

Motivation

Preliminaries

Double Bound

Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Self-adjointness of the Dirac Hamiltonian for a Class of Non-uniformly Elliptic Mixed Initial-boundary Value Problems

Christian Röken

University of Granada, Faculty of Sciences, Department of Geometry and Topology

Image Credit: O. James, E. von Tunzelmann, P. Franklin, and K. Thorne, Classical and Quantum Gravity 32, id. 065001 (2015).

Geometry Seminar 25th September 2019

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Outline of the Talk

- Motivation
- II. Preliminaries
 - (i) Geometric setting and assumptions
 - (ii) The massive Dirac equation in Hamiltonian form
 - (iii) Cauchy problem for the Dirac equation
 - (iv) Essential self-adjointness of the Dirac Hamiltonian
 - (v) Solution strategy
- III. Double boundary value problem for the Dirac equation
- IV. Solution of the Cauchy problem
- V. Main theorem and proof

Motivation

Preliminaries

Double Bound

Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Motivation

Study of time-dependent dynamics of relativistic spin-1/2 fermions in analytic extension of non-extreme Kerr geometry across event horizon.

Aims:

- Derivation of Hamiltonian formulation of massive Dirac equation in non-extreme Kerr geometry in horizon-penetrating coordinates [C.R., GRG, '17; Finster & C.R., ATMP, '18].
- Construction of integral spectral representation of massive Dirac propagator yielding dynamics outside, across, and inside event horizon, up to Cauchy horizon [Finster & C.R., ATMP, '18].

Framework:

Dirac equation in Kerr geometry in Hamiltonian form

$$\mathrm{i}\partial_\tau \psi(\tau, \boldsymbol{x}) = H \psi(\tau, \boldsymbol{x}) \quad \text{with} \quad H := -\mathrm{i}(\gamma^\tau)^{-1} \gamma^j \partial_j + (\mathrm{z.o.t.}) \,.$$

Scalar product

$$(\psi|\phi)_{\mathfrak{N}} := \int_{\mathfrak{N}} \langle \psi|\psi\phi \rangle_p \,\mathrm{d}\mu_{\mathfrak{N}}.$$

Motivation

Preliminaries

Double Bound. Value Problem

Solution of

Cauchy Probl. Main Theorem

and Proof

Spectral decomposition of Dirac propagator

$$\psi(\tau, \boldsymbol{x}) = e^{-i\tau H} \psi_0(\boldsymbol{x}) = \int_{\mathbb{R}} e^{-i\omega \tau} \psi_0(\boldsymbol{x}) dE_{\omega}.$$

Requirement:

Self-adjointness of Dirac Hamiltonian for spectral theorem.

Finding:

Dirac Hamiltonian not (uniformly) elliptic at event horizon and Cauchy horizon.

→ Standard methods of proof from elliptic theory cannot be employed.

Proof of self-adjointness:

New method of proof for general class of non-uniformly elliptic mixed initialboundary value problems for Dirac equation in smooth and asymptotically flat Lorentzian manifolds, combining results from theory of symmetric hyperbolic systems with near-boundary elliptic methods [Finster & C.R., AMSA, '16].

Motivation Preliminaries

Double Bound. Value Prob<u>lem</u>

Solution of Cauchy Probl.

Main Theorem and Proof

Preliminaries

Geometric setting and assumptions:

Smooth, oriented and time-oriented Lorentzian spin manifold (\mathcal{M}, g) of dimension $d \geq 3$ with boundary $\partial \mathcal{M}$.

Assumptions:

- (i) (\mathcal{M}, g) asymptotically flat with one asymptotic end.
- (ii) Existence of Killing field K tangential to and time-like on $\partial \mathcal{M}$. It may be space-like or null in $\mathcal{M} \setminus \partial \mathcal{M}$.
- (iii) Integral curves γ of K, defined by $\dot{\gamma}(t) = K(\gamma(t))$, exist for all $t \in \mathbb{R}$.
- (iv) Space-like hypersurface $\mathcal N$ with compact boundary $\partial \mathcal N$ and property that every integral curve γ intersects $\mathcal N$ exactly once.

