Study of real hypersurfaces in complex hyperbolic two-plane Grassmannians with Ricci tensors

Hyunjin Lee, Young Jin Suh and Changhwa Woo*

Feb. 2016

Problems

$$
\begin{aligned}
& \text { Parallel Ricci tensor } \\
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad\left(\nabla_{X} S\right) Y=0 \\
& \Longrightarrow M \cong(?) \\
& \text { Reeb Parallel Ricci tensor } \\
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad\left(\nabla_{\xi} S\right) Y=0 \\
& \Longrightarrow M \cong(?)
\end{aligned}
$$

Ricci semi-symmetric

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad R(X, Y) \cdot S=0 \\
& \Longrightarrow M \cong(?)
\end{aligned}
$$

Contents

- Complex hyperbolic two-plane Grassmannians $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$
- Real hypersurface M
- Motivation
- Geometric meaning of parallel
- GTW parallel
- Ricci tensor S
- Results

Riemannian geometry of $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$

- $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$
: the space of complex two-dimensional linear subspaces though the origin in \mathbb{C}_{2}^{m+2}.
- $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \approx G / K$
- $G=S U(2, m)$

$$
=\left\{A \in G L(m+2, \mathbb{C}) \mid \bar{A}^{t} l_{2, m} A=I, \operatorname{det} A=1\right\}, \text { where }
$$

$$
I_{2, m}=\left(\begin{array}{cc}
-I_{2} & 0_{2, m} \\
0_{m, 2} & I_{m}
\end{array}\right)
$$

- $K=S(U(2) \times U(m)) \subset G$

$$
\begin{aligned}
= & \left\{\left.\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right) \in G L(m+2, \mathbb{C}) \right\rvert\, g_{1} \in U(2),\right. \\
& \left.g_{2} \in U(m), \operatorname{det} g_{1} \operatorname{det} g_{2}=1\right\}
\end{aligned}
$$

$\square \operatorname{dim}\left(S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)\right)=4 m$
$\square \mathfrak{g}$ and \mathfrak{k} : the Lie algebra of G and K, respectively.

- $\mathfrak{g}=\mathfrak{s u}(m+2)$

$$
\begin{aligned}
& =\left\{X \in \mathfrak{g l}(m+2, \mathbb{C}) \mid \bar{X}^{t} I_{2, m}+I_{2, m} X=0, \operatorname{tr} X=0\right\} \\
& =\mathfrak{k} \oplus \mathfrak{m}
\end{aligned}
$$

- Put $o=e K$, where e : the identity of G.
- $T_{o} G_{2}\left(\mathbb{C}^{m+2}\right) \approx \mathfrak{m}$
- $\mathfrak{k}=\left\{\left.\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right) \in \mathfrak{g l}(m+2, \mathbb{C}) \right\rvert\, A \in \mathfrak{u}(2)\right.$, $B \in \mathfrak{u}(m), \operatorname{tr}(A+B)=0\}$
$=\mathfrak{s u}(m) \bigoplus \mathfrak{s u}(2) \oplus \mathfrak{R}$, where \mathfrak{R} : the center of \mathfrak{k}.

$\Longrightarrow S U_{2, m} S\left(U_{2} \cdot U_{m}\right)$ is the unique non-compact irreducible Riemannian symmetric space equipped with both a Kähler structure J and a quaternionic Kähler structure \mathcal{J}, not containing J.
- $\left\{J_{\nu}, \nu=1,2,3\right\}$: a canonical local basis of \mathcal{J} such that
- $J_{\nu}^{2}=-i d, \nu=1,2,3$
- $J_{\nu} J_{\nu+1}=J_{\nu+2}=-J_{\nu+1} J_{\nu}$, where ν is taken modulo 3
- $\bar{\nabla}_{X} J_{\nu}=q_{\nu+2}(X) J_{\nu+1}-q_{\nu+1}(X) J_{\nu+2}$, where q_{ν} for any $\nu=1,2,3$ are three local one-forms
- (geometric structure)
J_{ν} : any almost Hermitian structure in \mathcal{J}
■ $J J_{\nu}=J_{\nu} J$
- $J J_{\nu}$: a symmetric endomorphism with $\left(J J_{\nu}\right)^{2}=i d$ and $\operatorname{tr}\left(J J_{\nu}\right)=0$ where $\nu=1,2,3$

Real hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$

Let M be a real hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$.

