Jenkins-Serrin problem for translating graphs

Esko Heinonen
Universidad de Granada

May 22, 2019

Based on joint works with Eddygledson S. Gama (UFC), Jorge de Lira (UFC), and Francisco Martín (UGR).

Let M^{n} be a Riemannian manifold and $\Omega \subset M$ be a domain with piecewise smooth boundary. Assume that $\partial \Omega=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$, where the sets Γ_{i} are disconnected so that any smooth connected component of Γ_{i} does not intersect any another smooth connected component of Γ_{j} for $i, j \in\{0,1,2\}$.

A classical problem is to find the sufficient and necessary conditions for the solvability of the Dirichlet problem

$$
\begin{cases}\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=H(x), & \text { in } \Omega ; \tag{1}\\ u=c, & \text { on } \Gamma_{0} \\ u=+\infty, & \text { on } \Gamma_{1} \\ u=-\infty, & \text { on } \Gamma_{2}\end{cases}
$$

where $H: M \rightarrow \mathbb{R}$ is a Lipschitz function and $c: \Gamma_{0} \rightarrow \mathbb{R}$ is a continuous function.

The most famous example of solutions of (1) in \mathbb{R}^{2} with $\Omega=[-\pi / 2, \pi / 2] \times[-\pi / 2, \pi / 2]$ was given by H. Scherk in 1834 . Namely, he proved that the function

$$
u=\log (\cos x / \cos y)
$$

is a solution of (1) with $\Gamma_{0}=\varnothing$ and $H \equiv 0$, obtaining the Scherk's minimal surface.

More than a hundred years later H . Jenkins and J. Serrin found the necessary and sufficient conditions for the existence of solutions of (1) in \mathbb{R}^{2} with $H \equiv 0$. They related the existence of solutions of (1) with conditions involving the length of "admissible polygons" inside the domain.

Now the Dirichlet problem (1) is known as the Jenkins-Serrin problem.

Theorem 1 (Jenkins-Serrin)

Let $\Omega \subset \mathbb{R}^{2}$ be as above and assume also that no two arcs A_{i} and no two arcs B_{i} have a common endpoint. For continuous $f_{i}: C_{i} \rightarrow \mathbb{R}$, there exists a minimal Jenkins-Serrin solution $u: \Omega \rightarrow \mathbb{R}$ with $\left.u\right|_{C_{i}}=f_{i}$ if and only if

$$
2 \alpha(\mathcal{P})<\ell(\mathcal{P}) \text { and } 2 \beta(\mathcal{P})<\ell(\mathcal{P})
$$

for any admissible polygon $\mathcal{P}\left(\alpha(\mathcal{P})=\sum_{A_{i} \subset \mathcal{P}}\left|A_{i}\right|, \beta(\mathcal{P})=\sum_{B_{i} \subset \mathcal{P}}\left|B_{i}\right|\right)$. If $\left\{C_{i}\right\}=\varnothing$, we require also $\alpha(\partial \Omega)=\beta(\partial \Omega)$ for $\mathcal{P}=\partial \Omega$. If $\left\{C_{i}\right\} \neq \varnothing, u$ is unique, and if $\left\{C_{i}\right\}=\varnothing, u$ is unique up to adding a constant.

The existence of minimal solutions imposes restrictions to the domain.

Theorem 2 (Jenkins-Serrin)

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain and $u: \Omega \rightarrow \mathbb{R}$ a solution of the minimal graph equation satisfying $u \rightarrow \pm \infty$ as $x \rightarrow \gamma$, where γ is a smooth connected component of $\partial \Omega$. Then γ is a geodesic.

After Jenkins and Serrin this problem has been considered in many different settings by many different researchers (among others):

- J. Spruck for CMC surfaces in \mathbb{R}^{3}
- B. Nelli and H. Rosenberg for minimal case in $\mathbb{H}^{2} \times \mathbb{R}$
- A.L. Pinheiro for minimal case in $M^{2} \times \mathbb{R}$
- P. Collin and H. Rosenberg on unbounded domains in \mathbb{H}^{2}
- L. Mazet, M. Rodríguez and H. Rosenberg on unbounded domains in \mathbb{H}^{2}
- J. Gálvez and H. Rosenberg on unbounded domains in M^{2} with negative constant upperbound for curvature
- M. Eichmair and J. Metzger for CMC case and Jang equation in M^{n},
$2 \leq n \leq 7$
- M.H. Nguyen for minimal case in Sol_{3}
- P. Klaser and A. Menezes for CMC case in Sol_{3}

Translating graphs

A hypersurface $\Sigma \subset M \times \mathbb{R}$ is a translating soliton with respect to the parallel vector field $X=\partial_{t}$ (with translation speed $c \in \mathbb{R}$) if

$$
\mathbf{H}=c X^{\perp},
$$

where \mathbf{H} is the mean curvature vector field of Σ and \perp indicates the projection onto the normal bundle of Σ.