Implications:

- \mathcal{M} and $\partial \mathcal{M}$ have product structures $\mathcal{M} = \mathbb{R} \times \mathcal{N}$ and $\partial \mathcal{M} = \mathbb{R} \times \partial \mathcal{N}$.
- g smooth up to $\partial \mathcal{M}$; inducing (d-2)-dim. Riemannian metric on $\partial \mathcal{N}$.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem

Main Theore and Proof

Special cases:

- ullet (\mathcal{M}, g) globally hyperbolic if $\partial \mathcal{N} = \emptyset$ and \mathcal{N} complete.
- ullet $(\mathcal{M}, oldsymbol{g})$ stationary if $oldsymbol{K}$ time-like in the asymptotic end.

Geometric picture:

Construction of coordinate system (t, x), $t \in \mathbb{R}$ and $x \in \mathcal{N}$ such that $K = \partial_t$.

ightarrow Observer co-moving along flow lines of Killing field $m{K}.$

Metric

$$oldsymbol{g} = a(oldsymbol{x})\,\mathrm{d}t\otimes\mathrm{d}t + b_i(oldsymbol{x})\,\mathrm{d}t\otimes\mathrm{d}x^i - \left(oldsymbol{g}_{\mathcal{N}}(oldsymbol{x})
ight)_{ij}\,\mathrm{d}x^i\otimes\mathrm{d}x^j\;,$$

with $a, b_i \in C^{\infty}(\mathcal{M})$ and $g_{\mathcal{N}}$ induced Riemannian metric on \mathcal{N} .

Regions where \pmb{K} is time-like: $a(\pmb{x})$ positive and metric stationary (e.g., near $\partial \mathcal{N}$).

Regions where ${\pmb K}$ is not time-like: $a({\pmb x})$ may be negative and metric not stationary.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Kerr geometry:

For $r_0 < r_-$ choose

$$\mathcal{M} = \{\tau, r > r_0, \theta, \phi\}$$

$$\partial \mathcal{M} = \{\tau, r = r_0, \theta, \phi\}$$

$$\mathcal{N}_{\tau} = \left\{\tau = \mathrm{const.}, r > r_0, \theta, \phi\right\}.$$

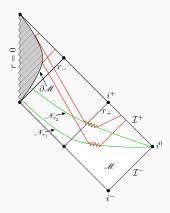
Killing fields $\partial_{\tau}, \partial_{\phi}$ not time-like on $\partial \mathcal{M}$.

 $\pmb{K}=\partial_{\tau}+b(r_0)\,\partial_{\phi}$ is time-like on $\partial\mathcal{M}$ and space-like near spatial infinity.

Dirichlet-type MIT boundary condition on $\partial \mathcal{M}$:

- Reflection condition.
- Shielding of singularity.
- No effect on dynamics outside Cauchy horizon.

⇒ Unitary time evolution.



Motivation

Preliminaries

Double Bound. Value Problem

Solution of

Cauchy Probl.

Main Theorem and Proof

The massive Dirac equation in Hamiltonian form:

Spinor bundle $S\mathcal{M}$, i.e., vector bundle with sections $S_p\mathcal{M}\simeq\mathbb{C}^f$, where $p\in\mathcal{M}$ and dimension $f=2^{\lfloor d/2\rfloor}$.

Indefinite inner product of signature (f/2,f/2) on $S_p\mathcal{M}$

$$\forall \psi | \phi \succ_p \colon S_p \mathcal{M} \times S_p \mathcal{M} \to \mathbb{C} \,, \quad (\psi, \phi) \mapsto \psi^\star \phi \quad \text{for} \quad \psi, \phi \in \mathbb{C}^f \,.$$

Dirac operator

$$\mathcal{D} := \mathrm{i} \gamma^\mu \nabla_\mu + \mathcal{B}$$

with

- Dirac matrices (γ^μ) ; relation to metric via anti-commutation relations $\{\gamma^\mu,\gamma^\nu\}=2g^{\mu\nu}\,\mathbb{1}_{S_p\mathcal{M}}$,
- metric connection on spinor bundle ∇ ,
- external, smooth, matrix-valued potential B; symmetric w.r.t. indefinite inner product.

