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Let M" be a Riemannian manifold and {2 C M be a domain with
piecewise smooth boundary. Assume that 0Q) = I’y UT'y UT», where
the sets I'; are disconnected so that any smooth connected component
of I'; does not intersect any another smooth connected component of T;
fori,j € {0,1,2}.

A classical problem is to find the sufficient and necessary conditions
for the solvability of the Dirichlet problem

div (%) =H(x), in ()

u=-c, on TIy; (1)
U = +4o00, on I'y;
U= —oo, on I,

where H: M — R is a Lipschitz function and c: Iy =+ Risa
continuous function.



The most famous example of solutions of (1) in R? with
Q= [-n/2,7/2] x [-m/2,7/2] was given by H. Scherk in 1834.
Namely, he proved that the function

u = log(cosx/ cosy)

is a solution of (1) with I'y = @ and H = 0, obtaining the Scherk’s
minimal surface.

More than a hundred years later H. Jenkins and J. Serrin found the
necessary and sufficient conditions for the existence of solutions of (1)
in R? with H = 0. They related the existence of solutions of (1) with
conditions involving the length of “admissible polygons” inside the
domain.

Now the Dirichlet problem (1) is known as the Jenkins-Serrin problem.



Theorem 1 (Jenkins-Serrin)

Let Q) C R? be as above and assume also that no two arcs A; and no two arcs
B; have a common endpoint. For continuous f;: C; — R, there exists a
minimal Jenkins-Serrin solution u: Q) — R with u|c, = f; if and only if

20(P) < £(P) and 2B(P) < L(P).

for any admissible polygon P (a(P) = Lp,cp |Ail, B(P) = Lp.cp |Bil). If
{Ci} = @, we require also a(0Q)) = B(0QY) for P = 0. If {C;} # @, uis
unique, and if {C;} = &, u is unique up to adding a constant.

The existence of minimal solutions imposes restrictions to the domain.
Theorem 2 (Jenkins-Serrin)

Let O C R? be a bounded domain and u: Q — R a solution of the minimal
graph equation satisfying u — =00 as x — <y, where vy is a smooth connected
component of Q). Then vy is a geodesic.




After Jenkins and Serrin this problem has been considered in many
different settings by many different researchers (among others):

- J. Spruck for CMC surfaces in R?

- B. Nelli and H. Rosenberg for minimal case in H? x R

- A.L. Pinheiro for minimal case in M? x R

- P. Collin and H. Rosenberg on unbounded domains in H?

- L. Mazet, M. Rodriguez and H. Rosenberg on unbounded domains in
]I_IZ

- ]. Gélvez and H. Rosenberg on unbounded domains in M? with
negative constant upperbound for curvature

- M. Eichmair and J. Metzger for CMC case and Jang equation in M",
2<n<7

- M.H. Nguyen for minimal case in Sol3
- P. Klaser and A. Menezes for CMC case in Solz



|
Translating graphs

A hypersurface ¥ C M x R is a translating soliton with respect to the
parallel vector field X = 9; (with translation speed c € RR) if

H:CXL,

where H is the mean curvature vector field of ¥ and | indicates the
projection onto the normal bundle of X.

In particular, if N is a normal vector field along %, then we have
H = c¢(X,N), 2

where (-, -) denotes the Riemannian product metric in M x R.



A translating soliton can be described locally in non-parametric terms
as a graph
E={(xux)):xeQ}

of a smooth function u defined in a domain (2 C M. In this case, we
denote ¥. = Graph[u] and we refer to those solitons as translating
graphs.

From (2) we get that u satisfies

. Vul ¢ _ 5

In this case, ¥ can be oriented by the normal vector field

1

N
144

(X —Vu).
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Some examples of translating solitons:

e Grim reaper curve I' in R?, given by f: (—7/2,7/2) — R?

f(x) = (x, — log cos x);

o Grim reaper hyperplane I' x R"~;
o Tilted grim reapers;

@ Bowl soliton (the only convex translator that is an entire graph
(Wang), the only entire graph over R? (Spruck-Xiao));

o Translating catenoid ("wing-like” soliton);
@ Vertical plane;

e A-wing (asymptotic to tilted grim reapers);
@ Scherk-like translators.
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Lemma 3 (T. [lmanen)

Translating solitons with translation speed c € R are minimal hypersurfaces
in M x R with respect to the llmanen’s metric g, = en' (o + df?).

