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Sub-Riemannian manifolds and geodesics

Part I

Sub-Riemannian manifolds and
geodesics



Sub-Riemannian manifolds and geodesics

SUB-RIEMANNIAN MANIFOLDS

A sub-Riemannian manifold is a triple (M,∆, g) where
I M is a smooth n-dimensional connected manifold;
I ∆ ⊂ TM is a smooth (“horizontal”) sub-bundle of rank m;
I g is a smooth metric on ∆.

A Lipschitz continuous curve γ : [0, 1]→ M is horizontal if

γ̇(t) ∈ ∆γ(t) for a.e. t ∈ [0, 1] .

In this case, we can define the length `(γ) :=
´
γ |γ̇|g.

Definition (CC distance)
The Carnot-Carathéodory distance between x, y ∈ M is

dc(x, y) := inf {`(γ) : γ : [0, 1]→ M horizontal, γ(0) = x, γ(1) = y} .

In general m < n (“sub”-Riemannian).
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Sub-Riemannian manifolds and geodesics

GEODESICS
If the bracket generating condition

rank (Lie ∆)(x) = n ∀x ∈ M

holds, then dc is an actual distance (Chow-Rashevsky).

We are interested in minimizers, i.e., horizontal curves γ : [0, 1]→ M
such that

`(γ) = dc(γ(0), γ(1)).

Minimizers do exist (at least locally). Are they regular?

Without loss of generality we assume that
I M = Rn

I ∆ = span {X1, . . . ,Xm}
where X1, . . . ,Xm are smooth, linearly independent vector fields in Rn

chosen to be g-orthonormal, i.e.,

if γ̇(t) =
∑m

j=1 hj(t)Xj(γ(t)) then `(γ) =
´ 1

0 |h(t)|dt .
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Sub-Riemannian manifolds and geodesics

MINIMIZERS, EXTREMALS AND DUAL CURVES

Pontryagin maximum principle

Let γ : [0, 1]→ Rn be a minimizer such that

γ(0) = 0 and γ̇ =
∑m

j=1 hjXj(γ) .

Then, there exist

ξ0 ∈ R, ξ : [0, 1]→ Rn Lipschitz, (ξ0, ξ(t)) 6= (0, 0)

such that for any j = 1, . . . ,m

ξ0hj + 〈ξ,Xj(γ)〉 = 0 a.e. on [0, 1]

ξ0hj + 〈
∑

i ξidxi, Xj(γ) 〉 = 0 a.e. on [0, 1].

The function ξ : [0, 1]→ Λ1 Rn is called dual curve; it satisfies a
certain ODE.
We call extremal any curve satisfying the above necessary condition.
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Sub-Riemannian manifolds and geodesics

NORMAL AND ABNORMAL GEODESICS

If ξ0 6= 0 we say that γ is a normal extremal and the equations

hj = − 1
ξ0
〈ξ,Xj(γ)〉 a.e. on [0, 1]

yield C∞-smoothness. Normal extremals are (locally) minimizers.
All Riemannian geodesics (m = n) are normal; the same holds in step
2 structures.

If ξ0 = 0, γ is an abnormal extremal and satisfies

〈ξ,Xj(γ)〉 = 0 ∀j = 1, . . . ,m.

Equivalently: ξ(t) ∈ (∆γ(t))
⊥.
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Sub-Riemannian manifolds and geodesics

GOH CONDITION

Remark. A minimizer/extremal could be both normal and abnormal.

Goh condition
If γ is a strictly abnormal minimizer, then for any i, j ∈ {1, . . . ,m}

〈ξ, [Xi,Xj](γ)〉 = 0.

Equivalently: ξ(t) ∈ (∆2
γ(t))

⊥, where ∆2 := ∆ + [∆,∆].



Sub-Riemannian manifolds and geodesics

REGULARITY OF GEODESICS

The regularity of sub-Riemannian geodesics (in fact, of strictly
abnormal ones) is one of the main open questions: see the books by
Montgomery (2002), Agrachev-Sachkov (2004) and
Agrachev-Barilari-Boscain (forthcoming).

It was believed for some time that only normal extremals could be
length minimizing (Strichartz 1986, corrected in 1989).

However, strictly abnormal minimizers do exist (Montgomery 1994,
Liu-Sussmann 1995, Sussmann 1996) even in Carnot groups
(Golé-Karidi 1995). But all these examples are smooth!

