 1$ (cross-normalization conditions).

Tetrad arranged to reflect symmetries or adapted to certain aspects of underlying spacetime.

 \Rightarrow Reduction in number of conditional equations and simplified expressions for primary geometric quantities.

Local, non-degenerate and constant metric

 $\eta = l \otimes n + n \otimes l - m \otimes \overline{m} - \overline{m} \otimes m$.

Outline
Motivation
Preliminaries
DE in KG I – Regular Coords.
DE in KG II – Mode Analysis
DP in KG I – Hamiltonian
DP in KG II – Self-adjointness
DP in KG III – Spectral Repr.
Summary and

Summary aı Outlook Torsion-free Maurer–Cartan equation of structure $de = -\omega \wedge e$ in NP formalism: $dl = 2 \operatorname{Re}(\epsilon) n \wedge l - 2 n \wedge \operatorname{Re}(\kappa \overline{m}) - 2 l \wedge \operatorname{Re}([\tau - \overline{\alpha} - \beta] \overline{m}) + 2i \operatorname{Im}(\varrho) m \wedge \overline{m}$ $dn = 2 \operatorname{Re}(\gamma) n \wedge l - 2 n \wedge \operatorname{Re}([\overline{\alpha} + \beta - \overline{\pi}] \overline{m}) + 2 l \wedge \operatorname{Re}(\overline{\nu} \overline{m}) + 2i \operatorname{Im}(\mu) m \wedge \overline{m}$ $dm = \overline{d\overline{m}} = (\overline{\pi} + \tau) n \wedge l + (2i \operatorname{Im}(\epsilon) - \varrho) n \wedge m - \sigma n \wedge \overline{m} + (\overline{\mu} + 2i \operatorname{Im}(\gamma)) l \wedge m + \overline{\lambda} l \wedge \overline{m} - (\overline{\alpha} - \beta) m \wedge \overline{m}.$

Spin coefficients constitute connection representation in NP formalism.

General relativistic Dirac equation in NP formalism:

$$(l^{\mu}\partial_{\mu} + \varepsilon - \varrho)\mathcal{F}_{1} + (\overline{m}^{\mu}\partial_{\mu} + \pi - \alpha)\mathcal{F}_{2} = \operatorname{im}\mathcal{G}_{1}/\sqrt{2} (n^{\mu}\partial_{\mu} + \mu - \gamma)\mathcal{F}_{2} + (m^{\mu}\partial_{\mu} + \beta - \tau)\mathcal{F}_{1} = \operatorname{im}\mathcal{G}_{2}/\sqrt{2} (l^{\mu}\partial_{\mu} + \overline{\varepsilon} - \overline{\varrho})\mathcal{G}_{2} - (m^{\mu}\partial_{\mu} + \overline{\pi} - \overline{\alpha})\mathcal{G}_{1} = \operatorname{im}\mathcal{F}_{2}/\sqrt{2} (n^{\mu}\partial_{\mu} + \overline{\mu} - \overline{\gamma})\mathcal{G}_{1} - (\overline{m}^{\mu}\partial_{\mu} + \overline{\beta} - \overline{\tau})\mathcal{G}_{2} = \operatorname{im}\mathcal{F}_{1}/\sqrt{2} .$$

Outline	
Motivation	
Preliminaries	
DE in KG I – Regular Coords.	
DE in KG II – Mode Analysis	
DP in KG I – Hamiltonian	

DP in KG II – Self-adjointness DP in KG III – Spectral Repr. Summary and Outlook

Carter tetrad: Choose tetrad adapted to

- (i) Petrov type of Kerr geometry. \rightarrow Tetrad coincides with two principal null directions of Weyl tensor.
- (ii) discrete time and angle reversal isometries of Kerr geometry.

Symmetry of frame

 $\boldsymbol{l}\mapsto -\mathsf{sign}(\Delta)\,\boldsymbol{n}\,,\quad \boldsymbol{n}\mapsto -\mathsf{sign}(\Delta)\,\boldsymbol{l}\,,\quad \boldsymbol{m}\mapsto \overline{\boldsymbol{m}}\,,\quad \overline{\boldsymbol{m}}\mapsto \boldsymbol{m}\,.$

 \Rightarrow Only six independent spin coefficients as solution of first Maurer–Cartan equation of structure.

