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Let Mn be a Riemannian manifold and Ω ⊂ M be a domain with
piecewise smooth boundary. Assume that ∂Ω = Γ0 ∪ Γ1 ∪ Γ2, where
the sets Γi are disconnected so that any smooth connected component
of Γi does not intersect any another smooth connected component of Γj
for i, j ∈ {0, 1, 2}.

A classical problem is to find the sufficient and necessary conditions
for the solvability of the Dirichlet problem

div
(

∇u√
1+|∇u|2

)
= H(x), in Ω;

u = c, on Γ0;
u = +∞, on Γ1;
u = −∞, on Γ2,

(1)

where H : M→ R is a Lipschitz function and c : Γ0 → R is a
continuous function.
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The most famous example of solutions of (1) in R2 with
Ω = [−π/2, π/2]× [−π/2, π/2] was given by H. Scherk in 1834.
Namely, he proved that the function

u = log(cos x/ cos y)

is a solution of (1) with Γ0 = ∅ and H ≡ 0, obtaining the Scherk’s
minimal surface.

More than a hundred years later H. Jenkins and J. Serrin found the
necessary and sufficient conditions for the existence of solutions of (1)
in R2 with H ≡ 0. They related the existence of solutions of (1) with
conditions involving the length of “admissible polygons” inside the
domain.

Now the Dirichlet problem (1) is known as the Jenkins-Serrin problem.
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Theorem 1 (Jenkins-Serrin)

Let Ω ⊂ R2 be as above and assume also that no two arcs Ai and no two arcs
Bi have a common endpoint. For continuous fi : Ci → R, there exists a
minimal Jenkins-Serrin solution u : Ω→ R with u|Ci = fi if and only if

2α(P) < `(P) and 2β(P) < `(P).

for any admissible polygon P (α(P) = ∑Ai⊂P |Ai|, β(P) = ∑Bi⊂P |Bi|). If
{Ci} = ∅, we require also α(∂Ω) = β(∂Ω) for P = ∂Ω. If {Ci} 6= ∅, u is
unique, and if {Ci} = ∅, u is unique up to adding a constant.

The existence of minimal solutions imposes restrictions to the domain.

Theorem 2 (Jenkins-Serrin)

Let Ω ⊂ R2 be a bounded domain and u : Ω→ R a solution of the minimal
graph equation satisfying u→ ±∞ as x→ γ, where γ is a smooth connected
component of ∂Ω. Then γ is a geodesic.
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After Jenkins and Serrin this problem has been considered in many
different settings by many different researchers (among others):

- J. Spruck for CMC surfaces in R3

- B. Nelli and H. Rosenberg for minimal case in H2 ×R

- A.L. Pinheiro for minimal case in M2 ×R

- P. Collin and H. Rosenberg on unbounded domains in H2

- L. Mazet, M. Rodrı́guez and H. Rosenberg on unbounded domains in
H2

- J. Gálvez and H. Rosenberg on unbounded domains in M2 with
negative constant upperbound for curvature

- M. Eichmair and J. Metzger for CMC case and Jang equation in Mn,
2 ≤ n ≤ 7

- M.H. Nguyen for minimal case in Sol3
- P. Klaser and A. Menezes for CMC case in Sol3
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Translating graphs

A hypersurface Σ ⊂ M×R is a translating soliton with respect to the
parallel vector field X = ∂t (with translation speed c ∈ R) if

H = c X⊥,

where H is the mean curvature vector field of Σ and ⊥ indicates the
projection onto the normal bundle of Σ.

In particular, if N is a normal vector field along Σ, then we have

H = c〈X, N〉, (2)

where 〈·, ·〉 denotes the Riemannian product metric in M×R.
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A translating soliton can be described locally in non-parametric terms
as a graph

Σ = {(x, u(x)) : x ∈ Ω}

of a smooth function u defined in a domain Ω ⊂ M. In this case, we
denote Σ = Graph[u] and we refer to those solitons as translating
graphs.