On the contrary, abnormal extremals may develop singularities.
Leonardi-Monti (2008) prove that extremals with corner-type
singularities cannot be minimizers in certain sub-Riemannian
structures. Monti (2012) excludes other singularities (“y = |x|3/2”).
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Carnot groups



Carnot groups

CARNOT GROUPS

Definition
A Carnot group G is a connected, simply connected, nilpotent Lie
group whose Lie algebra admits the stratification

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs

where Vi = [V1,Vi−1], i = 2, . . . , s (s = “step”) and [V1,Vs] = {0}.

We endow G with the sub-Riemannian structure induced by choosing
∆ := V1 and g left-invariant. In particular, we can fix a orthonormal,
left-invariant, bracket-generating basis of V1

X1, . . . ,Xm .

The induced distance dc is left-invariant.

The “tangent space” (at “generic” points) to a sub-Riemannian
manifold is a Carnot group.
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Carnot groups

FREE CARNOT GROUPS

A Carnot group is free if its Lie algebra has “as few relations as
possible”. All Carnot groups are quotients of a free Carnot group.

Grayson-Grossmann (1990): a free Carnot group can be identified
with (Rn, ·) in such a way that

Xj(x) = ej +

n∑
i=m+1

mi,j(x) ei, j = 1, . . . ,m

for mi,j(x) suitable monomials.

It can be proved that for any x ∈ Rn

x = (x1, . . . , xn) = exp(x1X1) ◦ exp(x2X2) ◦ · · · ◦ exp(xnXn)(0).

for suitable commutators Xm+1, . . . ,Xn of X1, . . . ,Xm (Hall basis).
In particular, X1 = e1.
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Carnot groups

AN EXAMPLE
A model for the free Carnot group of rank 3 and step 3 is R14 with left
invariant vector fields X1,X2,X3
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Part III

Abnormal geodesics and algebraic
varieties in Carnot groups



Abnormal geodesics and algebraic varieties in Carnot groups

DUAL CURVE IN CARNOT GROUPS

Let G be a Carnot group and let θj be the base of 1-forms dual to the
Hall basis X1, . . . ,Xn:

〈θj,Xi〉 = δj
i .

Given an extremal γ(t) with dual curve ξ(t), define λ(t) by

ξ1dx1 + · · ·+ ξndxn = λ1θ
1(γ) + · · ·+ λnθ

n(γ) .

For abnormal extremals we have

λ1 = · · · = λm ≡ 0

and for strictly abnormal minimizers the Goh condition reads as

λm+1 = · · · = λm2 ≡ 0, m2 := dim ∆2 = dim V1 + dim V2 .



Abnormal geodesics and algebraic varieties in Carnot groups

DUAL CURVE IN CARNOT GROUPS

Let G be a Carnot group and let θj be the base of 1-forms dual to the
Hall basis X1, . . . ,Xn:

〈θj,Xi〉 = δj
i .

Given an extremal γ(t) with dual curve ξ(t), define λ(t) by

ξ1dx1 + · · ·+ ξndxn = λ1θ
1(γ) + · · ·+ λnθ

n(γ) .

For abnormal extremals we have

λ1 = · · · = λm ≡ 0

and for strictly abnormal minimizers the Goh condition reads as

λm+1 = · · · = λm2 ≡ 0, m2 := dim ∆2 = dim V1 + dim V2 .



Abnormal geodesics and algebraic varieties in Carnot groups

MAIN RESULT
Set v := λ(0) ∈ Rn.

Theorem (Le Donne-Leonardi-Monti-V.)
Let γ be an extremal (either normal or abnormal) in a free Carnot group
G ≡ Rn with γ(0) = 0. Then, there exist polynomials Pv

1, . . . ,P
v
n,

Pv
j (x) =

∑
I∈Nn

n∑
`=1

C`j,I v` xI (xI := xI1
1 xI2

2 · · · x
In
n ),

such that λj(t) = Pv
j (γ(t)) for any j = 1, . . . , n. Proof

For j ∈ {1, . . . , n} and I = (I1, . . . , In) ∈ Nn we have

C`j,I = (−1)I1+···+In

I1! ··· In!
C̃`j,I

where the constants C̃`j,I are defined by

[· · · [[Xj,X1], . . . ,X1︸ ︷︷ ︸
I1 times

],X2], . . . ,X2︸ ︷︷ ︸
I2 times

], . . . ] =

n∑
`=1

C̃`j,IX` .
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Abnormal geodesics and algebraic varieties in Carnot groups

Corollary
A) Let γ be an abnormal extremal in a free Carnot group. Then, there
exist polynomials Pv

1, . . . ,P
v
m of degree s− 1 such that

Pv
j (γ(t)) = 0 ∀j = 1, . . . ,m (1)

and at least one of them is not the zero polynomial.