Outline Motivation Preliminaries DE in KG I -Regular Coords. DE in KG II -Mode Analysis DP in KG I -Hamiltonian DP in KG II -Self-adjointness DP in KG III -Spectral Repr.

Summary and Outlook

The Massive Dirac Equation in the Kerr Geometry

Horizon-penetrating coordinates:

Kerr metric in BLC

 $(t,r,\theta,\varphi) \quad \text{with} \quad t\in\mathbb{R},\,r\in\mathbb{R}_{>0},\,\theta\in(0,\pi)\,,\,\,\text{and}\,\,\varphi\in[0,2\pi)$ given by

$$\begin{split} \boldsymbol{g} &= \frac{\Delta}{\Sigma} \left(\mathsf{d}t - a \sin^2\left(\theta\right) \mathsf{d}\varphi \right) \otimes \left(\mathsf{d}t - a \sin^2\left(\theta\right) \mathsf{d}\varphi \right) - \frac{\sin^2\left(\theta\right)}{\Sigma} \left([r^2 + a^2] \, \mathsf{d}\varphi - a \, \mathsf{d}t \right) \\ &\otimes \left([r^2 + a^2] \, \mathsf{d}\varphi - a \, \mathsf{d}t \right) - \frac{\Sigma}{\Delta} \, \mathsf{d}r \otimes \mathsf{d}r - \Sigma \, \mathsf{d}\theta \otimes \mathsf{d}\theta \,, \end{split}$$

where

- $\bullet \ \mbox{mass} \ M$ and angular momentum aM for which $0 \leq a < M$
- event and Cauchy horizons $r_{\pm} := M \pm \sqrt{M^2 a^2}$
- horizon function $\Delta=\Delta(r):=(r-r_+)(r-r_-)=r^2-2Mr+a^2$
- $\Sigma = \Sigma(r, \theta) := r^2 + a^2 \cos^2(\theta)$.

Relations for time/azimuthal angle and radial coordinate along principal null geodesics

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \pm \frac{r^2 + a^2}{\Delta} \quad \Leftrightarrow \quad t = \pm \int \frac{r^2 + a^2}{\Delta} \,\mathrm{d}r + c_{\pm} = \pm r_{\star} + c_{\pm}$$
$$\frac{\mathrm{d}\varphi}{\mathrm{d}r} = \pm \frac{a}{\Delta} \quad \Leftrightarrow \quad \varphi = \pm \int \frac{a}{\Delta} \,\mathrm{d}r + c'_{\pm} = \pm \frac{a}{r_{+} - r_{-}} \ln \left| \frac{r - r_{+}}{r_{-} - r_{-}} \right| + c'_{\pm}$$

with

$$r_{\star} := r + \frac{r_{+}^{2} + a^{2}}{r_{+} - r_{-}} \ln |r - r_{+}| - \frac{r_{-}^{2} + a^{2}}{r_{+} - r_{-}} \ln |r - r_{-}|$$

Relations for ingoing principal null geodesics motivate transformation from BLC to advanced Eddington–Finkelstein-type coordinates

 $\mathbb{R} \times \mathbb{R}_{>0} \times (0,\pi) \times [0,2\pi) \to \mathbb{R} \times \mathbb{R}_{>0} \times (0,\pi) \times [0,2\pi) \,, \quad (t,r,\theta,\varphi) \mapsto (\tau,r,\theta,\phi)$

with

$$\begin{aligned} \tau &:= t + r_{\star} - r = t + \frac{r_{+}^{2} + a^{2}}{r_{+} - r_{-}} \ln|r - r_{+}| - \frac{r_{-}^{2} + a^{2}}{r_{+} - r_{-}} \ln|r - r_{-}| \\ \phi &:= \varphi + \frac{a}{r_{+} - r_{-}} \ln\left|\frac{r - r_{+}}{r_{-} - r_{-}}\right|. \end{aligned}$$

AEFTC free of singularities at horizons and spatio-temporal characteristics across horizons conserved.