- g : the induced Riemannian metric on M
- ∇ : the Levi-Civita connection of (M, g)
- N : a local unit normal field of M
- A : the shape operator of M w.r.t $N, A X=-\bar{\nabla}_{X} N$
$J \rightarrow(\phi, \xi, \eta, g):$ an almost contact metric structure, where $J X=\phi X+\eta(X) N, \xi=-J N$.
- $\eta(\xi)=1, \phi \xi=0, \eta(\phi X)=0, \phi^{2} X=-X+\eta(X) \xi$
$\left\{J_{\nu}\right\}_{\nu=1,2,3} \rightarrow\left(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g\right)$: an almost contact metric 3-structure, where $J_{\nu} X=\phi_{\nu} X+\eta_{\nu}(X) N, \xi_{\nu}=-J_{\nu} N$.
- $\eta_{\nu}\left(\xi_{\nu}\right)=1, \phi_{\nu} \xi_{\nu}=0, \eta_{\nu}\left(\phi_{\nu} X\right)=0, \phi_{\nu}^{2} X=-X+\eta_{\nu}(X) \xi_{\nu}$
- $T_{\rho} M=\mathcal{Q} \oplus \mathcal{Q}^{\perp}$, where $\mathcal{Q}^{\perp}=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$
- $T_{p} M=\mathcal{C} \oplus \mathcal{C}^{\perp}$, where $\mathcal{C}^{\perp}=\operatorname{span}\{\xi\}$

Some fundamental formulas-1

The quaternionic Kähler structure J_{ν} of $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$, together with the condition $J_{\nu} J_{\nu+1}=J_{\nu+2}=-J_{\nu+1} J_{\nu}$, induces an almost contact metric 3 -structure ($\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g$) on M as follows:

$$
\begin{aligned}
& \phi_{\nu}^{2} X=-X+\eta_{\nu}(X) \xi_{\nu}, \quad \eta_{\nu}\left(\xi_{\nu}\right)=1, \quad \phi_{\nu} \xi_{\nu}=0, \\
& \phi_{\nu+1} \xi_{\nu}=-\xi_{\nu+2}, \quad \phi_{\nu} \xi_{\nu+1}=\xi_{\nu+2} \\
& \phi_{\nu} \phi_{\nu+1} X=\phi_{\nu+2} X+\eta_{\nu+1}(X) \xi_{\nu} \\
& \phi_{\nu+1} \phi_{\nu} X=-\phi_{\nu+2} X+\eta_{\nu}(X) \xi_{\nu+1}
\end{aligned}
$$

for any vector field X tangent to M.

Some fundamental formulas-2

Moreover, from the commuting property of $J_{\nu} J=J J_{\nu}, \nu=1,2,3$, the relation between these two contact metric structures (ϕ, ξ, η, g) and $\left(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g\right), \nu=1,2,3$, can be given by

$$
\begin{aligned}
& \phi \phi_{\nu} X=\phi_{\nu} \phi X+\eta_{\nu}(X) \xi-\eta(X) \xi_{\nu} \\
& \eta_{\nu}(\phi X)=\eta\left(\phi_{\nu} X\right), \quad \phi \xi_{\nu}=\phi_{\nu} \xi
\end{aligned}
$$

On the other hand, from the parallelism of Kähler structure J, that is, $\widetilde{\nabla} J=0$ and the quaternionic Kähler structure \mathfrak{J}, together with Gauss and Weingarten formulas it follows that

Some fundamental formulas-3

$$
\begin{gathered}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X, \\
\nabla_{X} \xi_{\nu}=q_{\nu+2}(X) \xi_{\nu+1}-q_{\nu+1}(X) \xi_{\nu+2}+\phi_{\nu} A X, \\
\left(\nabla_{X} \phi_{\nu}\right) Y=-q_{\nu+1}(X) \phi_{\nu+2} Y+q_{\nu+2}(X) \phi_{\nu+1} Y+\eta_{\nu}(Y) A X \\
-g(A X, Y) \xi_{\nu} .
\end{gathered}
$$

■ Codazzi equation

$$
\begin{aligned}
-2\left(\nabla_{X} A\right) Y+ & 2\left(\nabla_{Y} A\right) X=\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(X) \phi_{\nu} Y-\eta_{\nu}(Y) \phi_{\nu} X-2 g\left(\phi_{\nu} X, Y\right) \xi_{\nu}\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\phi X) \phi_{\nu} \phi Y-\eta_{\nu}(\phi Y) \phi_{\nu} \phi X\right\} \\
& +\sum_{\nu=1}^{3}\left\{\eta(X) \eta_{\nu}(\phi Y)-\eta(Y) \eta_{\nu}(\phi X)\right\} \xi_{\nu}
\end{aligned}
$$