Lemma 4
All translating graphs are stable in M x R endowed with Ilmanen’s metric g.

Remark

This lemma was proved by Shahriyari for vertical translating graphs in R3
and by Zhou for any translating graph in M? x R, where M is a Riemannian
surface. We extend the result to all dimensions.

v

We actually have that translating graphs over () C M are area
minimizing in (Q x R, g.).



Definition 5 (Nitsche curve)

Let O C M be a domain and I' C M x R a Jordan curve. T is called a
Nitsche curve, if it admits a parametrization

L(t) = {(a(t),B(t)): t € 5'}

s.t. a(t) is a monotone parametrization of (). This means that

a: S — 9Q is continuous and monotone, and there exist closed
disjoint intervals 1, . .., J, such that &}, is constant for all i and a/g1\,
is one-to-one and smooth.

Definition 6 (Admissible domain)

Let (3 C M be a domain. Then () is admissible if it is geodesically
convex and d( is a union of geodesic arcs Ay, ..., As, By ..., B,, convex
arcs Cy, ..., Cy, the end points of these arcs and that no two arcs A; and
no two arcs B; have a common endpoint.




Definition 7 (Admissible polygon)

Let () be an admissible domain. Then P is an admissible polygon if
P C O and the vertices of P are chosen among the vertices of ().

Let I be a Nitsche curve over the boundary 0Q of an admissible
domain (). By a translating soliton with boundary I' we mean a
translating soliton in () X R that is a graph over ().

Using classical results about the solvability of the Plateau problem, we
can prove that any Nitsche curve over an admissible domain admits a
unique translating soliton with it as the boundary.



Theorem 8

Let Q) be an admissible domain in M and T a Nitsche curve over 0Q). Then
there exists a unique translating soliton with boundary I

Idea of the proof:

Since the boundary d() consists of geodesic and convex arcs, the
boundary 9(Q) x R) is mean convex, and it remains mean convex also
after changing to the Ilmanen’s metric.

Therefore we can apply solvability results of the Plateau’s problem
(Meeks-Yau, Morrey) and find an embedded minimal (w.r.t. g.) disk
X C O x R with boundary I'.

It remains to prove that int(X) is a graph over (), but this follows by
somewhat standard arguments for minimal surfaces.



In order to prove a Jenkins-Serrin type result for the translating
graphs, we will use minimal surfaces as barriers. For this we need the
following maximum principle.

Lemma 9 (Maximum principle)

Let Q) C M be an admissible domain. Suppose that uq and uy satisfy

o [——24 Vo [ T2
V1+|Vui 2] — VI+ [V )’
and lim inf(uy — uy) > 0 for any approach of 9QY, with possible exception of

finite numbers of points {qu,...,q,} =1 E C 0Q. Then up > uj on 0\ E
with strict inequality unless uy = uy.

The proof is a modification of a similar result for CMC surfaces by J.
Spruck.



Theorem 10 (Gama-H-Lira-Martin)

Let QO C M be an admissible domain with {B;} = @&. Given any continuous
boundary data f;: C; — R, there exists a Jenkins-Serrin solution u: Q) — R
for the translating soliton equation with u|c, = f;, if for any admissible
polygon P we have

2a(P) < L(P). (4)

Proof:

Define a Nitsche curve I', = (ay, B) by setting B, = n on {A;} and
Bn = min{f;,n} on C; for all i.

By Theorem 8, for all n € IN, there exists 1, : 2 — R so that Graph|[u,]
is a translating soliton in () x R with boundary I';, and by the
comparison principle, we also have that {u,} is a monotone sequence.



By Pinheiro’s results, (4) guarantees that there exists a Jenkins-Serrin
solution v: (2 — R of the minimal graph equation with continuous
boundary data f;.