Dirac equation of mass m

$$(\mathcal{D} - m)\psi = \mathbf{0}.$$

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Dirac equation in Hamiltonian form

$$\mathrm{i}\partial_t\psi=H\psi$$

with Dirac Hamiltonian

$$H:=-\mathrm{i}(\gamma^t)^{-1}\gamma^j\partial_j+(\mathrm{z.\ o.\ t.})\,.$$

Taking domain of definition

$$\mathsf{Dom}(H) = C_0^\infty(\mathcal{N} \backslash \partial \mathcal{N}, S \mathcal{M}) \,,$$

H symmetric w.r.t. scalar product

$$(\psi|\phi)_{\mathcal{N}} := \int_{\mathcal{N}} \langle \psi|\psi\phi \rangle_p \,\mathrm{d}\mu_{\mathcal{N}} ,$$

where ν is future-directed normal on $\mathcal N$ and $\mathrm{d}\mu_{\mathcal N}$ volume form on $(\mathcal N, \boldsymbol g_{\mathcal N})$.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Cauchy problem for the Dirac equation:

Existence of unique, global, smooth solution ψ of Cauchy problem

$$\begin{split} & \mathrm{i}\partial_t \psi = H \psi \quad \text{in } \mathcal{M} \\ & \psi_{\mid \mathcal{N}} =: \psi_0 \in \mathsf{Dom}(H) \\ & (\not{n} - \mathrm{i})\psi_{\mid \partial \mathcal{M}} = \mathbf{0} \, ; \quad \boldsymbol{n} \bot \partial \mathcal{M} \end{split}$$

with

domain

$$\mathsf{Dom}(H) = \left\{ \psi \in C_0^\infty(\mathcal{N}, S\mathcal{M}) \, \middle| \, (\mathbf{p}\!\!/ - \mathrm{i}) (H^p \psi)_{|\partial \mathcal{N}} = \mathbf{0} \quad \text{for all} \quad p \in \mathbb{N}_0 \right\},$$

• Dirichlet-type MIT boundary condition with effect that Dirac particles reflected on $\partial \mathcal{M}$.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Essential self-adjointness of the Dirac Hamiltonian:

Finding: H in general not uniformly elliptic.

Ellipticity condition: Principal symbol $P(x,\xi)=-\mathrm{i}(\gamma^t)^{-1}\gamma^j\xi_j$ invertible for nonzero ξ .

Evaluation of determinant of principal symbol

$$\det(P(\boldsymbol{x},\boldsymbol{\xi})) = \det((\gamma^t)^{-1}) \det(\gamma^j \xi_j).$$

Using

$$(\gamma^t)^{-1}(\gamma^t)^{-1} = \frac{1\!\!1_{S_p,\mathcal{M}}}{g^{tt}} \quad \text{and} \quad \gamma^i \xi_i \, \gamma^j \xi_j = g^{ij} \xi_i \xi_j \, 1\!\!1_{S_p,\mathcal{M}}$$

yields

$$\det(P(\boldsymbol{x},\boldsymbol{\xi})) = \left(\frac{g^{ij}\xi_i\xi_j}{g^{tt}}\right)^{f/2}.$$

 \Rightarrow Hamiltonian fails to be elliptic if $g^{ij}\xi_i\xi_j=0$ for $\xi\neq 0$.

Consequence: Usual elliptic methods to show self-adjointness of ${\cal H}$ no longer apply.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Solution strategy:

- I. Splitting solution of Cauchy problem into following contributions:
 - a) Region near boundary $\partial \mathcal{M}$ located sufficiently far beyond horizons; standard methods and results for elliptic operators.¹
 - b) Region away from $\partial \mathcal{M}$ including horizons; methods and results from theory of symmetric hyperbolic systems.²
- Adding contributions gives rise to unique, smooth solution of Cauchy problem for small times.
- III. Iterating procedure yields global, smooth solution.
- IV. Existence of family of unitary time evolution operators.
- V. Apply Chernoff's lemma on essential self-adjointness of powers of generators of hyperbolic equations.