In particular, if N is a normal vector field along Σ, then we have

$$
\begin{equation*}
H=c\langle X, N\rangle \tag{2}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the Riemannian product metric in $M \times \mathbb{R}$.

A translating soliton can be described locally in non-parametric terms as a graph

$$
\Sigma=\{(x, u(x)): x \in \Omega\}
$$

of a smooth function u defined in a domain $\Omega \subset M$. In this case, we denote $\Sigma=\operatorname{Graph}[u]$ and we refer to those solitons as translating graphs.

From (2) we get that u satisfies

$$
\begin{equation*}
\operatorname{div}\left(\frac{\nabla u}{W}\right)=\frac{c}{W}, \quad W=\sqrt{1+|\nabla u|^{2}} \tag{3}
\end{equation*}
$$

In this case, Σ can be oriented by the normal vector field

$$
N=\frac{1}{W}(X-\nabla u)
$$

Some examples of translating solitons:

- Grim reaper curve Γ in \mathbb{R}^{2}, given by $f:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}^{2}$

$$
f(x)=(x,-\log \cos x)
$$

- Grim reaper hyperplane $\Gamma \times \mathbb{R}^{n-1}$;
- Tilted grim reapers;
- Bowl soliton (the only convex translator that is an entire graph (Wang), the only entire graph over \mathbb{R}^{2} (Spruck-Xiao));
- Translating catenoid ("wing-like" soliton);
- Vertical plane;
- Δ-wing (asymptotic to tilted grim reapers);
- Scherk-like translators.

Lemma 3 (T. Ilmanen)

Translating solitons with translation speed $c \in \mathbb{R}$ are minimal hypersurfaces in $M \times \mathbb{R}$ with respect to the Ilmanen's metric $g_{c}=e^{\frac{2 c}{m} t}\left(\sigma+\mathrm{d} t^{2}\right)$.

Lemma 4

All translating graphs are stable in $M \times \mathbb{R}$ endowed with Ilmanen's metric g_{c}.

Remark

This lemma was proved by Shahriyari for vertical translating graphs in \mathbb{R}^{3} and by Zhou for any translating graph in $M^{2} \times \mathbb{R}$, where M is a Riemannian surface. We extend the result to all dimensions.

We actually have that translating graphs over $\Omega \subset M$ are area minimizing in $\left(\Omega \times \mathbb{R}, g_{c}\right)$.

Definition 5 (Nitsche curve)

Let $\Omega \subset M$ be a domain and $\Gamma \subset M \times \mathbb{R}$ a Jordan curve. Γ is called a Nitsche curve, if it admits a parametrization

$$
\Gamma(t)=\left\{(\alpha(t), \beta(t)): t \in \mathbb{S}^{1}\right\}
$$

s.t. $\alpha(t)$ is a monotone parametrization of $\partial \Omega$. This means that $\alpha: S^{1} \rightarrow \partial \Omega$ is continuous and monotone, and there exist closed disjoint intervals J_{1}, \ldots, J_{v} such that $\left.\alpha\right|_{J_{i}}$ is constant for all i and $\left.\alpha\right|_{\mathbb{S}^{1} \backslash J_{i}}$ is one-to-one and smooth.

Definition 6 (Admissible domain)

Let $\Omega \subset M$ be a domain. Then Ω is admissible if it is geodesically convex and $\partial \Omega$ is a union of geodesic arcs $A_{1}, \ldots, A_{s}, B_{1} \ldots, B_{r}$, convex $\operatorname{arcs} C_{1}, \ldots, C_{t}$, the end points of these arcs and that no two arcs A_{i} and no two arcs B_{i} have a common endpoint.

Definition 7 (Admissible polygon)

Let Ω be an admissible domain. Then \mathcal{P} is an admissible polygon if $\mathcal{P} \subset \Omega$ and the vertices of \mathcal{P} are chosen among the vertices of Ω.

Let Γ be a Nitsche curve over the boundary $\partial \Omega$ of an admissible domain Ω. By a translating soliton with boundary Γ we mean a translating soliton in $\Omega \times \mathbb{R}$ that is a graph over Ω.

Using classical results about the solvability of the Plateau problem, we can prove that any Nitsche curve over an admissible domain admits a unique translating soliton with it as the boundary.