From (2) we get that u satisfies

div
(
∇u
W

)
=

c
W

, W =
√

1 + |∇u|2. (3)

In this case, Σ can be oriented by the normal vector field

N =
1
W

(X−∇u).
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Some examples of translating solitons:

Grim reaper curve Γ in R2, given by f : (−π/2, π/2)→ R2

f (x) = (x,− log cos x);

Grim reaper hyperplane Γ×Rn−1;
Tilted grim reapers;
Bowl soliton (the only convex translator that is an entire graph
(Wang), the only entire graph over R2 (Spruck-Xiao));
Translating catenoid (”wing-like” soliton);
Vertical plane;
∆-wing (asymptotic to tilted grim reapers);
Scherk-like translators.
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Lemma 3 (T. Ilmanen)

Translating solitons with translation speed c ∈ R are minimal hypersurfaces
in M×R with respect to the Ilmanen’s metric gc = e

2c
m t(σ + dt2).

Lemma 4
All translating graphs are stable in M×R endowed with Ilmanen’s metric gc.

Remark

This lemma was proved by Shahriyari for vertical translating graphs in R3

and by Zhou for any translating graph in M2 ×R, where M is a Riemannian
surface. We extend the result to all dimensions.

We actually have that translating graphs over Ω ⊂ M are area
minimizing in (Ω×R, gc).
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Definition 5 (Nitsche curve)

Let Ω ⊂ M be a domain and Γ ⊂ M×R a Jordan curve. Γ is called a
Nitsche curve, if it admits a parametrization

Γ(t) = {(α(t), β(t)) : t ∈ S1}

s.t. α(t) is a monotone parametrization of ∂Ω. This means that
α : S1 → ∂Ω is continuous and monotone, and there exist closed
disjoint intervals J1, . . . , Jv such that α|Ji is constant for all i and α|S1\∪Ji

is one-to-one and smooth.

Definition 6 (Admissible domain)

Let Ω ⊂ M be a domain. Then Ω is admissible if it is geodesically
convex and ∂Ω is a union of geodesic arcs A1, . . . , As, B1 . . . , Br, convex
arcs C1, . . . , Ct, the end points of these arcs and that no two arcs Ai and
no two arcs Bi have a common endpoint.
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Definition 7 (Admissible polygon)

Let Ω be an admissible domain. Then P is an admissible polygon if
P ⊂ Ω and the vertices of P are chosen among the vertices of Ω.

Let Γ be a Nitsche curve over the boundary ∂Ω of an admissible
domain Ω. By a translating soliton with boundary Γ we mean a
translating soliton in Ω×R that is a graph over Ω.

Using classical results about the solvability of the Plateau problem, we
can prove that any Nitsche curve over an admissible domain admits a
unique translating soliton with it as the boundary.
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Theorem 8

Let Ω be an admissible domain in M and Γ a Nitsche curve over ∂Ω. Then
there exists a unique translating soliton with boundary Γ.

Idea of the proof:

Since the boundary ∂Ω consists of geodesic and convex arcs, the
boundary ∂(Ω×R) is mean convex, and it remains mean convex also
after changing to the Ilmanen’s metric.

Therefore we can apply solvability results of the Plateau’s problem
(Meeks-Yau, Morrey) and find an embedded minimal (w.r.t. gc) disk
Σ ⊂ Ω×R with boundary Γ.

It remains to prove that int(Σ) is a graph over Ω, but this follows by
somewhat standard arguments for minimal surfaces.
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In order to prove a Jenkins-Serrin type result for the translating
graphs, we will use minimal surfaces as barriers. For this we need the
following maximum principle.

Lemma 9 (Maximum principle)

Let Ω ⊂ M be an admissible domain. Suppose that u1 and u2 satisfy

div

(
∇u1√

1 + |∇u1|2

)
≥ div

(
∇u2√

1 + |∇u2|2

)
,

and lim inf(u2 − u1) ≥ 0 for any approach of ∂Ω, with possible exception of
finite numbers of points {q1, . . . , qr} =: E ⊂ ∂Ω. Then u2 ≥ u1 on ∂Ω \ E
with strict inequality unless u2 = u1.