¹R.A. Bartnik and P.T. Chruściel, *Boundary value problems for Dirac-type equations*, arXiv:math/0307278 [math.DG], J. Reine Angew. Math. **579** (2005), 13–73.

²M.E. Taylor, *Partial Differential Equations. III*, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997.

Double Boundary Value Problem for the Dirac Equation

Outline

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Preparatory steps for splitting:

Additional boundary condition on suitable surface Y placed near $\partial \mathcal{M}$.

Gaussian normal coordinates in tubular neighborhood of $\partial \mathcal{N}$ in \mathcal{N} .

Coordinate system (t,r,Ω) , with $t\in\mathbb{R}$, $r\in[0,r_{\max})$, and $\Omega=(\vartheta_1,\ldots,\vartheta_{d-2})$, of $\mathcal M$ describing neighborhood of $\partial\mathcal M$.

Spacetime region $X:=\{(t,r,\Omega)\,|\,0\leq r\leq r_{\max}/2\}$ with boundary $\partial X=\partial \mathcal{M}\cup Y$, where $Y:=\{(t,r_{\max}/2,\Omega)\}.$

Choice of r_{\max} such that Killing field K time-like in $X. \Rightarrow Y$ time-like surface.

Mixed initial-boundary value problem for Dirac equation

$$egin{aligned} &\mathrm{i}\partial_t\psi = H\psi &\mathrm{in}\ X \ &\psi_{|\mathcal{N}} =: \psi_0 \in C^\infty(\mathcal{N}\cap X, S\mathcal{M}) \ &(\not n - \mathrm{i})\psi_{|\partial X} = \mathbf{0} \end{aligned}$$

with
$$Dom(H) = \{ \psi \in W^{1,2}(X \cap \mathcal{N}, SM) \mid (\psi - i)\psi_{|\partial X \cap \mathcal{N}} = \mathbf{0} \}.$$

Motivation

Preliminaries

Double Bound.

Solution of Cauchy Probl.

Main Theorem and Proof

Proposition:

There is a countable orthonormal basis $(\psi_n)_{n\in\mathbb{N}}$ of eigenfunctions of H with $\psi_n\in {\rm Dom}(H).$

Proof:

Apply abstract spectral theorem given in [Bartnik & Chruściel, JRAM, '05]. \rightarrow Task: Verify spectral conditions.

Proposition yields spectral decomposition of H.

Proposition implies mixed initial-boundary value problem has unique weak solution in $W^{1,2}(X\cap\mathcal{N},S\mathcal{M})$ given by

$$\psi(t, \boldsymbol{x}) = \sum_{n=1}^{\infty} c_n e^{-\mathrm{i}\omega_n t} \psi_n(\boldsymbol{x}), \quad c_n = \int_{X \cap \mathcal{N}} \langle \psi_n | \psi \psi_0 \rangle_p \, \mathrm{d}\mu_{\mathcal{N}},$$

where ω_n is eigenvalue of ψ_n .

Outline

Motivation

Preliminaries

Double Bound. Value Problem

Solution of

Main Theorem and Proof

To apply Chernoff's lemma, one requires solution that is smooth for all times.

Lemma:

Suppose that initial data ψ_0 satisfies the condition

$$(p\!\!/ - \mathrm{i})(H^p \psi_0)_{|\partial \mathcal{N}} = \mathbf{0} \quad \text{for all} \quad p \in \mathbb{N}_0 \,.$$

Then the solution ψ of the mixed initial-boundary value problem is in the class $C^{\infty}_{\mathrm{sc}}(\mathcal{M}, S\mathcal{M})$. Conversely, if a solution of the mixed initial-boundary value problem is smooth, then ψ_0 satisfies the above condition.

Motivation

Preliminaries

Double Bound. Value Prob<u>lem</u>

Solution of Cauchy Probl.

Main Theorem and Proof

Solution of the Cauchy Problem

Lemma:

There is an $\varepsilon>0$ such that the mixed initial-boundary value problem has a unique solution ψ in the class

$$\left\{\psi\in C_0^\infty\big([0,\varepsilon)\times\mathcal{N},S\mathscr{M})\,\big|\,(\mathbf{y}\!\!\mathbf{1}-\mathrm{i})(H^p\psi)_{|[0,\varepsilon)\times\partial\mathcal{N}}=\mathbf{0}\quad\text{for all}\quad p\in\mathbb{N}_0\right\}.$$

Proof:

Describe neighborhood of $\partial \mathcal{N}$ via Gaussian normal coordinates.

