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In Rn the harmonic (and p-harmonic) functions satisfy the global
Harnack’s inequality and therefore entire and positive harmonic
functions are constant.

Similarly, by a result due to Bombieri, De Giorgi and Miranda, entire
and positive solutions of the minimal graph equation are constants.
Moreover, we have the Bernstein’s theorem

Theorem 1
Every entire solution u : Rn → R, n ≤ 7, of the minimal graph equation is
affine.

If Rn is replaced by a negatively curved Riemannian manifold, the
situation is completely different.
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In order to study the existence of entire harmonic functions on
Riemannian manifolds, Choi defined the asymptotic Dirichlet problem
in 1984. After Choi the existence was studied e.g. by Anderson,
Sullivan, Schoen, Cheng, Hsu, March and Borbély.

The study of the non-linear setting of p-harmonic functions started by
Pansu in 1988 and was continued by Holopainen and Vähäkangas.

Recently the asymptotic Dirichlet problem for minimal graphic
functions has been studied by e.g. Ripoll, Telichevesky, Casteras and
Holopainen.
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Cartan-Hadamard manifolds

Definition 2
Cartan-Hadamard manifold is a complete and simply connected
Riemannian manifold with non-positive sectional curvature.

Example 3

Rn, curvature K = 0,
Hyperbolic space Hn, curvature K = −1,
Model manifolds (Rn, dr2 + f (r)2dθ2) with f ′′ ≥ 0.

By Cartan-Hadamard theorem, Cartan-Hadamard manifolds are
diffeomorphic to Rn (expp : TpM→ M is a covering map).

From now on M will denote n-dimensional (n ≥ 2) Cartan-Hadamard
manifold.
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Sphere at infinity

Let γ1, γ2 : R→ M be unit speed geodesics. Then γ1 ∼ γ2 if

sup
t≥0

d
(
γ1(t), γ2(t)

)
< ∞.

The sphere at infinity (asymptotic boundary) ∂∞M is the set of all
equivalence classes of unit speed geodesics.

Equivalently, ∂∞M is the set of all unit speed geodesic rays starting
from a fixed point o ∈ M, interpretation ∂∞M = Sn−1 ⊂ ToM.

Equipping M̄ = M∪ ∂∞M with the cone topology, M̄ is homeomorphic
to the closed unit ball B̄n(0, 1) ⊂ Rn and ∂∞M homeomorphic to
Sn−1 ⊂ Rn.
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Cone topology

∀x ∈ M, y ∈ M̄ \ {x} there exists a unique unit speed geodesic
γx,y : R→ M s.t. γx,y(0) = x and γx,y(t) = y for some t ∈ (0, ∞]. For
x ∈ M, y, z ∈ M̄ \ {x}, denote

^x
(
γ̇

x,y
0 , γ̇x,z

0

)
the angle between vectors γ̇

x,y
0 , γ̇x,z

0 ∈ TxM.
If v ∈ TxM, define the cone by

C(v, α) =
{

y ∈ M̄ \ {x} : ^x(v, γ̇
x,y
0 ) < α

}
and the truncated cone by

T(v, α, R) = C(v, α) \ B̄(x, R), R > 0.

All cones and open balls forms a basis for the cone topology. Details
can be found from Eberlein & O’Neill - Visibility manifolds (1973).
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Asymptotic Dirichlet problem

Let θ : ∂∞M→ R be continuous. Then the asymptotic Dirichlet problem
for minimal graph equation is to find (unique) u ∈ C(M̄) ∩ C∞(M)
such that div ∇u√

1+|∇u|2
= 0 in M,

u|∂∞M = θ.

In fact, we are looking for the minimal submanifold Σu ⊂ M×R which
is the graph of u with “asymptotic boundary”{(

x, θ(x)
)

: x ∈ ∂∞M
}
⊂ ∂∞M×R.
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Asymptotic Dirichlet problem

In the case of A-harmonic functions the equation is

−div Ax(∇u) = 0,

where A : TM→ TM is an operator that satisfies
〈A(V), V〉 ≈ |V|p, 1 < p < ∞, and A(λV) = λ|λ|p−2A(V) for all
λ ∈ R \ {0}.