Some fundamental formulas-4

■ Gauss equation

$$
\begin{aligned}
-2 R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y \\
& +g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
& +\sum_{\nu=1}^{3}\left\{g\left(\phi_{\nu} Y, Z\right) \phi_{\nu} X-g\left(\phi_{\nu} X, Z\right) \phi_{\nu} Y-2 g\left(\phi_{\nu} X, Y\right) \phi_{\nu} Z\right\} \\
& +\sum_{\nu=1}^{3}\left\{g\left(\phi_{\nu} \phi Y, Z\right) \phi_{\nu} \phi X-g\left(\phi_{\nu} \phi X, Z\right) \phi_{\nu} \phi Y\right\} \\
& -\sum_{\nu=1}^{3}\left\{\eta(Y) \eta_{\nu}(Z) \phi_{\nu} \phi X-\eta(X) \eta_{\nu}(Z) \phi_{\nu} \phi Y\right\} \\
& -\sum_{\nu=1}^{3}\left\{\eta(X) g\left(\phi_{\nu} \phi Y, Z\right)-\eta(Y) g\left(\phi_{\nu} \phi X, Z\right)\right\} \xi_{\nu} \\
& -2 g(A Y, Z) A X+2 g(A X, Z) A Y
\end{aligned}
$$

where R denotes the curvature tensor of a real hypersurface M in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$.

Motivation

There does not exist any Hopf real hypersurface with parallel Ricci tensor in $G_{2}\left(\mathbb{C}^{m+2}\right), m \geq 3$.
雷 Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, Proc. Royal Soc. Edinb. (2012).

Geometric meaning of parallel

Parallel condition for a $(1,1)$ type tensor field $T, \nabla T=T \otimes \omega$ has a close relation to the holonomy group. The eigenspaces $\left\{e_{i}\right\}_{i=1, \ldots, 4 m-1}$ are said to be parallel along γ if they are invariant with respect to parallel translation along any curve in M.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol.1.

Classification of real hypersurfaces in $\mathrm{SU}_{2, m} / S\left(U_{2} \cdot U_{m}\right)$

Theorem A. Let M be a connected real hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$. Then both [ξ] and \mathcal{Q}^{\perp} are invariant under the shape operator of M if and only if M is locally congruent to an open part of one of the following hypersurfaces:
(A) a tube around a totally geodesic $S U_{2, m-1} / S\left(U_{2} U_{m-1}\right)$ in $S U_{2, m} / S\left(U_{2} U_{m}\right)$;
(B) a tube around a totally geodesic $\mathbb{H} H^{n}$ in $S U_{2,2 n} / S\left(U_{2} U_{2 n}\right), m=2 n$;
(C) a horosphere in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ whose center at infinity is singular;
or the following exceptional case holds:
(D) The normal bundle νM of M consists of singular tangent vectors of type $J X \perp \mathfrak{J} X$. Moreover, M has at least four distinct principal curvatures, three of which are given by

$$
\alpha=\sqrt{2}, \gamma=0, \lambda=\frac{1}{\sqrt{2}}
$$

with corresponding principal curvature spaces

$$
T_{\alpha}=T M \ominus(\mathcal{C} \cap \mathcal{Q}), T_{\gamma}=J(T M \ominus \mathcal{Q}), T_{\lambda} \subset \mathcal{C} \cap \mathcal{Q} \cap J \mathcal{Q}
$$

If μ is another (possibly nonconstant) principal curvature function, then $T_{\mu} \subset \mathcal{C} \cap \mathcal{Q} \cap J \mathcal{Q}, J T_{\mu} \subset T_{\lambda}$ and $\mathfrak{J} T_{\mu} \subset T_{\lambda}$.
J. Berndt and Y. J. Suh, Hypersurfaces in noncompact complex Grassmannians of rank two, Internat. J. Math., World Sci. Publ., 23 (2012), 1250103(35 pages).

The typical characterization theorem for $\xi \in \mathcal{Q}$

Theorem B. Let M be a Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$.
Then the Reeb vector field $\xi \in \mathcal{Q} \Longleftrightarrow M \approx$ one of Type (B).
Ti. Y. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians with Reeb vector field, Adv. Appl. Math. 55 (2014), 131-145.