Theorem 8

Let Ω be an admissible domain in M and Γ a Nitsche curve over $\partial \Omega$. Then there exists a unique translating soliton with boundary Γ.

Idea of the proof:
Since the boundary $\partial \Omega$ consists of geodesic and convex arcs, the boundary $\partial(\Omega \times \mathbb{R})$ is mean convex, and it remains mean convex also after changing to the Ilmanen's metric.
Therefore we can apply solvability results of the Plateau's problem (Meeks-Yau, Morrey) and find an embedded minimal (w.r.t. g_{c}) disk $\Sigma \subset \Omega \times \mathbb{R}$ with boundary Γ.

It remains to prove that $\operatorname{int}(\Sigma)$ is a graph over Ω, but this follows by somewhat standard arguments for minimal surfaces.

In order to prove a Jenkins-Serrin type result for the translating graphs, we will use minimal surfaces as barriers. For this we need the following maximum principle.

Lemma 9 (Maximum principle)

Let $\Omega \subset M$ be an admissible domain. Suppose that u_{1} and u_{2} satisfy

$$
\operatorname{div}\left(\frac{\nabla u_{1}}{\sqrt{1+\left|\nabla u_{1}\right|^{2}}}\right) \geq \operatorname{div}\left(\frac{\nabla u_{2}}{\sqrt{1+\left|\nabla u_{2}\right|^{2}}}\right)
$$

and $\lim \inf \left(u_{2}-u_{1}\right) \geq 0$ for any approach of $\partial \Omega$, with possible exception of finite numbers of points $\left\{q_{1}, \ldots, q_{r}\right\}=: E \subset \partial \Omega$. Then $u_{2} \geq u_{1}$ on $\partial \Omega \backslash E$ with strict inequality unless $u_{2}=u_{1}$.

The proof is a modification of a similar result for CMC surfaces by J. Spruck.

Theorem 10 (Gama-H-Lira-Martín)

Let $\Omega \subset M$ be an admissible domain with $\left\{B_{i}\right\}=\varnothing$. Given any continuous boundary data $f_{i}: C_{i} \rightarrow \mathbb{R}$, there exists a Jenkins-Serrin solution $u: \Omega \rightarrow \mathbb{R}$ for the translating soliton equation with $\left.u\right|_{c_{i}}=f_{i}$, if for any admissible polygon \mathcal{P} we have

$$
\begin{equation*}
2 \alpha(\mathcal{P})<\ell(\mathcal{P}) . \tag{4}
\end{equation*}
$$

Proof:
Define a Nitsche curve $\Gamma_{n}=\left(\alpha_{n}, \beta_{n}\right)$ by setting $\beta_{n}=n$ on $\left\{A_{i}\right\}$ and $\beta_{n}=\min \left\{f_{i}, n\right\}$ on C_{i} for all i.

By Theorem 8 , for all $n \in \mathbb{N}$, there exists $u_{n}: \Omega \rightarrow \mathbb{R}$ so that Graph $\left[u_{n}\right]$ is a translating soliton in $\Omega \times \mathbb{R}$ with boundary Γ_{n}, and by the comparison principle, we also have that $\left\{u_{n}\right\}$ is a monotone sequence.

By Pinheiro's results, (4) guarantees that there exists a Jenkins-Serrin solution $v: \Omega \rightarrow \mathbb{R}$ of the minimal graph equation with continuous boundary data f_{i}.
Since

$$
\operatorname{div}\left(\frac{v}{\sqrt{1+|v|^{2}}}\right)=0<\frac{1}{\sqrt{1+\left|u_{n}\right|^{2}}}=\operatorname{div}\left(\frac{u_{n}}{\sqrt{1+\left|u_{n}\right|^{2}}}\right)
$$

and $\lim \inf \left(v-u_{n}\right) \geq 0$ on $\partial \Omega \backslash E$, where E is the set of vertices of Ω, Lemma 9 implies $v>u_{n}$ for all n. Hence $\lim _{n \rightarrow \infty} u_{n}=u$ is the desired solution.

Remark

Here it is not reasonable to expect a "full" Jenkins-Serrin result with boundary values $-\infty$. The reason for this is that $M \times \mathbb{R}$ is not complete when equipped with the Ilmanen's metric g_{c} (geodesics going down have finite length).

We also have the following structural result.

Theorem 11 (Gama-H-Lira-Martín)

Let M be a complete Riemannian manifold and $\Omega \subset M$ be a domain (not necessarily regular). Let $\Lambda \subset \partial \Omega$ be a smooth open set and Σ a translating or minimal graph of a smooth function $u: \Omega \rightarrow \mathbb{R}$ that is complete as we approach Λ. Then $H_{\Lambda}=0$.