C. Röken

Integral Spectral Representation of the Kerr-Dirac Propagator

Outline

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

Outline		

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

	line	

- Motivation
- Preliminaries
- DE in KG I Regular Coords.
- DE in KG II Mode Analysis
- DP in KG I Hamiltonian
- DP in KG II Self-adjointness
- DP in KG III Spectral Repr.
- Summary and Outlook

Outline Motivation Preliminaries DE in KG I – Regular Coords.

DE in KG II – Mode Analysis DP in KG I – Hamiltonian DP in KG II – Self-adjointness DP in KG III – Spectral Repr. Summary and Outlook Kerr metric in AEFTC

$$\begin{split} \boldsymbol{g} &= \left(1 - \frac{2Mr}{\Sigma}\right) \mathsf{d}\tau \otimes \mathsf{d}\tau - \frac{2Mr}{\Sigma} \left([\mathsf{d}r - a\sin^2\left(\theta\right) \mathsf{d}\phi] \otimes \mathsf{d}\tau \right. \\ &+ \mathsf{d}\tau \otimes [\mathsf{d}r - a\sin^2\left(\theta\right) \mathsf{d}\phi] \right) - \left(1 + \frac{2Mr}{\Sigma}\right) \left(\mathsf{d}r - a\sin^2\left(\theta\right) \mathsf{d}\phi \right) \\ &\otimes \left(\mathsf{d}r - a\sin^2\left(\theta\right) \mathsf{d}\phi\right) - \Sigma \,\mathsf{d}\theta \otimes \mathsf{d}\theta - \Sigma \sin^2\left(\theta\right) \mathsf{d}\phi \otimes \mathsf{d}\phi \,. \end{split}$$

Substituting Carter tetrad in AEFTC

$$\boldsymbol{l} = \frac{1}{\sqrt{2\Sigma}r_{+}} \left([\Delta + 4Mr] \partial_{\tau} + \Delta \partial_{r} + 2a \partial_{\phi} \right)$$
$$\boldsymbol{n} = \frac{r_{+}}{\sqrt{2\Sigma}} (\partial_{\tau} - \partial_{r})$$
$$\boldsymbol{m} = \frac{1}{\sqrt{2\Sigma}} \left(ia\sin\left(\theta\right) \partial_{\tau} + \partial_{\theta} + i\csc\left(\theta\right) \partial_{\phi} \right)$$
$$\overline{\boldsymbol{m}} = -\frac{1}{\sqrt{2\Sigma}} \left(ia\sin\left(\theta\right) \partial_{\tau} - \partial_{\theta} + i\csc\left(\theta\right) \partial_{\phi} \right)$$

into – and solving – torsion-free Maurer–Cartan equation of structure yields regular spin coefficients.

Chandrasekhar's mode analysis:

Outline

Motivation

Preliminaries

DE in KG I -Regular Coords.

DE in KG II -Mode Analysis

DP in KG I -Hamiltonian

DP in KG II -Self-adjointness

DP in KG III -Spectral Repr.

Summary and Outlook

Method:

Kerr geometry in NP formalism described by regular Carter tetrad in AEFTC. Dirac equation in chiral representation in 2-spinor form with NP dyad basis.

Separability into radial and angular ODE systems via weighted mode ansatz.

Analysis of:

- I. Asymptotic radial solutions at infinity, event horizon, and Cauchy horizon.
- II. Decay of associated errors.
- III. Set of eigenfunctions and eigenvalue spectrum of angular system.

Basis for:

- Hamiltonian formulation of massive Dirac equation in non-extreme Kerr geometry in horizon-penetrating coordinates.
- Construction of integral spectral representation of Dirac propagator yielding dynamics outside, across, and inside EH, up to CH.

