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Problems

Parallel Ricci tensor

M — SUsm/S(Ux-Un) st. (VxS)Y =0
= M=(?)

Reeb Parallel Ricci tensor

M — SUsm/S(Uz-Un) st. (VeS)Y =0
= M=(7)

Ricci semi-symmetric

M < SUsm/S(U2-Un) st. R(X,Y)-S=0
= M=(?)
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Riemannian geometry of SU, ,,/S(Us-Up,)

] SUQ,m/S(UQ'Um)
. the space of complex two-dimensional linear subspaces though the
origin in ng+2_
m SUr;m/S(Uz-Un) = G/K
m G=S5U(2,m) _
={Aec GL(m+2,C) | Ath A =1, det A= 1}, where

- —bL Oym
2m = 0m,2 Im '

B K=5U(2)xUm))CG

:{<%1 g°2 ) € GL(m+2,C) | g1 € U(2),

& € U(m), det gidet g» = 1}
[ dim(5U27m/S(U2'Um)) =4m
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m g and £ the Lie algebra of G and K, respectively.
m g=su(m+2) _
={Xegl(m+2,C)| X'hm+ bmX =0,trX =0}
=tPm

m Put o = eK, where e : the identity of G.
n TOGQ((CerZ) ~m

. e:{(é‘ g)eg[(m+2,C)|Aeu(2),

B € u(m), tr(A+ B) = o}
= su(m) @ su(2) P MR, where R: the center of ¢.
ol

J J
= SUz,m/S(Uz-Up,) is the unique non-compact irreducible
Riemannian symmetric space equipped with both a Kahler structure J
and a quaternionic Kahler structure J, not containing J.
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m {J,, v=1,2,3}: a canonical local basis of J such that
m S2=—id, v=1,23
mJJ1=J42 =—J,41J,, where v is taken modulo 3
B VxJ, =qu (X)do+1 — Gut1 (X)Jpy2, where g, for any v =1,2,3
are three local one-forms

m (geometric structure)
J,: any almost Hermitian structure in J

nJJ,=JJ
m JJ,: a symmetric endomorphism with (JJ,)? = id and tr(JJ,) =0
where v =1,2,3
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Real hypersurface in SU; ,/S(Uz-Up)
Let M be a real hypersurface in SUs p/S(Uz-Upn).

m g : the induced Riemannian metric on M
m V : the Levi-Civita connection of (M, g)
m N : alocal unit normal field of M

m A : the shape operator of M w.rt N, AX = —VxN

J—(¢,€,m,g): an almost contact metric structure,
where JX = ¢X +n(X)N, £ = —JN.

m (€) =1, ¢€ =0, n(¢X) =0, 6°X = =X +n(X)¢

{h}tv=123 = (¢v,6,m0,8): an almost contact metric 3-structure,
where J,X = ¢, X + 1, (X)N, &, = —J, N.
(&) =1, 6.6 =0, n (6 X) =0, ppX = =X + 1, (X)&,
B T,M=0@ Q" where O = span{¢1, &, &}
m T,M=C@C*, where C* = span{¢}
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Some fundamental formulas-1

The quaternionic Kahler structure J, of SUs n,/S(Uz-Un), together with
the condition J,J,+1 = Jy420 = —Jy4+1J,, induces an almost contact
metric 3-structure (¢,,&,, M, 8) on M as follows:

X = X +m(X)e, m(&)=1, 6.6 =0,
(Z)V-l-lgu = _§V+27 ¢V€V+1 = §V+27

Gubu1X = Gu2 X + mr1(X)Ey,

Gur100X = =2 X + 0 (X)E11

for any vector field X tangent to M.
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Some fundamental formulas-2

Moreover, from the commuting property of J,J = JJ,, v = 1,2, 3, the
relation between these two contact metric structures (¢,&, 7, g) and
(6v, &My, g), v =1,2,3, can be given by

¢¢I/X = ¢V¢X =+ UV(X)§ - H(X)fu,
Uu(¢X) = 77(¢VX)7 P&y = €.

On:ghe other hand, from the parallelism of Kahler structure J, that
is, VJ = 0 and the quaternionic Kahler structure J, together with Gauss
and Weingarten formulas it follows that
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Some fundamental formulas-3

vXgu = qV+2(X)£V+1 - qV+1(X)£V+2 + ¢VAX7

(Vxd)Y = —=qui1(X)dpg2Y + qui2(X)du11 Y +mu(Y)AX
- g(AX, YY),

m Codazzi equation
—2(VxA)Y + 2(VYA) = n(X)oY —n(Y)oX —2g(6X, Y)¢

+ Z{nu )oY — (V)b X — 2g(6, X, V)6, }
+ Z{nywxmasv — 0 (¢Y)hu X}

3
+ D (X (@Y) = n(Y)n.(6X)}&
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Some fundamental formulas-4

m Gauss equation
—2R(X,Y)Z =g(Y,Z)X — g(X,2)Y
+8(oY, 2)pX — g(¢X, Z2)9Y — 2g(¢X, Y)pZ