Idea of the proof is to fix $x_{0} \in \Lambda$ and take a sequence $x_{i} \rightarrow x_{0}$ with $u\left(x_{i}\right) \rightarrow \infty$. Then, with compactness results from geometric measure theory, we get that

$$
S_{i}=\operatorname{Graph}\left[u-u\left(x_{i}\right)\right] \rightarrow S_{\infty}
$$

to a minimal surface (w.r.t. g_{c}) in a ball $B \subset M \times \mathbb{R}$ centered at $\left(x_{0}, 0\right)$.
To conclude we show that a neighbourhood of $\left(x_{0}, 0\right)$ in S_{∞} lies on $\Lambda \times \mathbb{R}$, and since $\tilde{H}_{\Lambda \times \mathbb{R}}(x, t)=e^{-c t / m} H_{\Lambda}(x)$, it follows that $H_{\Lambda}=0$.

Horizontal translating graphs

Let M^{2} be a 2-dimensional complete Riemannian surface and Z a non-singular Killing vector field in M^{2}. Then the lift $Z(p, t):=Z(p)$, $(p, t) \in M^{2} \times \mathbb{R}$ is a Killing field in $M^{2} \times \mathbb{R}$ endowed with the product metric $g_{0}:=\sigma+d t^{2}$.

Remark

Recal that Z is a Killing field if the flow generated by Z is an isometry.

Let \mathbb{P} be a fixed totally geodesic leaf of the orthogonal distribution associated to Z in $M^{2} \times \mathbb{R}$.

Since Z is a lifting of a Killing field in M^{2}, we have $\mathbb{P}=\Gamma \times \mathbb{R}$, where Γ is a geodesic in M.
We will denote by $\Psi: \mathbb{P} \times \mathbb{R} \rightarrow M \times \mathbb{R}$ the flow generated by Z.

This flow gives local coordinates: If x is a coordinate in Γ, we can describe a point $p \in M^{2} \times \mathbb{R}$ using the flow of Z, i.e. $p=\Psi((x, t), s)$. Therefore (x, t, s) is a local coordinate for $\mathbb{P} \times \mathbb{R}=M^{2} \times \mathbb{R}$.

The corresponding coordinate vector fields are

$$
\begin{aligned}
\partial_{s}(x, t, s) & =Z(\Psi((x, t), s)) ; \\
\partial_{t}(x, t, s) & =\Psi_{*}((x, t), s) \partial_{t}(x, t) ; \\
\partial_{x}(x, t, s) & =\Psi_{*}((x, t), s) \partial_{x}(x, t),
\end{aligned}
$$

and the components of the product metric are given by

$$
\begin{array}{ll}
g_{11}=\left\langle\partial_{s}, \partial_{s}\right\rangle=: \rho^{2}(x), & g_{12}=\left\langle\partial_{s}, \partial_{x}\right\rangle=0, \quad g_{13}=\left\langle\partial_{s}, \partial_{t}\right\rangle=0 \\
g_{22}=\left\langle\partial_{x}, \partial_{x}\right\rangle=\varphi^{2}(x), \quad g_{23}=\left\langle\partial_{t}, \partial_{x}\right\rangle=0, \quad g_{33}=\left\langle\partial_{t}, \partial_{t}\right\rangle=1
\end{array}
$$

Therefore

$$
g_{0}=\varphi^{2}(x) d x^{2}+\rho^{2}(x) d s^{2}+d t^{2}
$$

i.e. $M^{2} \times \mathbb{R}$ is locally a warped product, and from now on we consider $M^{2}=S \times_{\rho} \mathbb{R}$, where S may be either S^{1} or \mathbb{R} endowed with a
Riemannian metric $\varphi^{2}(x) d x^{2}$ and ρ is a positive smooth function in S.

With this convention $\mathbb{P}=S \times \mathbb{R}$, with Riemannian metric $h_{0}:=\varphi^{2}(x) d x^{2}+d t^{2}$ and $M^{2} \times \mathbb{R}=\mathbb{P} \times \rho \mathbb{R}$.

A horizontal graph "over" a domain $\Omega \subset \mathbb{P}$ means the surface $\Sigma \subset M^{2} \times \mathbb{R}$ (Killing graph) given by

$$
\Sigma=\left\{\Psi(x, t, u(x, t)) \in \mathbb{P} \times_{\rho} \mathbb{R}:(x, t) \in \Omega\right\}
$$

where $u: \Omega \rightarrow \mathbb{R}$ is a smooth function.