Decomposition of initial data into contribution $\psi_0^{\rm B}$ near boundary $\partial\mathcal{N}$ and contribution $\psi_0^{\rm I}$ supported in interior of \mathcal{N}

$$\psi_0 = \psi_0^{\mathrm{B}} + \psi_0^{\mathrm{I}}$$

with

$$\bullet \ \psi_0^{\mathsf{B}} := \eta(r) \, \psi_0 \quad \text{and} \quad \psi_0^{\mathsf{I}} := \psi_0 - \psi_0^{\mathsf{B}} \, ,$$

$$\bullet \ \ \text{test function} \ \eta \in C_0^\infty \big((-r_{\max}/4, r_{\max}/4) \big) \quad \text{and} \quad \eta_{|[0, r_{\max}/8]} \equiv 1 \, .$$

Choose arepsilon so small that future development of initial data sets has properties

$$\begin{split} J_{\mathsf{B}}^{\vee}\left(\left\{(0,r,\Omega)\,|\,r < r_{\max}/4\right\}\right) \cap \left(\{\varepsilon\} \times \mathcal{N}\right) \subset \left\{(\varepsilon,r,\Omega)\,|\,r < r_{\max}/2\right\} \\ J_{\mathsf{I}}^{\vee}\left(\left\{(0,r,\Omega)\,|\,r > r_{\max}/8\right\}\right) \cap \left(\{\varepsilon\} \times \mathcal{N}\right) \subset \left\{(\varepsilon,r,\Omega)\,|\,r > 0\right\}. \end{split}$$

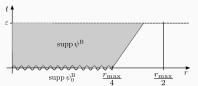
Motivation

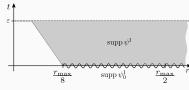
Preliminaries

Double Bound Value Prob<u>lem</u>

Solution of Cauchy Probl.

Main Theorem and Proof





Boundary problem for ψ_0^B :

Mixed initial-boundary value problem for Dirac equation

$$\mathrm{i} \partial_t \psi^\mathsf{B} = H \psi^\mathsf{B} \quad \text{in } X \,, \quad \psi^\mathsf{B}_{|\mathcal{N}} = \psi^\mathsf{B}_0 \,, \quad (\not \! p - \mathrm{i}) \psi^\mathsf{B}_{|\partial \mathcal{M} \, \cup \, Y} = \mathbf{0} \,.$$

Solution $\psi^{\mathsf{B}} \in C^{\infty}_{\mathsf{sc}}(\mathcal{M}, S\mathcal{M})$ according to previous consideration.

Due to finite propagation speed and specific form of $J_{\rm B}^{\vee}$, solution vanishes near boundary $\{r=r_{\rm max}/2\}$, i.e.,

$$\operatorname{supp} \psi^{\mathsf{B}}(t,.) \subset [0, r_{\max}/2) \times \partial \mathcal{N} \quad \text{for all} \quad t \in [0, \varepsilon) \,.$$

Extending ψ^{B} by zero leads to global solution in all \mathcal{M} .

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Interior problem for $\psi_0^{\rm I}$:

Initial value problem for Dirac equation without boundary conditions

$$\mathrm{i}\partial_t \psi^{\mathsf{I}} = H \psi^{\mathsf{I}} \quad \mathrm{in} \ \mathscr{M} \backslash \partial \mathscr{M} \ , \quad \psi^{\mathsf{I}}_{|\mathscr{N}} =: \psi^{\mathsf{I}}_0 \ .$$

 ${\mathcal N}$ complete without boundary and inital data $\psi_0^{\rm I}$ smooth.

 \Rightarrow Existence of unique solution $\psi^{\rm l}\in C^{\infty}_{\rm sc}([0,arepsilon)\times\mathcal{N},S\mathcal{M})$ from fundamental existence and uniqueness theorems of theory of symmetric hyperbolic systems.