Separability of Dirac equation via weighted mode ansatz

$$\begin{split} \mathcal{F}_{1}(\tau,r,\theta,\phi) &= \frac{e^{-\mathrm{i}(\omega\tau+k\phi)}}{\sqrt{|\Delta|\left[r-\mathrm{i}a\cos\left(\theta\right)\right]}} \, \mathcal{R}_{+}(r) \, \mathfrak{T}_{+}(\theta) \\ \mathcal{F}_{2}(\tau,r,\theta,\phi) &= \frac{e^{-\mathrm{i}(\omega\tau+k\phi)}}{r_{+}\sqrt{r-\mathrm{i}a\cos\left(\theta\right)}} \, \mathcal{R}_{-}(r) \, \mathfrak{T}_{-}(\theta) \\ \mathcal{G}_{1}(\tau,r,\theta,\phi) &= \frac{e^{-\mathrm{i}(\omega\tau+k\phi)}}{r_{+}\sqrt{r+\mathrm{i}a\cos\left(\theta\right)}} \, \mathcal{R}_{-}r_{+}(r) \, \mathfrak{T}_{+}(\theta) \\ \mathcal{G}_{2}(\tau,r,\theta,\phi) &= \frac{e^{-\mathrm{i}(\omega\tau+k\phi)}}{\sqrt{|\Delta|\left[r+\mathrm{i}a\cos\left(\theta\right)\right]}} \, \mathcal{R}_{+}(r) \, \mathfrak{T}_{-}(\theta) \, , \end{split}$$

where frequency $\omega \in \mathbb{R}$ and wave number $k \in \mathbb{Z} + 1/2$, into first-order radial and angular ODE systems

$$\partial_{r} \mathcal{R} = \frac{1}{\Delta} \begin{pmatrix} i \left(\omega \left[\Delta + 4Mr \right] + 2ak \right) & \sqrt{|\Delta|} \left(\xi + imr \right) \\ \operatorname{sign}(\Delta) \sqrt{|\Delta|} \left(\xi - imr \right) & -i\omega \Delta \end{pmatrix} \mathcal{R}$$
$$ma \cos \left(\theta \right) & -\partial_{\theta} - \frac{\cot \left(\theta \right)}{2} + a\omega \sin \left(\theta \right) + k \csc \left(\theta \right) \\ \operatorname{str}(\theta) & 0 \end{pmatrix} \mathcal{T} = \xi \mathfrak{T}$$

$$\left(\partial_{\theta} + \frac{\cot\left(\theta\right)}{2} + a\omega\sin\left(\theta\right) + k\csc(\theta) - ma\cos\left(\theta\right) \right)^{2} \right)$$

with constant of separation ξ .

C. Röken

Integral Spectral Representation of the Kerr-Dirac Propagator

Outline

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

Outline	
Motivation	
Preliminaries	
DE in KG I – Regular Coords.	
DE in KG II – Mode Analysis	
DP in KG I – Hamiltonian	
DP in KG II – Self-adjointness	
DP in KG III – Spectral Repr.	

Summary and Outlook

Lemma:

Every nontrivial solution of the radial ODE system for $|\omega|>m$ is asymptotically as $r\to\infty$ of the oscillatory form

$$\mathcal{R}(r_{\star}) = \mathcal{R}_{\infty}(r_{\star}) + E_{\infty}(r_{\star}) = D_{\infty} \begin{pmatrix} \mathfrak{f}_{\infty}^{(1)} e^{\mathfrak{i}\phi_{+}(r_{\star})} \\ \mathfrak{f}_{\infty}^{(2)} e^{-\mathfrak{i}\phi_{-}(r_{\star})} \end{pmatrix} + E_{\infty}(r_{\star}) ,$$

where $D_{\infty}, \mathfrak{f}_{\infty}^{(1/2)}$ are non-zero constants and

$$\phi_{\pm}(r_{\star}) := \operatorname{sign}(\omega) \left[-\sqrt{\omega^2 - m^2} \, r_{\star} + M \left(\pm 2\omega - \frac{m^2}{\sqrt{\omega^2 - m^2}} \right) \ln\left(r_{\star}\right) \right].$$

The error E_{∞} has polynomial decay

$$\|E_{\infty}(r_{\star})\| \le \frac{a}{r_{\star}}$$

for a suitable constant $a \in \mathbb{R}_{>0}$. In the case $|\omega| < m$, the non-trivial solution \mathcal{R} has both contributions that show exponential decay $\sim e^{-\sqrt{m^2 - \omega^2} r_{\star}}$ and exponential growth $\sim e^{\sqrt{m^2 - \omega^2} r_{\star}}$.