The conformal change to the Ilmanen's metric can be now written as

$$
g_{c}=e^{c t}\left(\varphi^{2}(x) d x^{2}+d t^{2}+\rho^{2}(x) d s^{2}\right)=: h_{c}+e^{c t} \rho^{2}(x) d s^{2},
$$

where h_{c} denotes the restriction of Ilmanen's metric g_{c} to \mathbb{P} (note that g_{c} is still a warped metric).

From now on we will always consider the metric h_{c} in \mathbb{P} and the metric g_{c} in $M \times \mathbb{R}$. Also, to simplify the notation we will denote by $f: M \times \mathbb{R} \rightarrow \mathbb{R}$ the function

$$
f(x, t)=e^{\frac{c}{2} t} \rho(x)
$$

Remark

Ilmanen's metric is not complete in $M \times \mathbb{R}$ but we will need that $\left(M \times \mathbb{R}, g_{0}\right)$ is complete.

Let $\Sigma \subset M \times \mathbb{R}$ be a horizontal translating graph $\left(\mathbf{H}=c X^{\perp}\right)$ of a function $u: \Omega \subset \mathbb{P} \rightarrow \mathbb{R}$. Then Σ can be oriented by the unit normal vector field

$$
N=\frac{1}{f} \frac{\partial_{s}}{W}-f \frac{\nabla u}{W}
$$

where we denote by ∇u the translation $\Psi_{*} \nabla u$ from $x \in \Omega$ to the point $\Psi(x, u(x)) \in \Sigma$.

From (2) we see that in Ωu satisfies the PDE

$$
\begin{equation*}
\operatorname{div}_{\mathbb{P}}\left(f^{2} \frac{\nabla u}{W}\right)=0, \quad W=\sqrt{1+f^{2} h_{c}(\nabla u, \nabla u)} \tag{5}
\end{equation*}
$$

where the gradient and divergence are taken w.r.t. the metric h_{c} in \mathbb{P}.

Another (maybe more familiar to people working with Killing graphs) way to write (5) is

$$
\begin{aligned}
0 & =\operatorname{div}_{\mathbb{P}}\left(f^{2} \frac{\nabla u}{W}\right)=\frac{1}{f} \operatorname{div}_{\mathbb{P}}\left(f^{2} \frac{\nabla u}{W}\right) \\
& =\frac{1}{f} \operatorname{div}_{\mathbb{P}}\left(f \frac{\nabla u}{\sqrt{f^{-2}+h_{c}(\nabla u, \nabla u)}}\right) \\
& =\operatorname{div}_{\mathbb{P}}\left(\frac{\nabla u}{\sqrt{f^{-2}+h_{c}(\nabla u, \nabla u)}}\right)+\left\langle\nabla \log f, \frac{\nabla u}{\sqrt{f^{-2}+h_{c}(\nabla u, \nabla u)}}\right\rangle \\
& =\operatorname{div}_{\mathbb{P},-\log f}\left(\frac{\nabla u}{\sqrt{f^{-2}+h_{c}(\nabla u, \nabla u)}}\right),
\end{aligned}
$$

where $\operatorname{div}{ }_{\mathbb{P},-\log f}$ denotes the weighted divergence operator.

Recall the notation: $f(x, t)=e^{\frac{c}{2} t} \rho(x), \nabla$ denotes the connection in $\left(\mathbb{P}, h_{c}=g_{c} \mid \mathbb{P}\right)$, and $\bar{\nabla}$ the connection in $\left(M \times \mathbb{R}, g_{c}\right)$.

We will be working with a special type of curves that requires the following definitions.

Definition 12

Let $\gamma:[0,1] \rightarrow M \times \mathbb{R}$ be a parametrized curve in $M \times \mathbb{R}$. Then the f-length of γ is

$$
\mathrm{L}_{f}[\gamma]=\int_{0}^{1} f(\gamma(r)) \sqrt{g_{c}\left(\gamma^{\prime}(r), \gamma^{\prime}(r)\right)_{\gamma(r)}} d r
$$

Definition 13

Let γ be a curve in $M \times \mathbb{R}$. We say that γ is an f-geodesic if

$$
\begin{equation*}
\bar{\nabla}_{r} \gamma^{\prime}=g_{c}\left(\gamma^{\prime}, \gamma^{\prime}\right) \frac{\bar{\nabla} f}{f}-2 g_{c}\left(\frac{\bar{\nabla} f}{f}, \gamma^{\prime}\right) \gamma^{\prime} \tag{6}
\end{equation*}
$$

where $\bar{\nabla}_{r} \gamma^{\prime}$ denotes the covariant derivative of γ^{\prime} along γ w.r.t. g_{c}.