Ricci tensor in differential geometry

- The Ricci curvature tensor S is defined on any pseudo-Riemannian manifold, as a trace of the Riemann curvature tensor.
- S is a symmetric bilinear form on the tangent space of the manifold.
- S provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n-space.
- S represents the amount by which the volume of a geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space.
L. Besse, Einstein manifold, Springer-Verlag (1987).

The Ricci tensor of M in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$

The Ricci tensor of M is given by

$$
\begin{aligned}
2 S X= & 2 \sum_{\mathrm{i}=1}^{4 m-1} R\left(X, e_{i}\right) e_{i} \\
= & -(4 m+7) X+3 \eta(X) \xi+3 \sum_{\nu=1}^{3} \eta_{\nu}(X) \xi_{\nu} \\
& -\sum_{\nu=1}^{3}\left\{\eta_{\nu}(\xi) \phi_{\nu} \phi X-\eta\left(\phi_{\nu} X\right) \phi_{\nu} \xi-\eta(X) \eta_{\nu}(\xi) \xi_{\nu}\right\} \\
& -2 h A X+2 A^{2} X
\end{aligned}
$$

for any X tangent to $M, h:=\operatorname{trace}(A)$.

- Y.J. Suh and C. Woo, Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor, Math. Nachr. 287 (2014), 1524-1529.

The structure Jacobi operator R_{ξ}

The structure Jacobi operator R_{ξ} of M is defined by $R_{\xi} X=R(X, \xi) \xi$ for any tangent vector $X \in T_{p} M, p \in M$.

$$
2 R_{\xi} X=-X+\eta(X) \xi+2 \alpha A X-2 \alpha^{2} \eta(X) \xi
$$

$$
+\sum_{\nu=1}^{3}\left\{\eta_{\nu}(X) \xi_{\nu}-\eta(X) \eta_{\nu}(\xi) \xi_{\nu}+3 g\left(\phi_{\nu} X, \xi\right) \phi_{\nu} \xi+\eta_{\nu}(\xi) \phi_{\nu} \phi X\right\}
$$

where $\alpha=g(A \xi, \xi)$ is real valued function on M.

Proof

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad R \cdot S=0 \\
& \Longrightarrow M \cong(?)
\end{aligned}
$$

Lemma 1
Let M be a Ricci semi symmetric Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$. Then ξ belongs to either the distribution \mathcal{Q} or the distribution \mathcal{Q}^{\perp}.

Lemma 2
If A, B, C are diagobalzable matrices and commute with each other, then these exists on a common basis $\left\{e_{k}\right\}_{k=1, \ldots, 4 m-1}$ which makes A, B, C simultaneously diagonalizable.

Lemma 3

Let M be a Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$. If the Reeb vector field ξ belongs to the distribution \mathcal{Q}^{\perp}, then $S A=A S$.

Lemma 4
Let M be a Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$. If the Reeb vector field ξ belongs to the distribution \mathcal{Q}^{\perp}, then $R_{\xi} A=A R_{\xi}$.

Lemma 5
Let M be a Ricci semi-symmetric Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$. If the Reeb vector field ξ belongs to the distribution \mathcal{Q}^{\perp}, then the Ricci tensor S commutes with the structure tensor field ϕ, that is, $S \phi=\phi S$.

Let M be a connected hypersurface in $S U_{2, m} / S\left(U_{2} U_{m}\right), m \geq 3$. Assume that the maximal complex subbundle \mathcal{C} of $T M$ and the maximal quaternionic subbundle \mathcal{Q} of $T M$ are both invariant under the shape operator of M. If $J N \perp \mathfrak{J} N$, then one of the following statements holds:
$\left(\mathcal{T}_{B}\right) M$ has five (four for $r=\sqrt{2} \tanh ^{-1}(1 / \sqrt{3})$ in which case $\alpha=\lambda_{2}$) distinct constant principal curvatures

$$
\begin{aligned}
\alpha & =\sqrt{2} \tanh (\sqrt{2} r), \beta=\sqrt{2} \operatorname{coth}(\sqrt{2} r), \gamma=0, \\
\lambda_{1} & =\frac{1}{\sqrt{2}} \tanh \left(\frac{1}{\sqrt{2}} r\right), \lambda_{2}=\frac{1}{\sqrt{2}} \operatorname{coth}\left(\frac{1}{\sqrt{2}} r\right),
\end{aligned}
$$

and the corresponding principal curvature spaces are

$$
T_{\alpha}=T M \ominus \mathcal{C}, \quad T_{\beta}=T M \ominus \mathcal{Q}, \quad T_{\gamma}=J(T M \ominus \mathcal{Q})=J T_{\beta}
$$