The proof is a modification of a similar result for CMC surfaces by J.
Spruck.
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Theorem 10 (Gama-H-Lira-Martı́n)

Let Ω ⊂ M be an admissible domain with {Bi} = ∅. Given any continuous
boundary data fi : Ci → R, there exists a Jenkins-Serrin solution u : Ω→ R

for the translating soliton equation with u|Ci = fi, if for any admissible
polygon P we have

2α(P) < `(P). (4)

Proof:

Define a Nitsche curve Γn = (αn, βn) by setting βn = n on {Ai} and
βn = min{fi, n} on Ci for all i.

By Theorem 8, for all n ∈N, there exists un : Ω→ R so that Graph[un]
is a translating soliton in Ω×R with boundary Γn, and by the
comparison principle, we also have that {un} is a monotone sequence.
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By Pinheiro’s results, (4) guarantees that there exists a Jenkins-Serrin
solution v : Ω→ R of the minimal graph equation with continuous
boundary data fi.
Since

div

(
v√

1 + |v|2

)
= 0 <

1√
1 + |un|2

= div

(
un√

1 + |un|2

)

and lim inf(v− un) ≥ 0 on ∂Ω \ E, where E is the set of vertices of Ω,
Lemma 9 implies v > un for all n. Hence limn→∞ un = u is the desired
solution.

Remark
Here it is not reasonable to expect a ”full” Jenkins-Serrin result with
boundary values −∞. The reason for this is that M×R is not complete when
equipped with the Ilmanen’s metric gc (geodesics going down have finite
length).
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We also have the following structural result.

Theorem 11 (Gama-H-Lira-Martı́n)

Let M be a complete Riemannian manifold and Ω ⊂ M be a domain (not
necessarily regular). Let Λ ⊂ ∂Ω be a smooth open set and Σ a translating or
minimal graph of a smooth function u : Ω→ R that is complete as we
approach Λ. Then HΛ = 0.

Idea of the proof is to fix x0 ∈ Λ and take a sequence xi → x0 with
u(xi)→ ∞. Then, with compactness results from geometric measure
theory, we get that

Si = Graph[u− u(xi)]→ S∞

to a minimal surface (w.r.t. gc) in a ball B ⊂ M×R centered at (x0, 0).

To conclude we show that a neighbourhood of (x0, 0) in S∞ lies on
Λ×R, and since H̃Λ×R(x, t) = e−ct/mHΛ(x), it follows that HΛ = 0.
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Horizontal translating graphs

Let M2 be a 2-dimensional complete Riemannian surface and Z a
non-singular Killing vector field in M2. Then the lift Z(p, t) := Z(p),
(p, t) ∈ M2 ×R is a Killing field in M2 ×R endowed with the product
metric g0 := σ + dt2.

Remark
Recal that Z is a Killing field if the flow generated by Z is an isometry.

Let P be a fixed totally geodesic leaf of the orthogonal distribution
associated to Z in M2 ×R.

Since Z is a lifting of a Killing field in M2, we have P = Γ×R, where Γ
is a geodesic in M.

We will denote by Ψ : P×R→ M×R the flow generated by Z.
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This flow gives local coordinates: If x is a coordinate in Γ, we can
describe a point p ∈ M2 ×R using the flow of Z, i.e. p = Ψ((x, t), s).
Therefore (x, t, s) is a local coordinate for P×R = M2 ×R.

The corresponding coordinate vector fields are

∂s(x, t, s) = Z(Ψ((x, t), s));
∂t(x, t, s) = Ψ∗((x, t), s)∂t(x, t);
∂x(x, t, s) = Ψ∗((x, t), s)∂x(x, t),

and the components of the product metric are given by

g11 = 〈∂s, ∂s〉 =: ρ2(x), g12 = 〈∂s, ∂x〉 = 0, g13 = 〈∂s, ∂t〉 = 0

g22 = 〈∂x, ∂x〉 = ϕ2(x), g23 = 〈∂t, ∂x〉 = 0, g33 = 〈∂t, ∂t〉 = 1.
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Therefore
g0 = ϕ2(x)dx2 + ρ2(x)ds2 + dt2,

i.e. M2 ×R is locally a warped product, and from now on we consider
M2 = S×ρ R, where S may be either S1 or R endowed with a
Riemannian metric ϕ2(x)dx2 and ρ is a positive smooth function in S.