Since

div [ —2 —0<¥—div S
V1+|v)? V1 |uy)? V1 |uy?

and liminf(v — u,) > 0 on dQ) \ E, where E is the set of vertices of (),
Lemma 9 implies v > u, for all n. Hence limy,_, u, = u is the desired

solution.
[

Remark

Here it is not reasonable to expect a “full” Jenkins-Serrin result with
boundary values —oo. The reason for this is that M x R is not complete when
equipped with the Ilmanen’s metric g, (geodesics going down have finite
length).




We also have the following structural result.

Theorem 11 (Gama-H-Lira-Martin)

Let M be a complete Riemannian manifold and () C M be a domain (not
necessarily regular). Let A C 9} be a smooth open set and ¥ a translating or
minimal graph of a smooth function u: Q) — R that is complete as we
approach A. Then Hy = 0.

Idea of the proof is to fix xg € A and take a sequence x; — xo with
u(x;) — co. Then, with compactness results from geometric measure
theory, we get that

S; = Graph[u — u(x;)] = Seo
to a minimal surface (w.r.t. g.) in a ball B C M x R centered at (x,0).

To conclude we show that a neighbourhood of (xp, 0) in S lies on
A x R, and since xR (x,t) = e~/"Hy(x), it follows that Hp = 0.
L]
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Horizontal translating graphs

Let M? be a 2-dimensional complete Riemannian surface and Z a
non-singular Killing vector field in M2. Then the lift Z(p, t) := Z(p),
(p,t) € M? x Ris a Killing field in M? x R endowed with the product
metric g := 0 + dt>.

Remark
Recal that Z is a Killing field if the flow generated by Z is an isometry. J

Let IP be a fixed totally geodesic leaf of the orthogonal distribution
associated to Z in M? x R.

Since Z is a lifting of a Killing field in M2, wehave P =T x R, where T’
is a geodesic in M.

We will denote by ¥: P x R — M x R the flow generated by Z.
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This flow gives local coordinates: If x is a coordinate in I', we can
describe a point p € M? x R using the flow of Z,i.e. p = ¥((x,t),s).
Therefore (x,t,s) is a local coordinate for P x R = M? x R.

The corresponding coordinate vector fields are

and the components of the product metric are given by

811 = <as/as> =

(x)/ g12 - <as/ax> = O/ g13 - <aS/ at> =0
82n = <ax/ ax> 1

pz
(Pz(x)/ g23 = <at/ax> == O/ 833 = <af/at> =



Therefore
g0 = ¢*(x)dx? + p?(x)ds® + dt?,

i.e. M2 x R is locally a warped product, and from now on we consider
M? = S x, R, where S may be either $' or R endowed with a
Riemannian metric ¢?(x)dx? and p is a positive smooth function in S.

With this convention P = S x IR, with Riemannian metric
hy == @?(x)dx® + dt? and M> x R =P x, R.

A horizontal graph “over” a domain () C IP means the surface
¥ C M? x R (Killing graph) given by

L={¥(xtu(xt) €Px,R: (xt) €O},

where 1: () — R is a smooth function.



The conformal change to the Ilmanen’s metric can be now written as
gc = (@ (x)dx® + dt* + p?(x)ds?) =: he + ¢ p? (x)ds?,

where i, denotes the restriction of Ilmanen’s metric g. to I’ (note that
gc is still a warped metric).

From now on we will always consider the metric & in IP and the
metric gc in M x R. Also, to simplify the notation we will denote by
f: M xR — R the function

flxt) = ep(x).

Remark

Ilmanen’s metric is not complete in M x R but we will need that
(M x IR, go) is complete.




Let ¥ C M x R be a horizontal translating graph (H = cXt)ofa
function u: (3 C IP — IR. Then X can be oriented by the unit normal

vector field 13 -
u
N=-2_f""
fWw w’
where we denote by Vu the translation ¥, Vu from x € Q) to the point
¥(x,u(x)) € L.

From (2) we see that in Q) u satisfies the PDE

div p (fzz\;’l> =0, W= \/1 + f2h.(Vu, Vu), (5)

where the gradient and divergence are taken w.r.t. the metric k. in IP.