In the special case A(v) = |v|p−2v, A-harmonic functions are called
p-harmonic and, in particular, if p = 2, we obtain the usual harmonic
functions.
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Asymptotic Dirichlet problem

How to solve the asymptotic Dirichlet problem, i.e. prove the existence
of entire solutions u : M̄→ R with prescribed boundary behaviour
ϕ : ∂∞M→ R?

Extend the boundary data to a function ϕ ∈ C(M̄).

Consider an exhaustion of M by geodesic balls B(o, k) and solve
the Dirichlet problem with boundary data uk|∂B(o, k) = ϕ|∂B(o, k).

Extract a converging subsequence and show that the limit has the
right boundary values on ∂∞M.
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Recent results

Some recent results for the minimal graph equation, similar results
hold also for harmonic and A-harmonic equations.

Theorem 4 (Casteras-Holopainen-Ripoll (2015))

Let M be a Cartan-Hadamard manifold of dimension n ≥ 3. Assume that

−
(

log r(x)
)2ε̃

r(x)2 ≤ K(Px) ≤ −
1 + ε

r(x)2 log r(x)
, r(x) ≥ R0,

for some ε > ε̃ > 0. Then the asymptotic Dirichlet problem for the minimal
graph equation is uniquely solvable for any boundary data θ ∈ C(∂∞M).

Here the upper bound is (almost) optimal, but also lower bound→ 0.
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Theorem 5 (Casteras-H-Holopainen (2017))

Let M be a rotationally symmetric n-dimensional Cartan-Hadamard manifold
whose radial sectional curvatures outside a compact set satisfy the upper
bounds

K(Px) ≤ −
1 + ε

r(x)2 log r(x)
, if n = 2,

and
K(Px) ≤ −

1/2 + ε

r(x)2 log r(x)
, if n ≥ 3.

Then the asymptotic Dirichlet problem for the minimal graph equation is
solvable with any continuous boundary data on ∂∞M.

The 2-dimensional case was proved by Ripoll and Telichevesky (2012).
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Theorem 6 (Casteras-H-Holopainen (2017))

Let M be a Cartan-Hadamard manifold of dimension n ≥ 2, let φ > 1 and
assume that

K(Px) ≤ −
φ(φ− 1)

r(x)2 , r(x) ≥ R0.

Suppose also that there exists a constant CK < ∞ such that

|K(Px)| ≤ CK|K(P′x)|

whenever x ∈ M \ B(o, R0). Moreover, suppose that the dimension n and the
constant φ satisfy the relation

n >
4
φ
+ 1.

Then the asymptotic Dirichlet problem for the minimal graph equation is
uniquely solvable for any boundary data θ ∈ C(∂∞M).
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Idea of the proof

Remember that ∂∞M is homeomorphic to the unit sphere. Hence,
given θ ∈ C(∂∞M), we may interpret it as θ ∈ C(Sn−1).

Suppose first that θ is L-Lipschitz and extend it radially to
θ ∈ C(M \ {o}). Then θ ∼ “angular function”, and the curvature
bounds imply that

|∇θ(x)| ≤ L
j
(
r(x)

) ≤ L
cr(x)φ

,

where φ > 1 and j
(
r(x)

)
is the infimum of |V

(
r(x)

)
| over Jacobi fields

V, along geodesic γo,x, with V0 = 0, |V′0| = 1, V′0 ⊥ γ̇o,x.
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Sketch of the proof

Take a sequence Bi = B(o, ri), ri ↗ ∞, and solve the Dirichlet problemdiv ∇ui√
1+|∇ui|2

= 0 in Bi

ui|∂Bi = θ.

Applying interior gradient estimate and regularity theory of elliptic
PDEs, we get a converging subsequence

uik → u in C2
loc(M).

It follows that the limit u is a smooth solution to the minimal graph
equation on M, and we are left to show (the hard part) that

lim
x→x0

u(x) = θ(x0) ∀x0 ∈ ∂∞M. (1)
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Sketch of the proof

To prove (1), we take an auxiliary smooth homeomorphism
ϕ : [0, ∞)→ [0, ∞) that satisfies certain conditions, denote

h =
|u− θ|

ν
, ν sufficiently large constant,

and show that
ϕ
(
h(x)

)
→ 0 as x→ x0 ∈ ∂∞M. (2)

We prove (2) by showing ∫
M

ϕ(h) < ∞

and
sup
B(x,r)

ϕ(h)n+1 ≤ c
∫

B(x,2r)
ϕ(h).
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Sketch of the proof