Definition 14 (f-curvature)
Let γ be a curve in \mathbb{P}. The (scalar) f-curvature of γ is

$$
\begin{equation*}
\mathrm{k}_{f}[\gamma]:=\mathrm{k}_{h_{c}}[\gamma]-h_{c}\left(\frac{\nabla f}{f}, N\right) \tag{7}
\end{equation*}
$$

where $\mathrm{k}_{h_{c}}[\gamma]$ is the geodesic curvature of γ in $\left(\mathbb{P}, h_{c}\right)$ and $N \in T \mathbb{P}$ the unit normal along γ.

Some remarks

1. Let γ be a curve in \mathbb{P}. Consider the surface $\gamma \times \mathbb{R}=\Psi(\gamma, \mathbb{R})$ ruled by the flow lines of ∂_{s} passing through γ. Then

$$
\mathrm{k}_{f}[\gamma]=\mathrm{H}_{\gamma \times \mathbb{R}},
$$

where $\mathrm{H}_{\gamma \times \mathbb{R}}$ is the mean curvature of $\gamma \times \mathbb{R}$ in $\left(M \times \mathbb{R}, g_{c}\right)$.
Therefore there is a correspondence between f-geodesics and minimal cylinders in $M \times \mathbb{R}$.
2. By the definition a curve γ in \mathbb{P} is an f-geodesic in \mathbb{P} only if γ is an f-geodesic in $M \times \mathbb{R}$.

Some remarks

3. Let γ be a curve in \mathbb{P} and consider the Killing rectangle over γ, with height h, defined by

$$
\gamma \times[0, h]:=\Psi(\gamma,[0, h])=\left\{\Psi(p, s) \in \mathbb{P} \times_{\rho} \mathbb{R}: p \in \gamma, s \in[0, h]\right\} .
$$

Then we have

$$
\operatorname{Area}[\gamma \times[0, h]]=\int_{0}^{1} \int_{0}^{h} f(\gamma(r)) \sqrt{h_{c}\left(\gamma^{\prime}(r), \gamma^{\prime}(r)\right)} d r d z=h \mathrm{~L}_{f}[\gamma]
$$

Note that the length of a segment $\{\Psi((x, t), s): s \in[0, h]\}$ of a flow line through the point $(x, t) \in \mathbb{P}$ is given by $h f(x, t)$.

Remark

The existence of (at least short) f-geodesics follows from the general theory of Riemannian manifolds: Let

$$
\sigma_{c}:=f^{2} g_{c}=e^{2 \log f_{g_{c}}}
$$

and denote by $\tilde{\nabla}$ the Riemannian connection in $M \times \mathbb{R}$ with the metric σ_{c}.

Since, under the conformal change, the connection changes by

$$
\tilde{\nabla}_{Y} X=\bar{\nabla}_{Y} X+g_{c}\left(X, \frac{\bar{\nabla} f}{f}\right) Y+g_{c}\left(Y, \frac{\bar{\nabla} f}{f}\right) X-g_{c}(X, Y) \frac{\bar{\nabla} f}{f}
$$

we conclude from (6) that f-geodesics are geodesics in $\left(M \times \mathbb{R}, \sigma_{c}\right)$.

Definition 15 (Admissible domain)

Let $\Omega \subset \mathbb{P}$ be a precompact domain. We say that Ω is an admissible domain if $\partial \Omega$ is a union of f-geodesic $\operatorname{arcs} A_{1}, \ldots, A_{s}, B_{1} \ldots, B_{r}$, f-convex arcs C_{1}, \ldots, C_{t}, and the end points of these arcs and no two $\operatorname{arcs} A_{i}$ and no two $\operatorname{arcs} B_{i}$ have a common endpoint.

Definition 16 (Admissible polygon)

Let Ω be an admissible domain. Then \mathcal{P} is an admissible polygon if $\mathcal{P} \subset \bar{\Omega}$, the boundary of \mathcal{P} is formed by edges of $\partial \Omega$ and f-geodesic segments, and the vertices of \mathcal{P} are chosen among the vertices of Ω.