Solution vanishes identically near $\partial \mathcal{M}$ due to finite propagation speed as well as specific form of J_1^\vee .

Full solution:

Adding solutions ψ^{B} and ψ^{I} yields unique, smooth solution ψ of mixed initial-boundary value problem in $C_0^\infty([0,\varepsilon)\times\mathcal{N},S\mathcal{M})$.

Uniqueness of $\psi = \psi^{\rm B} + \psi^{\rm I}$ follows from standard energy estimates for symmetric hyperbolic systems.

Motivation

Preliminaries

Double Bound. Value Prob<u>lem</u>

Solution of

Cauchy Probl.

Main Theorem and Proof

Corollary:

The mixed initial-boundary value problem has unique, global solution $\boldsymbol{\psi}$ in the class

$$\left\{\psi\in C^\infty_{\mathrm{sc}}(\mathcal{M},S\mathcal{M})\,\big|\, (\mathbf{n}\!\!/-\mathrm{i})(H^p\psi)_{|\partial\mathcal{M}}=\mathbf{0}\quad\text{for all}\quad p\in\mathbb{N}_0\right\}.$$

The associated time evolution operator

$$U^{t,\,0} \colon C^{\infty}(\{0\} \times \mathcal{N}, SM) \to C^{\infty}(\{t\} \times \mathcal{N}_t, SM)$$

is unitary with respect to the scalar product $(.|.)_{\mathcal{N}}$.

Proof:

Since ε does not depend on initial data, iterate procedure forward and backward in time, obtaining smooth solution for arbitrary positive and negative times.

 \Rightarrow Global, smooth solution $\psi \in C_{sc}^{\infty}(\mathcal{M}, \partial \mathcal{M})$.

Symmetry of H implies scalar product preserved under time evolution.

 \Rightarrow Time evolution operator $U^{t,0}$ unitary.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof

Main Theorem and Proof

<u>Main theorem:</u> The Dirac Hamiltonian H with domain of definition

$$\mathsf{Dom}(H) = \left\{ \psi \in C_0^\infty(\mathcal{N}, S\mathcal{M}) \, \big| \, (\not \! h - \mathrm{i}) (H^p \psi)_{|\partial \mathcal{N}} = \mathbf{0} \quad \text{for all} \quad p \in \mathbb{N}_0 \right\}$$
 is essentially self-adjoint.

Proof:

Established results:

- Existence of unique, global, smooth solution of mixed initial-boundary value problem for Dirac equation.
- Existence of unitary time evolution operator $U^{t,\,0}$ defining one-parameter group acting on $\mathsf{Dom}(H)$.
- H symmetric with respect to scalar product (.|.)_N.

Motivation

Preliminaries

Double Bound. Value Problem

Solution of Cauchy Probl.

Main Theorem and Proof Chernoff's lemma³: Let T be a symmetric operator with dense domain $\mathsf{Dom}(T) \subset \mathcal{H}$, where \mathcal{H} is a complex Hilbert space. Suppose that T maps $\mathsf{Dom}(T)$ into itself. Suppose in addition that there is a one-parameter group V_t of unitary operators on \mathcal{H} such that $V_t \, \mathsf{Dom}(T) \subset \mathsf{Dom}(T), \, V_t T = TV_t$ on $\mathsf{Dom}(T)$ and $\partial_t V_t u = \mathrm{i} \, TV_t u$ for $u \in \mathsf{Dom}(T)$. Then every power of T is essentially self-adjoint.

Verify remaining conditions in given framework:

- lacktriangledown T corresponds to -H with domain $\mathsf{Dom}(H)$ given in main theorem.
- Dom(H) invariant under action of H.
- ullet $U^{t,\,0}H=HU^{t,\,0}$ is commutativity relation between $e^{-\mathrm{i}tH}$ and H.
- $lack \partial_t U^{t,\,0} \psi_0 = -\mathrm{i} H U^{t,\,0} \psi_0$ is Dirac equation in Hamiltonian form.
- $\Rightarrow H$ is essentially self-adjoint on Dom(H).

³P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Analysis 12 (1973), 401–414.