With this convention P = S×R, with Riemannian metric
h0 := ϕ2(x)dx2 + dt2 and M2 ×R = P×ρ R.

A horizontal graph ”over” a domain Ω ⊂ P means the surface
Σ ⊂ M2 ×R (Killing graph) given by

Σ = {Ψ(x, t, u(x, t)) ∈ P×ρ R : (x, t) ∈ Ω},

where u : Ω→ R is a smooth function.
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The conformal change to the Ilmanen’s metric can be now written as

gc = ect(ϕ2(x)dx2 + dt2 + ρ2(x)ds2) =: hc + ectρ2(x)ds2,

where hc denotes the restriction of Ilmanen’s metric gc to P (note that
gc is still a warped metric).

From now on we will always consider the metric hc in P and the
metric gc in M×R. Also, to simplify the notation we will denote by
f : M×R→ R the function

f (x, t) = e
c
2 tρ(x).

Remark

Ilmanen’s metric is not complete in M×R but we will need that
(M×R, g0) is complete.
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Let Σ ⊂ M×R be a horizontal translating graph (H = cX⊥) of a
function u : Ω ⊂ P→ R. Then Σ can be oriented by the unit normal
vector field

N =
1
f

∂s

W
− f
∇u
W

,

where we denote by ∇u the translation Ψ∗∇u from x ∈ Ω to the point
Ψ(x, u(x)) ∈ Σ.

From (2) we see that in Ω u satisfies the PDE

div P

(
f 2∇u

W

)
= 0, W =

√
1 + f 2hc(∇u,∇u), (5)

where the gradient and divergence are taken w.r.t. the metric hc in P.
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Another (maybe more familiar to people working with Killing graphs)
way to write (5) is

0 = div P

(
f 2∇u

W

)
=

1
f

div P

(
f 2∇u

W

)
=

1
f

div P

(
f

∇u√
f−2 + hc(∇u,∇u)

)

= div P

(
∇u√

f−2 + hc(∇u,∇u)

)
+

〈
∇ log f ,

∇u√
f−2 + hc(∇u,∇u)

〉

= div P,− log f

(
∇u√

f−2 + hc(∇u,∇u)

)
,

where div P,− log f denotes the weighted divergence operator.
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Recall the notation: f (x, t) = e
c
2 tρ(x), ∇ denotes the connection in

(P, hc = gc|P), and ∇̄ the connection in (M×R, gc).

We will be working with a special type of curves that requires the
following definitions.

Definition 12
Let γ : [0, 1]→ M×R be a parametrized curve in M×R. Then the
f -length of γ is

Lf [γ] =
∫ 1

0
f (γ(r))

√
gc(γ′(r), γ′(r))γ(r) dr.
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Definition 13
Let γ be a curve in M×R . We say that γ is an f -geodesic if

∇̄rγ
′ = gc(γ

′, γ′)
∇̄f
f
− 2gc

(
∇̄f
f

, γ′
)

γ′, (6)

where ∇̄rγ
′ denotes the covariant derivative of γ′ along γ w.r.t. gc.

Definition 14 (f -curvature)

Let γ be a curve in P. The (scalar) f -curvature of γ is

kf [γ] := khc [γ]− hc

(
∇f
f

, N
)

, (7)

where khc [γ] is the geodesic curvature of γ in (P, hc) and N ∈ TP the
unit normal along γ.
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Some remarks

1. Let γ be a curve in P. Consider the surface γ×R = Ψ(γ, R) ruled
by the flow lines of ∂s passing through γ. Then

kf [γ] = Hγ×R,

where Hγ×R is the mean curvature of γ×R in (M×R, gc).