Let $\Omega \subset \mathbb{P}$ be an admissible domain with $\partial \Omega=\cup_{i} J_{i}$ s.t. $\left\{J_{i}\right\} \subset \partial \Omega$ satisfies

$$
J_{i} \cap J_{i+1}=\alpha_{i}, \quad i \in\{1, v-1\}, \quad \text { and } \quad J_{v} \cap J_{1}=\alpha_{v},
$$

where α_{i} denotes the end point of J_{i}.
Let $c=\left\{c_{i}: J_{i} \rightarrow \mathbb{R}\right\}$ be a family of bounded continuous functions and $\gamma_{c} \subset \partial \Omega \times \mathbb{R}=\Psi(\partial \Omega, \mathbb{R})$ given by $\gamma_{c}(x)=\Psi\left(x, c_{i}(x)\right)$ if $x \in \operatorname{int} J_{i}$ and γ_{c} is a horizontal line from $\Psi\left(\alpha_{i}, c_{i}\left(\alpha_{i}\right)\right)$ to $\Psi\left(\alpha_{i}, c_{i+1}\left(\alpha_{i}\right)\right)$ for $x=\alpha_{i}$.

Theorem 17

Let $\Omega \subset \mathbb{P}$ be a geodesically f-convex and an admissible domain as above. Let $c=\left\{c_{i}: J_{i} \rightarrow \mathbb{R}\right\}$ be a family of bounded continuous functions and γ_{c} the curve associated to c. Then there exists a unique solution of (5) with boundary data γ_{c}.

Now, let $\Omega \subset \mathbb{P}$ be an admissible domain so that

$$
\partial \Omega=\left(\bigcup_{i=1}^{l} A_{i}\right) \bigcup\left(\bigcup_{j=1}^{t} B_{j}\right) \bigcup\left(\bigcup_{k=1}^{z} C_{k}\right)
$$

where A_{i} and B_{j} are f-geodesic arcs and C_{k} are f-convex arcs. Let \mathcal{P} be an admissible polygon. Then we denote

$$
\alpha_{f}(\mathcal{P})=\sum_{A_{i} \subset \partial \mathcal{P}} \mathrm{~L}_{f}\left[A_{i}\right] \quad \text { and } \quad \beta_{f}(\mathcal{P})=\sum_{B_{i} \subset \partial \mathcal{P}} \mathrm{~L}_{f}\left[B_{i}\right] .
$$

Recall that the Jenkins-Serrin conditions for a solution $u: \Omega \rightarrow \mathbb{R}$ are

$$
\left.u\right|_{C_{k}}=\left.c_{k} \quad u\right|_{A_{i}}=+\infty, \quad \text { and }\left.\quad u\right|_{B_{j}}=-\infty .
$$

If $\left\{C_{k}\right\}=\varnothing$, then we only require that $u \rightarrow+\infty$ on A_{i} and $u \rightarrow-\infty$ on B_{j}.

Theorem 18 (Gama-H-Lira-Martín)

Let $\Omega \subset \mathbb{P}$ be an admissible domain such that for any admissible polygon $\mathcal{P} \subset \bar{\Omega}$ we have

$$
\begin{equation*}
2 \alpha_{f}(\mathcal{P})<\mathrm{L}_{f}[\partial \mathcal{P}] \text { and } 2 \beta_{f}(\mathcal{P})<\mathrm{L}_{f}[\partial \mathcal{P}] \tag{8}
\end{equation*}
$$

Then

(a) If $\left\{C_{k}\right\} \neq \varnothing$ and $c_{k}: C_{k} \rightarrow \mathbb{R}$ are continuous functions, then there exists a Jenkins-Serrin solution of (5) with continuous boundary data c_{k}.
(b) If $\left\{C_{k}\right\}=\varnothing$ and $\alpha_{f}(\partial \Omega)=\beta_{f}(\partial \Omega)$, then there exists a Jenkins-Serrin solution of (5).
Furthermore, if u is a Jenkins-Serrin solution of (5) with continuous boundary data

$$
c_{k}: C_{k} \rightarrow \mathbb{R}
$$

and if $\left\{C_{k}\right\} \neq \varnothing$, then inequalities (8) hold for all admissible polygon \mathcal{P}, and if $\left\{C_{k}\right\}=\varnothing$ then we also have $\alpha_{f}(\partial \Omega)=\beta_{f}(\partial \Omega)$.

Brief idea of the proof. Theorem 17 gives the existence of solutions (with finite boundary data) only over f-convex domains, so we use Perron's method to obtain the existence over more general admissible domains.

If $\Omega \subset \mathbb{P}$ is a domain with C^{1} smooth boundary $\partial \Omega$ and u solution of (5), we have

$$
\int_{\partial \Omega} \frac{f^{2}}{W} h_{c}(\nabla u, v)=0
$$

This motivates to define the flux formula

$$
F_{u}[\gamma]=\int_{\gamma} \frac{f^{2}}{W} h_{c}(\nabla u, v)
$$

which plays important role in the study of the divergence set \mathcal{D} and in the proof of the theorem.