+ Z{ (60, 2)6,X — g(6,X, 2)6,Y — 28(6,X, V)0, Z |

N Z{ (600, 2)6,6X — g(6,6X, 2)6,0Y |

3

= 2 s @0n0X =X 2)6.,0Y

3

—Z{ §(6,0Y.2) —n(¥)8(00X. 2) }&,

—2g(AY, Z)AX +2g(AX, Z2)AY,
where R denotes the curvature tensor of a real hypersurface M in
SUz m/S(Uz-Upy).
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Motivation
There does not exist any Hopf real hypersurface with parallel Ricci tensor in
Gz((C’"+2), m Z 3.

@ Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with
parallel Ricci tensor, Proc. Royal Soc. Edinb. (2012).
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Geometric meaning of parallel

Parallel condition for a (1,1) type tensor field T, VT = T ® w has a close

relation to the holonomy group. The eigenspaces {e;}i—1 . am—1 are said
to be parallel along ~ if they are invariant with respect to parallel

translation along any curve in M.
ﬁ S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol.1.
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Classification of real hypersurfaces in SUs 1,/ S(Uz-Up,)

Theorem A. Let M be a connected real hypersurface in SUs m/S(Uz-Um), m > 3. Then both [¢] and Q- are invariant under
the shape operator of M if and only if M is locally congruent to an open part of one of the following hypersurfaces:

(A) atube around a totally geodesic SUs 1, —1/S(U2Um—_1) in SUs p/S(U2Un);
(B) a tube around a totally geodesic HH" in SUz 2,/S(U2U2,), m = 2n;
(C) a horosphere in SUz m/S(U2Up) whose center at infinity is singular;

or the following exceptional case holds:

(D) The normal bundle vM of M consists of singular tangent vectors of type JX L JX. Moreover, M has at least four
distinct principal curvatures, three of which are given by

with corresponding principal curvature spaces

Ta=TMS(CNQ), T, =JTMS Q), TA CCNQNJQ.

If 14 is another (possibly nonconstant) principal curvature function, then T, C C N QN JQ, JT, C Ty and
ITu C Ty

ﬁ J. Berndt and Y. J. Suh, Hypersurfaces in noncompact complex

Grassmannians of rank two, Internat. J. Math., World Sci. Publ., 23 (2012),
1250103(35 pages).
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The typical characterization theorem for £ € Q

Theorem B. Let M be a Hopf hypersurface in SUz,m/S(Uz-Unm), m > 3.
Then the Reeb vector field £ € Q <= M ~ one of Type (B).

@ Y.J. Suh, Real hypersurfaces in complex hyperbolic two-plane Grassmannians
with Reeb vector field, Adv. Appl. Math. 55 (2014), 131-145.
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Ricci tensor in differential geometry

m The Ricci curvature tensor S is defined on any pseudo-Riemannian manifold,
as a trace of the Riemann curvature tensor.

m S is a symmetric bilinear form on the tangent space of the manifold.

m S provides one way of measuring the degree to which the geometry
determined by a given Riemannian metric might differ from that of ordinary
Euclidean n-space.

m S represents the amount by which the volume of a geodesic ball in a curved
Riemannian manifold deviates from that of the standard ball in Euclidean
space.

[§ L. Besse, Einstein manifold, Springer-Verlag (1987).
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The Ricci tensor of M in SUs 1,/ S(Uz-Up,)
The Ricci tensor of M is given by

4m—1

25X =2 R(X, e)e;
=1
3
= —(4m+ )X +39(X)E +3 > m(X)E,
v=1

= () du X — (60 X) b€ — n(X)nu(€)€}

v=1

— 2hAX +2A%X

for any X tangent to M, h := trace(A).

ﬁ Y.J. Suh and C. Woo, Real Hypersurfaces in complex hyperbolic two-plane
Grassmannians with parallel Ricci tensor, Math. Nachr. 287 (2014),
1524-1529.
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The structure Jacobi operator R:

The structure Jacobi operator Re of M is defined by ReX = R(X, )¢ for
any tangent vector X € T,M, p € M.

2R X = —X + n(X)€ + 20AX — 2a2n(X)¢
+ Z A ()& = n(X)nu ()€, +38(6u X, )€ + 0 () dudX],

where a = g(AE, ) is real valued function on M.

H. Lee, Y. J. Suh and C. Woo* Ricci tensors in SUs 1, /S(Uz-Um) KPT 2015 18 / 27



Proof

M — SUsm/S(U2-Un) st. R-S=0
= M==(?)