Therefore there is a correspondence between f -geodesics and minimal
cylinders in M×R.

2. By the definition a curve γ in P is an f -geodesic in P only if γ is an
f -geodesic in M×R.
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Some remarks

3. Let γ be a curve in P and consider the Killing rectangle over γ, with
height h, defined by

γ× [0, h] := Ψ(γ, [0, h]) = {Ψ(p, s) ∈ P×ρ R : p ∈ γ, s ∈ [0, h]}.

Then we have

Area[γ× [0, h]] =
∫ 1

0

∫ h

0
f (γ(r))

√
hc(γ′(r), γ′(r)) drdz = hLf [γ].

Note that the length of a segment {Ψ((x, t), s) : s ∈ [0, h]} of a flow line
through the point (x, t) ∈ P is given by hf (x, t).

Esko Heinonen Translating graphs May 22, 2019 26 / 38



Remark
The existence of (at least short) f -geodesics follows from the general theory of
Riemannian manifolds: Let

σc := f 2gc = e2 log f gc

and denote by ∇̃ the Riemannian connection in M×R with the metric σc.

Since, under the conformal change, the connection changes by

∇̃YX = ∇̄YX + gc

(
X,
∇̄f
f

)
Y + gc

(
Y,
∇̄f
f

)
X− gc (X, Y)

∇̄f
f

we conclude from (6) that f -geodesics are geodesics in (M×R, σc).
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Definition 15 (Admissible domain)

Let Ω ⊂ P be a precompact domain. We say that Ω is an admissible
domain if ∂Ω is a union of f -geodesic arcs A1, . . . , As, B1 . . . , Br,
f -convex arcs C1, . . . , Ct, and the end points of these arcs and no two
arcs Ai and no two arcs Bi have a common endpoint.

Definition 16 (Admissible polygon)

Let Ω be an admissible domain. Then P is an admissible polygon if
P ⊂ Ω, the boundary of P is formed by edges of ∂Ω and f -geodesic
segments, and the vertices of P are chosen among the vertices of Ω.
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Let Ω ⊂ P be an admissible domain with ∂Ω = ∪iJi s.t. {Ji} ⊂ ∂Ω
satisfies

Ji ∩ Ji+1 = αi, i ∈ {1, v− 1}, and Jv ∩ J1 = αv,

where αi denotes the end point of Ji.

Let c = {ci : Ji → R} be a family of bounded continuous functions and
γc ⊂ ∂Ω×R = Ψ(∂Ω, R) given by γc(x) = Ψ(x, ci(x)) if x ∈ int Ji and
γc is a horizontal line from Ψ(αi, ci(αi)) to Ψ(αi, ci+1(αi)) for x = αi.

Theorem 17

Let Ω ⊂ P be a geodesically f -convex and an admissible domain as above. Let
c = {ci : Ji → R} be a family of bounded continuous functions and γc the
curve associated to c. Then there exists a unique solution of (5) with
boundary data γc.
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Now, let Ω ⊂ P be an admissible domain so that

∂Ω =

(
l⋃

i=1

Ai

)⋃ t⋃
j=1

Bj

⋃(
z⋃

k=1

Ck

)
,

where Ai and Bj are f -geodesic arcs and Ck are f -convex arcs. Let P be
an admissible polygon. Then we denote

αf (P) = ∑
Ai⊂∂P

Lf [Ai] and βf (P) = ∑
Bi⊂∂P

Lf [Bi].

Recall that the Jenkins-Serrin conditions for a solution u : Ω→ R are

u|Ck = ck u|Ai = +∞, and u|Bj = −∞.