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

Lemma:

Every nontrivial solution of the radial ODE system is asymptotically as $r\searrow r_\pm$ of the form

$$\mathcal{R}(r_{\star}) = \mathcal{R}_{r_{\pm}}(r_{\star}) + E_{r_{\pm}}(r_{\star}) = \begin{pmatrix} \mathfrak{g}_{r_{\pm}}^{(1)} e^{2\mathrm{i}\left(\omega + k\Omega_{\mathsf{Ker}}^{(\pm)}\right)r_{\star}} \\ \mathfrak{g}_{r_{\pm}}^{(2)} \end{pmatrix} + E_{r_{\pm}}(r_{\star})$$

with non-zero constants $\mathfrak{g}_{r_\pm}^{(1/2)}$ and an error E_{r_\pm} with exponential decay $\|E_{r_\pm}(r_\star)\|\leq p_\pm\,e^{\pm q_\pm\,r_\star}$

for r sufficiently close to r_\pm and suitable constants $p_\pm,q_\pm\in\mathbb{R}_{>0}.$

Proposition:

For any $\omega \in \mathbb{R}$ and $k \in \mathbb{Z} + 1/2$, the angular operator has a complete set of orthonormal eigenfunctions $(\mathfrak{I}_n)_{n \in \mathbb{Z}}$ in $L^2((0, \pi), \sin(\theta) d\theta)^2$ that are bounded and smooth away from the poles. The corresponding eigenvalues ξ_n are real-valued and non-degenerate, and can thus be ordered as $\xi_n < \xi_{n+1}$. Both the eigenfunctions and the eigenvalues depend smoothly on ω .

Outline
Motivation
Preliminaries
DE in KG I – Regular Coords.
DE in KG II – Mode Analysis
DP in KG I – Hamiltonian
DP in KG II – Self-adjointness
DP in KG III –

Spectral Repr.

Summary and Outlook Integral Spectral Representation of the Dirac Propagator

Hamiltonian formulation:

Dirac equation in Hamiltonian form

 $\mathrm{i}\partial_\tau\psi(\tau,\boldsymbol{x})=H\psi(\tau,\boldsymbol{x})\quad\text{with}\quad H:=-\mathrm{i}(\gamma^\tau)^{-1}\gamma^j\nabla_j+(\mathrm{z.o.t.})=\alpha^j\,\partial_j+\mathcal{V}\,.$

Scalar product on space-like hypersurfaces $\mathfrak{N}:=\{\tau=\mathrm{const.},r,\theta,\phi\}$

with future-directed, time-like normal $\boldsymbol{\nu}$ and invariant measure $\mathsf{d}\mu_{\mathfrak{N}}$ on $\mathfrak{N}.$

Independent of choice of $\mathfrak{N}_{\cdot} \Leftarrow \mathsf{Gauss'}$ theorem and current conservation.

Requirement for spectral theorem: Self-adjointness of H w.r.t. scalar product.

Evaluation of principal symbol shows H not (uniformly) elliptic at horizons.

 \Rightarrow Standard methods of proof from elliptic theory cannot be employed.

New method for mixed initial-boundary value problems combining results from theory of symmetric hyperbolic systems with near-boundary elliptic methods [*F. Finster & C.R., AMSA, '16*].

Motivation Preliminaries

DE in KGI-

Regular Coords. DE in KG II –

Mode Analysis DP in KG I – Hamiltonian

DP in KG II -

Summary and

Outlook

Self-adjointness DP in KG III – Spectral Repr.