Another (maybe more familiar to people working with Killing graphs)
way to write (5) is

0 = div p <f2vl/\7> = }div]p <f2zv”>
iy i
= fd P (f \/f_2 + he(Vu, Vu))
‘ Vu Vu
S (x/f—2 +hc(Vu,Vu)> " <Vlogf' V2 +hc<W'W)>

= div Vu
P~ logf VI 2+ he(Vu,Vu) ’

where div p_ g denotes the weighted divergence operator.




Recall the notation: f(x,t) = e2'p(x), V denotes the connection in
(P, h. = g:|P), and V the connection in (M x R, g.).

We will be working with a special type of curves that requires the
following definitions.
Definition 12

Let v: [0,1] =& M X R be a parametrized curve in M x R. Then the
f-length of v is

Lf[')/] = /Olf(')/(r)) \/gc(’)’/(r), 7’(1’))7(7) dr.




Definition 13
Let ¥ be a curve in M x R . We say that - is an f-geodesic if

Vi =87, 7)vf ch<vf )7’, 6)

f FY

where V,/ denotes the covariant derivative of 9/ along v w.r.t. g..

Definition 14 (f-curvature)

Let  be a curve in IP. The (scalar) f-curvature of v is

ke[7] := K [7] — he (Vf,N> , )

f

where k;,_[] is the geodesic curvature of y in (IP, ;) and N € TP the
unit normal along 7.

V.




Some remarks

1. Let iy be a curve in IP. Consider the surface 7 x R = ¥ (1, R) ruled
by the flow lines of d; passing through -y. Then

ke[y] = Hyxr,
where H, (R is the mean curvature of v x Rin (M x R, gc).

Therefore there is a correspondence between f-geodesics and minimal
cylinders in M x RR.

2. By the definition a curve -y in IP is an f-geodesic in P only if 7y is an
f-geodesicin M x RR.



Some remarks

3. Let y be a curve in IP and consider the Killing rectangle over -, with
height 1, defined by

¥ % [0,h] :==¥(7,[0,h]) = {¥(p,s) e P x,R:pec,sc[0h]}

Then we have

Area[y x [0,4]] / /f 2/ (r), 7 (r)) drdz = hLg[].

Note that the length of a segment {¥((x,t),s): s € [0,h]} of a flow line
through the point (x,t) € P is given by hf (x, t).



Remark

The existence of (at least short) f-geodesics follows from the general theory of
Riemannian manifolds: Let

0. ::fzgc _ €21nggc

and denote by V the Riemannian connection in M x R with the metric o.

Since, under the conformal change, the connection changes by

VyX = VyX +g <X7f> Y+ g (Y,?) X—g. (X,y)if

we conclude from (6) that f-geodesics are geodesics in (M X R, o¢).




Definition 15 (Admissible domain)

Let () C IP be a precompact domain. We say that () is an admissible
domain if dQ) is a union of f-geodesic arcs Ay, ..., As, B1...,B;,
f-convex arcs Cy, ..., C;, and the end points of these arcs and no two
arcs A; and no two arcs B; have a common endpoint.

Definition 16 (Admissible polygon)

Let () be an admissible domain. Then P is an admissible polygon if
P C ), the boundary of P is formed by edges of () and f-geodesic
segments, and the vertices of P are chosen among the vertices of ().




Let Q) C IP be an admissible domain with 0Q) = UjJ; s.t. {J;} C 9Q)
satisfies

Iim]i+1 = 4, i€ {1,'0—1}, and ]Zimjl = Uy,
where «; denotes the end point of J;.

Let ¢ = {c¢;: J; = R} be a family of bounded continuous functions and
Ye C 0O X R =¥(9Q, R) given by 7.(x) = ¥(x,ci(x)) if x € int]; and
Y. is a horizontal line from ¥ (a;, ¢;(a;)) to ¥ (a;, civ1(a;)) for x = a;.

Theorem 17

Let Q) C P be a geodesically f-convex and an admissible domain as above. Let
¢ = {c;i: Ji = R} be a family of bounded continuous functions and <y the
curve associated to c. Then there exists a unique solution of (5) with
boundary data ..