These estimates we obtain as follows:

Caccioppoli-type inequality
Weighted Poincaré inequality

}
=⇒

∫
M

ϕ(h) < ∞

and

Caccioppoli-type inequality
Sobolev inequality

}
Moser iteration

=⇒ sup
B(x,r)

ϕ(h)n+1 ≤ c
∫

B(x,2r)
ϕ(h).
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Caccioppoli-type inequality

Lemma 7
Suppose ϕ : [0, ∞)→ [0, ∞) is a homeomorphism that is smooth on (0, ∞)
and let U ⊂⊂ M be open. Suppose that η ≥ 0 is a C1(U) function and let
u, θ ∈ L∞(U) ∩W1,2(U) be continuous functions such that u ∈ C2(U) is a
solution to the minimal graph equation in U. Denote h = |u− θ|/ν, where
ν > 0 is a constant, and assume that

η2ϕ(h) ∈ W1,2
0 (U).

Then we have∫
U

η2ϕ′(h)
|∇u|2√

1 + |∇u|2
≤ Cε

∫
U

η2ϕ′(h)|∇θ|2 + (4 + ε)ν2
∫

U

ϕ2

ϕ′
(h)|∇η|2

for any fixed ε > 0.
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Caccioppoli-type inequality

Proof.
Consider an auxiliary function

f = η2ϕ

(
(u− θ)+

ν

)
− η2ϕ

(
(u− θ)−

ν

)
,

and use it as a test function in∫
U

〈∇u,∇f 〉√
1 + |∇u|2

= 0.
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Weighted Poincaré inequality

The curvature upper bound implies

K ≤ 0, everywhere

K(Px) ≤ − φ(φ−1)
r(x)2 , r(x) ≥ R0

}
⇒ r∆r ≥

{
n− 1, everywhere
(n−1)φ

1+ε =: C0, r(x) ≥ R0.

Using this and Green’s formula, we obtain

(1 + C0)
∫

B
ϕ(h) ≤ c +

∫
B

rϕ′(h)|∇h|.

Then using the Caccioppoli-type inequality twice and applying
Young’s inequality, we get

(C0 − 4− ε′)
∫

B
ϕ(h) ≤ c + c

∫
B

F
(
r∇θ|

)
+ c

∫
B

F1
(
r2|∇θ|2

)
≤ C < ∞,

where F, F1 are Young functions and C independent of B.
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f -minimal graphs

Let M be a complete non-compact n-dimensional Riemannian
manifold with the Riemannian metric given by ds2 = σijdxidxj in local
coordinates.

Equip N = M×R with the product metric ds2 + dt2 and let f : N → R

be a smooth function.

A hypersurface Σ ⊂ M×R is called f -minimal if its mean curvature
satisfies

H = 〈∇̄f , ν〉

at every point of Σ. Here ν denotes the downward pointing unit
normal of the surface and ∇̄f is the gradient with respect to the
product metric.
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Examples of f -minimal hypersurfaces:

minimal hypersurfaces if f is identically constant

self-shrinkers in Rn+1 if f (x) = |x|2/4

minimal hypersurfaces of weighted manifolds
Mf = (M, g, e−f dvolM ), where (M, g) is a complete Riemannian
manifold with volume element dvolM .
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The Dirichlet problem for f -minimal graphs is to find a solution
u : M→ R to the equationdiv

∇u√
1 + |∇u|2

= 〈∇̄f , ν〉 in Ω

u|∂Ω = ϕ,
(3)

where Ω ⊂ M is a bounded domain and ν denotes the downward
pointing unit normal to the graph of u, i.e.

ν =
(∇u,−1)√
1 + |∇u|2

.
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The equation (3) can be written in non-divergence form as

1
W

(
σij − uiuj

W2

)
ui;j = 〈∇̄f , ν〉,

where W =
√

1 + |∇u|2, (σij) is the inverse matrix of (σij),

ui = σijuj,

with
uj =

∂u
∂xj

and
ui;j = uij − Γk

ijuk

is the second order covariant derivative.
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Theorem 8 (Casteras-H-Holopainen (2016))

Let Ω ⊂ M be a bounded domain with C2,α boundary ∂Ω. Assume that
f ∈ C2(Ω̄×R) satisfies f (x, t) = m(x) + r(t) with

F = sup
Ω̄×R

|∇̄f | < ∞, RicΩ ≥ −
F2

n− 1
, H∂Ω ≥ F,

where RicΩ is the Ricci curvature of Ω and H∂Ω is the inward mean
curvature of ∂Ω.