Using the flux (among other things) we can prove that any connected component of the divergence set \mathcal{D} is an admissible polygon in Ω.

This property, together with the flux, imply that if the structural condition (8) is satisfied, then $\mathcal{D}=\varnothing$ and we obtain a solution.

On the other hand, the flux formula can be used to show that the existence of a solution implies the structural condition (8).

Examples in \mathbb{R}^{3}

In this case \mathbb{P} is a vertical plane $\left(\mathbb{R}^{2}\right)$ containing the vector e_{3} in \mathbb{R}^{3} and the Ilmanen's metric is given by $g_{c}=e^{c x_{3}}\langle\cdot, \cdot\rangle_{\mathbb{R}^{3}}$.

Therefore the function f is given by $f=e^{c^{\frac{\chi_{3}}{2}}}$, and γ is an f-geodesic in \mathbb{P} if and only if γ satisfies

$$
\mathrm{k}[\gamma]=c\left\langle N, e_{3}\right\rangle,
$$

where $\mathrm{k}[\gamma]$ denotes the scalar curvature of γ in \mathbb{P}, N denotes the unit normal to γ and $\langle\cdot, \cdot\rangle$ is the Euclidean metric of $\mathbb{P}=\mathbb{R}^{2}$.

In particular, f-geodesics are translating curves in \mathbb{R}^{2}.

Assume now that $c=1$. It is well known that the unique translating curves are vertical lines in the direction e_{3} and the grim reaper curves

$$
x_{3}=-\log \cos x_{1}, \quad x_{1} \in(-\pi / 2, \pi / 2)
$$

Therefore we can produce admissible domains
$\Omega \subset \mathbb{P}$ that are bounded by vertical line segments and parts of the grim reaper curves.

If we assign boundary data $+\infty$ on the parts of the grim reaper curve (edges A_{1}, A_{2}) and continuous data on the vertical segments (edges C_{1}, C_{2}), the condition for the existence of solutions becomes

$$
\mathrm{L}_{f}\left[A_{1}\right]+\mathrm{L}_{f}\left[A_{2}\right]<\mathrm{L}_{f}\left[C_{1}\right]+\mathrm{L}_{f}\left[C_{2}\right]
$$

Example 19

For the edges of $\Omega \subset \mathbb{P}$, we can take the parametrizations

$$
\begin{aligned}
& A_{1}=\left\{\left(x_{1}, 0, a-\log \cos x_{1}\right): x_{1} \in(r, s)\right\} ; \\
& A_{2}=\left\{\left(x_{1}, 0, b-\log \cos x_{1}\right): x_{1} \in(r, s)\right\} ; \\
& C_{1}=\left\{\left(r, 0, x_{3}\right): x_{3} \in(a-\log \cos s, b-\log \cos s)\right\} ; \\
& C_{2}=\left\{\left(s, 0, x_{3}\right): x_{3} \in(a-\log \cos r, b-\log \cos r)\right\},
\end{aligned}
$$

$-\pi / 2<s<r<\pi / 2, a, b \in \mathbb{R}$ and $a<b$.
Then

$$
\begin{aligned}
\mathrm{L}_{f}\left[A_{1}\right]+\mathrm{L}_{f}\left[A_{2}\right] & =\left(e^{b}+e^{a}\right)(\tan r-\tan s) \\
\mathrm{L}_{f}\left[C_{1}\right]+\mathrm{L}_{f}\left[C_{2}\right] & =\left(e^{b}-e^{a}\right)(\sec r+\sec s)
\end{aligned}
$$

Fixing $a<b$ and choosing $r-s>0$ small enough, we have $\mathrm{L}_{f}\left[A_{1}\right]+\mathrm{L}_{f}\left[A_{2}\right]<\mathrm{L}_{f}\left[C_{1}\right]+\mathrm{L}_{f}\left[C_{2}\right]$. And changing C_{i} to B_{i} we can get $\mathrm{L}_{f}\left[A_{1}\right]+\mathrm{L}_{f}\left[A_{2}\right]=\mathrm{L}_{f}\left[B_{1}\right]+\mathrm{L}_{f}\left[B_{2}\right]$ for the case (b) in Theorem 18.

Note that the reflection with respect to the plane \mathbb{P} is an isometry and therefore by reflecting the previous "basic solution", we can obtain a periodic surface with alternating boundary values $+\infty$ and $-\infty$.

Thank you!