Now, let () C P be an admissible domain so that
1 t z
0= (U )U(Us)u(Ua).
i=1 =1 k=1

where A; and B; are f-geodesic arcs and C; are f-convex arcs. Let P be
an admissible polygon. Then we denote

CKf(P)Z Z Lf[Al'] and ‘Bf('P): Z Lf[Bi].
A;CoP B;CoP

Recall that the Jenkins-Serrin conditions for a solution u: () — R are
M‘Ck = Ck u|Ai - —|—OO, and u|B]- = —00.

If {Cx} = @, then we only require that u — +co on A; and u — —oo on
B;.
]



Theorem 18 (Gama-H-Lira-Martin)

Let Q) C IP be an admissible domain such that for any admissible polygon
P C Q) we have

206(P) < Ly[0P] and 2B;(P) < Ls[oP]. ®)

Then

(@) If {Cy} # @ and c;: Cx — R are continuous functions, then there
exists a Jenkins-Serrin solution of (5) with continuous boundary data cy.

(b) If {Ck} = @ and as(0Q)) = Br(9QY), then there exists a Jenkins-Serrin
solution of (5).

Furthermore, if u is a Jenkins-Serrin solution of (5) with continuous

boundary data

:C— R

and if {Cy} # @, then inequalities (8) hold for all admissible polygon P, and
if {Cx} = O then we also have ag(9QY) = Br(9Q}).




Brief idea of the proof. Theorem 17 gives the existence of solutions (with
finite boundary data) only over f-convex domains, so we use Perron’s
method to obtain the existence over more general admissible domains.

If QO C P is a domain with C! smooth boundary 9Q and u solution of

(5), we have
(V =0.
/a o W u,v)

This motivates to define the flux formula
f2
Fuly] = L WhC(Vu,v),

which plays important role in the study of the divergence set D and in
the proof of the theorem.



Using the flux (among other things) we can prove that any connected
component of the divergence set D is an admissible polygon in ().

This property, together with the flux, imply that if the structural
condition (8) is satisfied, then D = @ and we obtain a solution.

On the other hand, the flux formula can be used to show that the
existence of a solution implies the structural condition (8).



Examples in R®

In this case IP is a vertical plane (R?) containing the vector e3 in IR® and
the Ilmanen’s metric is given by g. = 3 (-, - )gs.

Therefore the function f is given by f = ¢7,and 7 is an f-geodesic in
IP if and only if -y satisfies

K[7] = ¢(N,es),

where k[7y] denotes the scalar curvature of ¢ in I, N denotes the unit
normal to 7y and (-, -) is the Euclidean metric of P = RR?.

In particular, f-geodesics are translating curves in R?.



Assume now that ¢ = 1. It is well known that the unique translating
curves are vertical lines in the direction e3 and the grim reaper curves

x3 = —logcosxy, x1 € (—m/2,1/2).

0 0 Therefore we can produce admissible domains
Q) C P that are bounded by vertical line
segments and parts of the grim reaper curves.

If we assign boundary data +co on the parts of the grim reaper curve
(edges A1, Ay) and continuous data on the vertical segments (edges
Cq, Cy), the condition for the existence of solutions becomes

Lf[Al] + Lf[Az] < Lf[Cﬂ + Lf[Cz].
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Example 19

For the edges of () C IP, we can take the parametrizations

A; = {(x1,0,a —logcosxy): x1 € (1,5)};
Az ={(x1,0,b —logcosx1): x1 € (1,5)};
={(r,0,x3): x3 € (a —logcoss, b —logcoss)};
{(s,0,x3): x3 € (a —logcosr,b—logcosr)},

—n/2<s<r<mn/2, abecRanda <b.
Then
L¢[A1] + Lf[A] = (¢ +¢")(tanr — tans)
Le[C1] + Lf[C] = (" — ") (secr + secs).
Fixing a < b and choosing r — s > 0 small enough, we have

L¢[A1] + Le[A2] < Lf[C1] + L¢[Co]. And changing C; to B; we can get
L¢[A1] + Lg[A2] = L¢[B1] + L¢[B] for the case (b) in Theorem 18.
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Note that the reflection with respect to the plane IP is an isometry and
therefore by reflecting the previous ”basic solution”, we can obtain a
periodic surface with alternating boundary values +oo and —oo.




Thank you!