Then, for all ϕ ∈ C2,α(∂Ω), there exists a solution u ∈ C2,α(Ω̄) to the
Dirichlet problem (3) with boundary values ϕ.
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Remark
If the function f depends on the R-variable we don’t have uniqueness for the
solutions since the comparison principles fail to hold!

Example 9

Let B(0, 2) ⊂ R2 be the open disk and f : R2 ×R→ R defined by

f (x, t) =
|(x, t)|2

4
.

Then the upper and lower hemispheres and the disk B(0, 2) itself are
f -minimal surfaces with zero boundary values on ∂B(0, 2).
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The proof is based on the Leray-Schauder method which reduces the
solvability to three steps:

I Estimation of supΩ |u|

II Estimation of sup∂Ω |∇u| with supΩ |u|

III Estimation of supΩ |∇u| with supΩ |u| and sup∂Ω |∇u|

The first two steps are done by constructing suitable barriers and the
proof of the third step is based on a method due to Korevaar and
Simon.
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Asymptotic Dirichlet problem for f -minimal graphs

Let θ : ∂∞M→ R be continuous and f : M×R→ R be a smooth
function. The asymptotic Dirichlet problem is to find
u ∈ C(M̄) ∩ C∞(M) such thatdiv ∇u√

1+|∇u|2
= 〈∇̄f , ν〉 in M,

u|∂∞M = θ.

We are looking for f -minimal submanifold Σu ⊂ M×R which is the
graph of u with “asymptotic boundary”{(

x, θ(x)
)

: x ∈ ∂∞M
}
⊂ ∂∞M×R.
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Theorem 10 (Casteras-H-Holopainen (2016))

Let M be a Cartan-Hadamard manifold of dimension n ≥ 2. Assume that
there exist constants φ > 1, ε > 0, k > 0 and R0 > 0 such that

−r(x)2(φ−2)−ε ≤ K(Px) ≤ −
φ(φ− 1)

r(x)2

OR
−r(x)−2−εe2kr(x) ≤ K(Px) ≤ −k2

for all 2-dimensional subspaces Px ⊂ TxM, with r(x) ≥ R0. Furthermore,
assume that f ∈ C2(M×R) and |∇̄f | decays fast enough. Then the
asymptotic Dirichlet problem for the f -minimal graph equation is solvable
with any boundary data θ ∈ C(∂∞M).
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Idea of the proof

In order to solve the Dirichlet problem in a sequence of geodesic balls
B(o, k), k ∈N, we note that the mean curvature of the boundary
∂B(o, r(x)) satisfies

H(x) = ∆r(x) ≥ (n− 1)
f ′a
(
r(x)

)
fa
(
r(x)

) ≥ sup
∂B(o,r(x))×R

|∇̄f |.

Therefore we can drop the assumption on the Ricci curvature and
obtain a sequence of solutions uk with boundary values ϕ|∂B(o, k).

This is the first point where the decay of |∇̄f | is required.
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In order to extract a converging subsequence from uk, we need to show
that the sequence is uniformly bounded.

This is done by constructing a global barrier function.

This is the second point where the decay of |∇̄f | is required.

Esko Heinonen Dirichlet problems 24 November, 2017 30 / 44



In order to extract a converging subsequence from uk, we need to show
that the sequence is uniformly bounded.

This is done by constructing a global barrier function.

This is the second point where the decay of |∇̄f | is required.

Esko Heinonen Dirichlet problems 24 November, 2017 30 / 44



The correct boundary values are proved by localising the argument to
a suitable truncated cone neighbourhood of a point x0 ∈ ∂∞M. We
show that a function

ψ = A(Rδ
3r−δ + h)

is a supersolution in this truncated cone. ψ was first introduced by
Holopainen and Vähäkangas in a study of p-harmonic functions.

This is the third point where the decay of |∇̄f | is required and
corresponding to the curvature upper bounds we require

sup
∂B(o,r)×R

|∇̄f | = o(r−1−ε) if KM ≤ −k2

sup
∂B(o,r)×R

|∇̄f | = o(r−2−ε) if KM ≤ −
φ(φ− 1)

r(x)2 , φ > 1.
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Necessity of the curvature lower bound

Remark
To solve the asymptotic Dirichlet problem on general manifolds, it is not
enough to assume only curvature upper bound.