Self-adjointness of the Dirac Hamiltonian:

Consider subset

$$M := \{\tau, r > r_0, \theta, \phi\} \subset \mathfrak{M} \quad \text{for} \quad r_0 < r_-$$

with time-like boundary

$$\partial M := \{\tau, r = r_0, \theta, \phi\}.$$

Foliation of space-like hypersurfaces

 $N = (N_{\tau})_{\tau \in \mathbb{R}} \,, \quad \text{where} \quad N_{\tau} := \left\{\tau = \text{const.}, r > r_0, \theta, \phi\right\},$

with boundaries

$$\partial N_{\tau} := \partial M \cap N_{\tau} \simeq S^2$$
.

Killing field time-like near ∂M

 $\mathbf{K} := \partial_{\tau} + \beta_0 \, \partial_{\phi}$ with constant $\beta_0 = \beta_0(r_0) \in \mathbb{R} \setminus \{0\}$.

Spinor bundle SM of M with fibers $S_pM \simeq \mathbb{C}^4$, where $p \in M$.

Dirac Hamiltonian

$$H = \alpha^j \partial_j + \mathcal{V} \quad \text{on } N \,,$$

symmetric w.r.t. to scalar product $(.|.)_N$.

Motivation

Preliminaries

DE in KG I – Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook Radial Dirichlet-type boundary condition on time-like hypersurface inside CH

$$(\mathbf{n} - \mathbf{i})\psi_{|\partial M} = \mathbf{0},$$

where \boldsymbol{n} is inner normal to ∂M .

Consequences:

- Dirac particles reflected at ∂M .
- Without effect on dynamics outside CH.
- Unitary time evolution.
- Limiting case where boundary coincides with CH.

Domain of Dirac Hamiltonian

$$\mathsf{Dom}(H) = \left\{ \psi \in C_0^\infty(N, SM) \mid (\not n - \mathsf{i})\psi_{|\partial N} = \mathbf{0} \right\}.$$

C. Röken

Integral Spectral Representation of the Kerr-Dirac Propagator

Outline Motivation Preliminaries

DE in KGI-

Regular Coords.

DE in KG II – Mode Analysis

DP in KG I – Hamiltonian

DP in KG II -

Self-adjointness DP in KG III – Spectral Repr.

Summary and Outlook

Lemma:

The Cauchy problem for the Dirac equation in the Kerr geometry in AEFTC

 $\mathrm{i}\partial_\tau \psi = H\psi, \quad \psi_{|\tau=0} =: \psi_0 \in C_0^\infty(N_{\tau=0}, SM)$

with the radial Dirichlet-type boundary condition at ∂M given by

$$(\mathbf{n} - \mathbf{i})\psi_{|\partial M} = \mathbf{0},$$

where the initial data ψ_0 is smooth, compactly supported outside, across, and inside the event horizon, up to the Cauchy horizon, and is compatible with the boundary condition, i.e.,

$$(p \hspace{-0.15cm}/ - {\sf i})(H^p \psi_0)_{|\partial N_{ au}} = {f 0} \quad {
m for all} \quad p \in \mathbb{N}_0\,,$$

has a unique, global solution ψ in the class of smooth functions with spatially compact support $C^\infty_{\rm sc}(M,SM).$ Evaluating this solution at subsequent times τ and τ' gives rise to a unique unitary propagator

$$U^{\tau',\,\tau}\colon C_0^\infty(N_\tau,SM)\to C_0^\infty(N_{\tau'},SM)\,.$$

Theorem:

The Dirac Hamiltonian H in the non-extreme Kerr geometry in AEFTC with $\mathrm{Dom}(H) = \left\{ \psi \in C_0^\infty(N_\tau, SM) \mid (\not n - \mathrm{i})(H^p \psi)_{|\partial N_\tau} = \mathbf{0} \quad \text{for all} \quad p \in \mathbb{N}_0 \right\}$ is essentially self-adjoint.