The principal curvature spaces $T_{\lambda_{1}}$ and $T_{\lambda_{2}}$ are invariant under \mathfrak{J} and are mapped onto each other by J. In particular, the quaternionic dimension of $S U_{2, m} / S\left(U_{2} U_{m}\right)$ must be even.
$\left(\mathcal{H}_{B}\right) M$ has exactly three distinct constant principal curvatures

$$
\alpha=\beta=\sqrt{2}, \gamma=0, \lambda=\frac{1}{\sqrt{2}}
$$

New Problems

Commuting Ricci tensor 1

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad R_{\xi} \phi S=S R_{\xi} \phi \\
& \Longrightarrow M \cong(?)
\end{aligned}
$$

Commuting Ricci tensor 2

$$
M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad \bar{R}_{N} \phi A=A \bar{R}_{N} \phi
$$

$$
\Longrightarrow M \cong(?)
$$

GTW parallel Ricci tensor

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=0 \\
& \Longrightarrow M \cong(?)
\end{aligned}
$$

Proof

$$
\begin{aligned}
M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad R_{\xi} \phi S=S R_{\xi} \phi \\
\Longrightarrow M \cong(?)
\end{aligned}
$$

Lemma 1

Let M be a Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right)$ with the commuting condition $R_{\xi} \phi S X=S R_{\xi} \phi X$. If the smooth function α is constant along the direction of ξ on M, then the Reeb vector field ξ belongs to either the distribution \mathcal{Q} or the distribution \mathcal{Q}^{\perp}.

Lemma 2
Let M be a Hopf hypersurface in $S U_{2, m} / S\left(U_{2} \cdot U_{m}\right), m \geq 3$, with $R_{\xi} \phi S=S R_{\xi} \phi$. If the Reeb vector field ξ belongs to the distribution \mathcal{Q}^{\perp}, then the Ricci tensor S commutes with the structure tensor field ϕ.

Generalized Tanaka-Webster connection

- Tanaka and Webster(independently) defined Tanaka-Webster (in short, the GTW) connection which is defined as a canonical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold.
- Tanno introduced the generalized Tanaka-Webster connection for contact metric manifolds.
- Generalized Tanaka-Webster connection=TW connection for contact metric manifolds if the associated CR-structure is integrable

GTW connection

Cho defined GTW connection for a real hypersurface of a Kähler manifold by

$$
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+F_{X}^{(k)} Y,
$$

where constant $k \in \mathbb{R} \backslash\{0\}$ and $F_{X}^{(k)} Y=g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y$.

- g : the induced Riemannian metric on M
- ∇ : the Levi Civita connection of (M, g)
- k : a non-zero real number
- A : the shape operator of M w.r.t N

R J.T. Cho, CR structures on real hypersurfaces of a complex space form, Publ. Math. Debrecen 54(1999), 473-487.

回 J.T. Cho, Levi parallel hypersurfaces in a complex space form, Tsukuba J. Math., 30(2006), 329-344.

Results

$$
\begin{aligned}
& \text { Parallel Ricci tensor } \\
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. }\left(\nabla_{X} S\right) Y=0 \\
& \Longrightarrow \nexists M \\
& \text { Reeb Parallel Ricci tensor } \\
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad\left(\nabla_{\xi} S\right) Y=0 \\
& \Longrightarrow M \cong \mathcal{T}_{A} \text { or } \mathcal{H}_{A}
\end{aligned}
$$

Ricci semi-symmetric

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \\
& \Longrightarrow \text { s.t. } \quad R(X, Y) \cdot S=0 \\
& \Longrightarrow M
\end{aligned}
$$

Results: Levi-Civita connection

Commuting Ricci tensor 1

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } R_{\xi} \phi S=S R_{\xi} \phi \\
& \Longrightarrow M \cong \mathcal{T}_{A} \text { or } \mathcal{H}_{A}
\end{aligned}
$$

Commuting Ricci tensor 2

$$
M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad \bar{R}_{N} \phi A=A \bar{R}_{N} \phi
$$

$$
\Longrightarrow M \cong \mathcal{T}_{A} \quad \text { or } \quad \mathcal{H}_{A}
$$

GTW parallel Ricci tensor

$$
\begin{aligned}
& M \hookrightarrow S U_{2, m} / S\left(U_{2} \cdot U_{m}\right) \quad \text { s.t. } \quad\left(\widehat{\nabla}_{X}^{(k)} S\right) Y=0 \\
& \Longrightarrow \nexists M
\end{aligned}
$$