Theorem 11 (Holopainen-Ripoll (2015))

There exists a 3-dimensional Cartan-Hadamard manifold M, with K ≤ −1,
such that the asymptotic Dirichlet problem is not solvable for any continuous
(nonconstant) boundary data.

Case of harmonic functions by Ancona (probabilistic methods) in 1994
and by Borbély (analytic methods) in 1998, p-harmonic functions by
Holopainen (generalised Borbély’s example) in 2016.
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Optimality of the upper bound

Definition 12
M has asymptotically non-negative sectional curvature if there exists a
continuous decreasing function λ : [0, ∞)→ [0, ∞) such that∫ ∞

0
sλ(s) ds < ∞,

and that KM(Px) ≥ −λ
(
d(o, x)

)
at any point x ∈ M

Example 13

If (outside a compact set)

KM(Px) ≥ −
C

d(o, x)2
(

log d(o, x)
)1+ε

, C, ε > 0,

then M has asymptotically non-negative sectional curvature.
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Optimality of the upper bound

Theorem 14 (Casteras-H-Holopainen (2017))

Let M be a complete Riemannian manifold with asymptotically non-negative
sectional curvature and only one end. If u : M→ R is a solution to the
minimal graph equation

div
∇u√

1 + |∇u|2
= 0

that is bounded from below and has at most linear growth, then it must be a
constant. In particular, if M is a Cartan-Hadamard manifold with
asymptotically non-negative sectional curvature, the asymptotic Dirichlet
problem is not solvable.

It is worth pointing out that we do not assume the Ricci curvature to
be non-negative.
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Optimality of the upper bound

Corollary 15

Let M be a complete Riemannian manifold with only one end and assume that
the sectional curvatures of M satisfy

K(Px) ≥ −
C

r(x)2
(

log r(x)
)1+ε

for sufficiently large r(x) and for any C > 0 and ε > 0. Then any solution
u : M→ [a, ∞) with at most linear growth to the minimal graph equation
must be constant.
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The proof of Theorem 14 is based on a uniform gradient estimate:

Proposition

Assume that the sectional curvature of M has a lower bound K(Px) ≥ −K2
0

for all x ∈ B(p, R) for some constant K0 = K0(p, R) ≥ 0. Let u be a positive
solution to the minimal graph equation in B(p, R) ⊂ M. Then

|∇u(p)| ≤
(

2√
3
+

32u(p)
R

)(
exp

[
64u(p)2

(
2ψ(R)

R2

+

√
4ψ(R)2

R4 +
(n− 1)K2

0
64u(p)2

)]
+ 1
)

,

where ψ(R) = (n− 1)K0R coth(K0R) + 1 if K0 > 0 and ψ(R) = n if
K0 = 0.
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”Proof” of the gradient estimate

Define a function h = ηW, where η(x) = g(ϕ(x)) with g(t) = eKt − 1,

ϕ(x) =
(

1− u(x)
4u(p)

− d(x, p)2

R2

)+

,

and a constant K that will be specified later.

We may assume that h attains its maximum at a point q, which is
outside the cut-locus C(p) of p. The case q ∈ C(p) was treated in
Rosenberg, Schulze, Spruck 2013.
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”Proof” of the gradient estimate

All the computations will be done at point q. We have

∇Sh = η∇SW + W∇Sη = 0 (4)

and since the Hessian of h is non-positive, we obtain, using (4) and a
Bochner-type formula,

0 ≥ ∆Sh = W∆Sη + 2〈∇Sη,∇SW〉+ η∆SW

= W∆Sη +

(
∆SW− 2

W
|∇SW|2

)
η

= W
(
∆Sη + (|A|2 + Ric(N, N))η

)
.

Combining with ith the Ricci lower bound we have

∆Sϕ + K|∇Sϕ|2 ≤ (n− 1)K2
0

K
. (5)

Esko Heinonen Dirichlet problems 24 November, 2017 38 / 44



”Proof” of the gradient estimate

All the computations will be done at point q. We have

∇Sh = η∇SW + W∇Sη = 0 (4)

and since the Hessian of h is non-positive, we obtain, using (4) and a
Bochner-type formula,

0 ≥ ∆Sh = W∆Sη + 2〈∇Sη,∇SW〉+ η∆SW

= W∆Sη +

(
∆SW− 2

W
|∇SW|2

)
η

= W
(
∆Sη + (|A|2 + Ric(N, N))η

)
.