B) Let γ be a strictly abnormal minimizer in a free Carnot group. Then,
there exist polynomials Pv

1, . . . ,P
v
m, . . . ,P

v
m2

of degree s − 1 or s − 2
such that

Pv
j (γ(t)) = 0 ∀j = 1, . . . ,m2

and at least two of them are not the zero polynomial.

Remark. The “converse” of A) holds as well. In other words, we
provide a characterization of abnormal extremals in free Carnot
groups.
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Abnormal geodesics and algebraic varieties in Carnot groups

COMMENTS AND FUTURE DIRECTIONS

Our results could provide a first step towards a “dimensional
reduction” argument to attack the problem of minimizers’ regularity.
Moreover, they could be useful to classify the possible singularities of
abnormal minimizers. One could also try to adapt the tecniques of
Leonardi-Monti (2008) to exclude certain singularities for minimizers.

However, we have also some immediate application (to be discussed
in a while).



Abnormal geodesics and algebraic varieties in Carnot groups

SKETCH OF THE PROOF
Proof. Statement

Step 1. For any i, j = 1, . . . , n, the formula

XiPv
j =

n∑
k=1

ck
ijP

v
k

holds, where [Xi,Xj] =
∑n

k=1 ck
ijXk.

Step 2. One has

Pv
j (γ(0)) = vj = λj(0) and Pv

n(γ(t)) = vn = λn(t) .

Reason by “reverse” induction on j; since γ̇ =
∑m

i=1 hiXi(γ) we have
d
dt

Pv
j (γ(t)) =

m∑
i=1

hi(t) XiPv
j (γ(t))

=

m∑
i=1

n∑
k=1

k≥j+1

hi(t)ck
ijP

v
k(γ(t)) =

m∑
i=1

n∑
k=1

hi(t)ck
ijλk(t) = λ̇j(t).
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∑n

k=1 ck
ijXk.

Step 2. One has

Pv
j (γ(0)) = vj = λj(0) and Pv

n(γ(t)) = vn = λn(t) .

Reason by “reverse” induction on j; since γ̇ =
∑m

i=1 hiXi(γ) we have
d
dt

Pv
j (γ(t)) =

m∑
i=1

hi(t) XiPv
j (γ(t))

=

m∑
i=1

n∑
k=1

k≥j+1

hi(t)ck
ijP

v
k(γ(t)) =

m∑
i=1

n∑
k=1

hi(t)ck
ijλk(t) = λ̇j(t).
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GENERAL CARNOT GROUPS

A similar formula

λj(t) = Pv
j (γ(t)), Pv

j (x) =
∑
I∈Nn

n∑
`=1

C`j,Iv`x
I

should hold for extremals in a general Carnot group G. One needs
again to work in exponential coordinates of the second type.

Denote by π the omomorphism
π : Gfree → G.

If γ is horizontal curve in G, there exists a (essentially) unique
horizontal lift κ on Gfree.
If γ is an extremal (resp., minimizer) with dual curve λ, then κ is an
extremal (resp., minimizer) in Gfree with dual curve π∗λ. This gives

λj(t) = Pv
k(j)(κ(t)).

Notice that the regularity of κ is the same of γ.
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APPLICATIONS - 1

Theorem (Tan-Yang, 2011)
Every geodesic γ in a Carnot group G of step 3 is C∞-smooth.

Proof. Without loss of generality we may assume that G is free.
Reason by contradiction: then γ is strictly abnormal and contained in
a vertical hyperplane

{x ∈ Rn : P(x) = a1x1 + · · ·+ amxm = 0} /G maximal.

Thus
γ̇ ∈ {a1X1 + · · ·+ amXm}⊥ ⊂ V1,

i.e., γ is contained in a Carnot group of step 3 and rank m− 1.
Use induction on the rank.
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APPLICATIONS - 2

Theorem (Liu-Sussmann, 1995)
If γ is an abnormal extremal in a Carnot group of rank m = 2 such that

λ ∈ (∆2)⊥

λ /∈ (∆3)⊥, ∆3 := ∆⊕ [∆,∆]⊕ [∆, [∆,∆]] = V1 ⊕ V2 ⊕ V3.

Then γ is smooth.

Proof. Without loss of generality we may assume that G is free. We
have γ ⊂ Σ := {P = 0}. The structure of P and the hypotheses imply
that

Σ is a smooth hypersurface

dim (Tan Σ ∩ V1) = 1,

i.e., γ must follow the horizontal foliation of Σ, which is analytic.
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