If {Ck} = ∅, then we only require that u→ +∞ on Ai and u→ −∞ on
Bj.
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Theorem 18 (Gama-H-Lira-Martı́n)

Let Ω ⊂ P be an admissible domain such that for any admissible polygon
P ⊂ Ω̄ we have

2αf (P) < Lf [∂P ] and 2βf (P) < Lf [∂P ]. (8)

Then
(a) If {Ck} 6= ∅ and ck : Ck → R are continuous functions, then there

exists a Jenkins-Serrin solution of (5) with continuous boundary data ck.
(b) If {Ck} = ∅ and αf (∂Ω) = βf (∂Ω), then there exists a Jenkins-Serrin

solution of (5).
Furthermore, if u is a Jenkins-Serrin solution of (5) with continuous
boundary data

ck : Ck → R

and if {Ck} 6= ∅, then inequalities (8) hold for all admissible polygon P , and
if {Ck} = ∅ then we also have αf (∂Ω) = βf (∂Ω).
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Brief idea of the proof. Theorem 17 gives the existence of solutions (with
finite boundary data) only over f -convex domains, so we use Perron’s
method to obtain the existence over more general admissible domains.

If Ω ⊂ P is a domain with C1 smooth boundary ∂Ω and u solution of
(5), we have ∫

∂Ω

f 2

W
hc(∇u, ν) = 0.

This motivates to define the flux formula

Fu[γ] =
∫

γ

f 2

W
hc(∇u, ν),

which plays important role in the study of the divergence set D and in
the proof of the theorem.
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Using the flux (among other things) we can prove that any connected
component of the divergence set D is an admissible polygon in Ω.

This property, together with the flux, imply that if the structural
condition (8) is satisfied, then D = ∅ and we obtain a solution.

On the other hand, the flux formula can be used to show that the
existence of a solution implies the structural condition (8).
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Examples in R3

In this case P is a vertical plane (R2) containing the vector e3 in R3 and
the Ilmanen’s metric is given by gc = ecx3〈·, ·〉R3 .

Therefore the function f is given by f = ec x3
2 , and γ is an f -geodesic in

P if and only if γ satisfies

k[γ] = c〈N, e3〉,

where k[γ] denotes the scalar curvature of γ in P, N denotes the unit
normal to γ and 〈·, ·〉 is the Euclidean metric of P = R2.

In particular, f -geodesics are translating curves in R2.
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Assume now that c = 1. It is well known that the unique translating
curves are vertical lines in the direction e3 and the grim reaper curves

x3 = − log cos x1, x1 ∈ (−π/2, π/2).

+∞

+∞

0 0 Therefore we can produce admissible domains
Ω ⊂ P that are bounded by vertical line
segments and parts of the grim reaper curves.

If we assign boundary data +∞ on the parts of the grim reaper curve
(edges A1, A2) and continuous data on the vertical segments (edges
C1, C2), the condition for the existence of solutions becomes

Lf [A1] + Lf [A2] < Lf [C1] + Lf [C2].
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Example 19

For the edges of Ω ⊂ P, we can take the parametrizations

A1 = {(x1, 0, a− log cos x1) : x1 ∈ (r, s)};
A2 = {(x1, 0, b− log cos x1) : x1 ∈ (r, s)};
C1 = {(r, 0, x3) : x3 ∈ (a− log cos s, b− log cos s)};
C2 = {(s, 0, x3) : x3 ∈ (a− log cos r, b− log cos r)},

−π/2 < s < r < π/2, a, b ∈ R and a < b.
Then

Lf [A1] + Lf [A2] = (eb + ea)(tan r− tan s)

Lf [C1] + Lf [C2] = (eb − ea)(sec r + sec s).

Fixing a < b and choosing r− s > 0 small enough, we have
Lf [A1] + Lf [A2] < Lf [C1] + Lf [C2]. And changing Ci to Bi we can get
Lf [A1] + Lf [A2] = Lf [B1] + Lf [B2] for the case (b) in Theorem 18.
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Note that the reflection with respect to the plane P is an isometry and
therefore by reflecting the previous ”basic solution”, we can obtain a
periodic surface with alternating boundary values +∞ and −∞.

+∞

+∞

0 0

−∞

−∞−∞

−∞

0 0

+∞

+∞

0
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