Combining with ith the Ricci lower bound we have

∆Sϕ + K|∇Sϕ|2 ≤ (n− 1)K2
0

K
. (5)

Esko Heinonen Dirichlet problems 24 November, 2017 38 / 44



”Proof” of the gradient estimate

All the computations will be done at point q. We have

∇Sh = η∇SW + W∇Sη = 0 (4)

and since the Hessian of h is non-positive, we obtain, using (4) and a
Bochner-type formula,

0 ≥ ∆Sh = W∆Sη + 2〈∇Sη,∇SW〉+ η∆SW

= W∆Sη +

(
∆SW− 2

W
|∇SW|2

)
η

= W
(
∆Sη + (|A|2 + Ric(N, N))η

)
.

Combining with ith the Ricci lower bound we have

∆Sϕ + K|∇Sϕ|2 ≤ (n− 1)K2
0

K
. (5)

Esko Heinonen Dirichlet problems 24 November, 2017 38 / 44



”Proof” of the gradient estimate

Idea is to estimate the left hand side of (5). Since u is a solution, we
have ∆Su = 0 and

n

∑
i=1
〈∇̄eiN, ei〉 = 0.

Using Hessian comparison we obtain

∆Sϕ ≥ − 2d
R2

n

∑
i=1
〈∇̄ei∇̄d, ei〉 −

2
R2 ≥ −

2ψ(R)
R2 ,

with ψ(R) = (n− 1)K0R coth(K0R) + 1 if K0 > 0 and ψ(R) = n if
K0 = 0.
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R2 ,

with ψ(R) = (n− 1)K0R coth(K0R) + 1 if K0 > 0 and ψ(R) = n if
K0 = 0.
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”Proof” of the gradient estimate

Last step is to estimate |∇Sϕ|2 from below. Assuming

W(q) > max
{

2√
3

,
32u(p)

R

}
,

choosing

K = 128u(p)2

2ψ(R)
R2 +

√
4ψ(R)2

R4 +
(n− 1)K2

0
64u(p)2


and combining with the previous estimate one gets contradiction with
(5).
Therefore

W(q) ≤ max
{

2√
3

,
32u(p)

R

}
and the claim follows.
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As a corollary we get the following:

If M is a complete manifold with ANSC and u is a solution that is
bounded from below and has at most linear growth, then

|∇u(x)| ≤ C, for all x ∈ M \ B(o, R0).

Proof.
We may assume that u > 0. By the assumptions

u(x) ≤ c d(x, o) and K(Px) ≥ −
c

d(x, o)2 for x ∈ M \ B(o, R0/2).

We apply the gradient estimate for p ∈ M \ B(o, R0) with
R = d(p, o)/2 ≥ R0/2:

For the sectional curvature lower bound in B(p, R): K0(p, R)2 ≤ c2/R2,
u(p)/R ≤ c, ψ(R) ≤ c and u(p)2K2

0 ≤ c.

Plugging these to the grad. estimate gives the claim.
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About the proof of Theorem 14

Denoting

A(x) =
1√

1 + |∇u|2

we see that
div

∇u√
1 + |∇u|2

= div
(
A(x)∇u

)
= 0

is equivalent to
1

A(x)
div

(
A(x)∇u

)
= 0.

Now we can interpret the minimal graph equation as a weighted
Laplace equation ∆σ with the weight σ =

√
A.

By the gradient estimate there exists a constant c > 0 s.t. c ≤ σ ≤ 1 in
M \ B(o, R0) and hence ∆σ is uniformly elliptic there.
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Global Harnack’s inequality (for positive solutions) can be iterated to
yield Hölder continuity estimates for all solutions and, furthermore, a
Liouville (or Bernstein) type result for solutions with controlled
growth:

Corollary 16

Let M be a complete Riemannian manifold with asymptotically non-negative
sectional curvature and only one end. Then there exists a constant κ ∈ (0, 1],
depending only on n and on the function λ in the (ANSC) condition such
that every solution u : M→ R to the minimal graph equation with

lim
d(x,o)→∞

|u(x)|
d(x, o)κ

= 0

must be constant.
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Thank You!
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