Outline	
Motivation	
Preliminaries	
DE in KG I – Regular Coords.	
DE in KG II – Mode Analysis	
DP in KG I – Hamiltonian	
DP in KG II – Self-adjointness	

DP in KG III – Spectral Repr.

Summary and Outlook

Spectral theorem, Stone's formula, and derivation of the resolvent:

Derivation of explicit expression for spectral measure in formal spectral decomposition of Dirac propagator

$$\psi(\tau, \boldsymbol{x}) = e^{-i\tau H} \psi_0(\boldsymbol{x}) = \int_{\mathbb{R}} e^{-i\omega\tau} \psi_0(\boldsymbol{x}) \, \mathrm{d}E_{\omega}$$

with spectral measure d E_{ω} and initial data $\psi_0 \in C_0^{\infty}((r_0, \infty) \times S^2, SM)$.

Employing Stone's formula relating spectral projector of H to resolvent yields

$$\psi(\tau, \boldsymbol{x}) = \frac{1}{2\pi \mathsf{i}} \sum_{k \in \mathbb{Z}} e^{-\mathsf{i}k\phi} \int_{\mathbb{R}} e^{-\mathsf{i}\omega\tau} \lim_{\epsilon \searrow 0} \left[\mathsf{Res}_{\omega+\mathsf{i}\epsilon}^{k} - \mathsf{Res}_{\omega-\mathsf{i}\epsilon}^{k} \right] \psi_{0,k}(r, \theta) \, \mathrm{d}\omega \, .$$

Computation of resolvents for fixed k-modes on upper/lower complex half-planes:

- (i) Factoring out azimuthal angle modes.
- (ii) Projecting *H* onto finite-dim., invariant spectral eigenspace of angular operator from Chandrasekhar's separation of variables.
- (iii) Two-dim. radial Green's matrix from Chandrasekhar's separation of variables in terms of Jost-type solutions.
- (iv) Summation over angular modes and evaluation of ϵ -limit.

Outline Motivation Preliminaries DE in KG I – Regular Coords. DE in KG II – Mode Analysis DP in KG I – Hamiltonian DP in KG II – Self-adjointness

DP in KG III – Spectral Repr.

Summary and Outlook

Summary and Outlook

Results: Dirac equation in Kerr geometry in horizon-penetrating coordinates.

- I. Chandrasekhar's mode analysis: Separability, radial asymptotics, and spectral properties.
- II. Hamiltonian formulation.
- III. Essential self-adjointness of Dirac Hamiltonian.
- IV. Generalized integral spectral representation of Dirac propagator.

Current research: Formulation of AQFT for Dirac fields in BH spacetimes.

- I. Construction of fermionic signature operator.
 - Symmetric operator on solution space of massive Dirac equation in globally hyperbolic spacetimes.
 - Gives rise to (pure, quasi-free) fermionic Fock ground state.
 - Physically sensible provided it is of Hadamard form.
- II. Construction of Fock spaces.
 - Construction of ground state via Araki's construction applied to projection operator onto negative spectral subspace of FSO.
 - Anti-commutation relations for creation and annihilation operators.
 - Analysis of resulting many-particle quantum states.

Outline	
Motivation	
Preliminaries	
DE in KG I – Regular Coords.	
DE in KG II – Mode Analysis	
DP in KG I – Hamiltonian	
DP in KG II – Self-adjointness	
DP in KG III – Spectral Repr.	
C	

Summary and Outlook Status quo: Construction of FSO in exterior Schwarzschild geometry and analysis of Fock ground state for Dirac field [F. Finster & C.R., AHP, '19].

- Main obstacle: Boundary term for event horizon.
- Finding: Fock ground state coincides with Hadamard state obtained by usual frequency splitting for observer at infinity.

Work in progress:

- I. FSO in Kruskal extension of Schwarzschild geometry.
 - Main obstacle: Boundary term for curvature singularity.
 - Expectation: FSO no longer yields frequency splitting. \Rightarrow Thermal Hawking–Unruh state up to spin-gravity coupling corrections.
- II. Generalization to non-extreme Kerr geometry.

Overall aim: New derivation of Hawking effect.