Lemma 1

Let M be a Ricci semi symmetric Hopf hypersurface in SUz, m/S(UzUm), m > 3. Then &
belongs to either the distribution Q or the distribution Q.

v

Lemma 2

If A,B,C are diagobalzable matrices and commute with each other, then these exists on a
common basis {ex}k=1,... 4am—1 which makes A,B,C simultaneously diagonalizable.

v
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Lemma 3

Let M be a Hopf hypersurface in SU,;m/S(Uz-Um), m > 3. If the Reeb vector field &
belongs to the distribution Q1 then SA = AS.

v

Lemma 4

Let M be a Hopf hypersurface in SUs,;m/S(Uz-Un), m > 3. If the Reeb vector field &
belongs to the distribution 0%, then R:A = AR:.

v

Lemma 5

Let M be a Ricci semi-symmetric Hopf hypersurface in SUz,;m/S(U2-Up), m > 3. If the
Reeb vector field ¢ belongs to the distribution @, then the Ricci tensor S commutes
with the structure tensor field ¢, that is, S¢ = ¢S.

v
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Proposition B. [Berndt and Suh, Internat. J. Math.]

Let M be a connected hypersurface in SUs,m/S(U2Um), m > 3. Assume that the maximal
complex subbundle C of TM and the maximal quaternionic subbundle Q of TM are both
invariant under the shape operator of M. If JN L JN, then one of the following statements
holds:

(7T8) M has five (four for r = v/2tanh™'(1/4/3) in which case o = )\,) distinct constant

principal curvatures

o = V2tanh(v/2r), 8 =V2coth(v2r), v =0,

1 1 1
AL = Ttanh(Tr) A2 = 7 coth(ﬁr)7

and the corresponding principal curvature spaces are
Ta=TMSC, Ts=TMo Q, T, =J(TM6 Q) = JT;.

The principal curvature spaces Ty, and T, are invariant under J and are mapped
onto each other by J. In particular, the quaternionic dimension of SUs m/S(UzUn)
must be even.

(He) M has exactly three distinct constant principal curvatures
1
a=pB=v2 =0, ’\:ﬁ
e B




New Problems
Commuting Ricci tensor 1

M — SU2,m/S(U2'Um) s.t. Rgd)s = SRgd)
= M=(7)

Commuting Ricci tensor 2

M < SUym/S(Us-Un) st. RnyoA= ARno
= M= (7)

GTW parallel Ricci tensor

M < SUsn/S(Us-Un) st (V¥S)Y =0
= M=(7)
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Proof

M — 5U2,m/5(U2'Um) s.t. R§¢5 = SR§¢
= M=(7)

Lemma 1

Let M be a Hopf hypersurface in SUz m/S(U>-Un) with the commuting condition
RepSX = SR¢¢X. If the smooth function « is constant along the direction of £ on M,
then the Reeb vector field £ belongs to either the distribution Q or the distribution o+,

v

Lemma 2

Let M be a Hopf hypersurface in SUs m/S(Uz-Up), m > 3, with Re¢S = SRe$. If the
Reeb vector field ¢ belongs to the distribution @, then the Ricci tensor S commutes
with the structure tensor field ¢.

v
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Generalized Tanaka-Webster connection

m Tanaka and Webster(independently) defined Tanaka-Webster (in
short, the GTW) connection which is defined as a canonical affine
connection on a non-degenerate, pseudo-Hermitian CR-manifold.

m Tanno introduced the generalized Tanaka-Webster connection for
contact metric manifolds.

m Generalized Tanaka-Webster connection=TW connection for contact
metric manifolds if the associated CR-structure is integrable
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GTW connection

Cho defined GTW connection for a real hypersurface of a Kihler manifold by
VEY =vxy + FPY,

where constant k € R\ {0} and F{Y = g(¢AX, Y)& — n(Y)pAX — kn(X)pY.

m g : the induced Riemannian metric on M
m V : the Levi Civita connection of (M, g)
m k : a non-zero real number

m A : the shape operator of M w.r.t N

ﬁ J.T. Cho, CR structures on real hypersurfaces of a complex space form,
Publ. Math. Debrecen 54(1999), 473-487.

ﬁ J.T. Cho, Levi parallel hypersurfaces in a complex space form, Tsukuba J.
Math., 30(2006), 329-344.
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Results

Parallel Ricci tensor

M < SUsm/S(Us-Un) st. (VxS)Y =0
= I M

Reeb Parallel Ricci tensor

M — SUsm/S(Uz-Un) st. (VeS)Y =0
= M= Ta or Ha

Ricci semi-symmetric

M < SUpm/S(Us-Un) st. R(X,Y)-S=0
= I M
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Results: Levi-Civita connection
Commuting Ricci tensor 1

M — SUsm/S(U2Um) sit. RepS = SReo
= M= Tax or Ha

Commuting Ricci tensor 2

M < SUym/S(Us-Un) st. RnoA= ARno
= M= Ta or Ha

GTW parallel Ricci tensor

M < SUsn/S(Us-Un) st (V¥S)Y =0
= 3 M
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