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General relativity

In Einstein’s general relativity spacetime
is a differentiable manifold M endowed with a metric

g = gµν(x)dxµdxν

where {xµ} are local coordinates. Here
g is Lorentzian, namely its signature is (−,+,+,+).

Dynamics is determined by the Einstein’s equations

Rµν −
1

2
Rgµν + Λgµν = 8πTµν

where R is the Ricci tensor and T is the stress-energy tensor.
The results we are going to obtain really depend only on the energy conditions
derived from these equations (null/timelike convergence conditions).
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Spacetime is a connected time-oriented Lorentzian manifold. Points on spacetime
are called events. We have a distribution of causal cones x→ Cx, and a
distribution of hyperboloids x→ Hx.

A C1 curve x : t 7→ x(t) is

• Timelike: if g(ẋ, ẋ) < 0, (massive particles ),

• Lightlike: if g(ẋ, ẋ) = 0, (massless particles).

The proper time of a massive particle/observer is τ =
∫
x(t)

√
−g(ẋ, ẋ)dt.
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Spacetime = (conic) causal order + spacetime measure

Simple algebraic lemma

On a vector space of dimension n ≥ 3 two Lorentzian bilinear forms η1, η2 are
proportional if and only if they have the same causal cone C.

C1 = C2 ⇔ ∃a ∈ R : η1 = a2η2.

Since the volume form induced by the metric is
√
−det ηαβ dy0 ∧ · · · ∧ dyn it

scales differently under conformal changes so

Corollary

Two spacetime metrics g1 and g2 coincide if and only if they induce the same
distribution of causal cones x→ Cx and the same volume form
dµ =

√
− det g dx0 ∧ · · · ∧ dxn.
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In other words the spacetime (M, g) of general
relativity is nothing but a

• spacetime measure + cone distribution

where the cones are really round: they have
ellipsoidal section according to the affine
structure of the tangent space TxM .

Causality theory for the most part focuses on the cone distribution, namely on
conformal invariant properties.
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Causality theory

Causality theory is the study of the global qualitative properties of the solutions
t 7→ x(t), to the differential inclusion

ẋ(t) ∈ Cx(t),

It focuses on the qualitative behavior of causal curves with a special attention to
causal geodesics. It aims to answer questions such as:
According to general relativity

• Can closed timelike curves exist?

• Can they form?

• Is the spacetime singular? (this point requires the conformal factor)

• Do continuous global increasing functions (time functions) exist?
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Causality relations and conditions

I = {(p, q) : there is a timelike curve from p to q},
J = {(p, q) : there is a causal curve from p to q or p = q}.

The chronology violating set is the set C of points through which passes a closed
timelike curve.
The weakest causality conditions are

Definition

A spacetime is non-totally vicious if C 6= M , and chronological if C = ∅.

The two strongest causality condition are

Definition

A spacetime is causally simple if it is non-totally vicious and J is a closed relation.

Definition

A spacetime is globally hyperbolic if the causal diamonds J+(p) ∩ J−(q) are
compact (yes, there is no need to assume causality if the spacetime is non-compact
and of dimension larger than two. Recent work with Raymond Hounnonkpe).
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The causal ladder

Global hyperbolicity is the strongest causality condition. We are going to present
a singularity theorem that does not even need to require chronology.

( -causality, existence of time)K

Causal easiness

Causal continuity

Global hyperbolicity

Chronology

Weak distinction

Strong causality

Non-total imprisonment

Causal simplicity

Stable causality

Compactness
of the

causal diamonds

Absence of
lightlike lines

Absence of future
(or past)

lightlike rays
Transitivity of J

_
Closure

of J
Reflectivity

Causality

The key property will be past reflectivity: q ∈ J+(p)⇒ p ∈ J−(q).
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Existence of causal pathologies

Einstein’s equations impose very week constraints on causality.

In 1949 Kurt Gödel found the following
surprising solution: M = R4 and

g =
1

2ω2
[−(dt+ exdz)2 + dx2 + dy2 + 1

2
e2xdz2],

which is a solution for Λ = −ω2 and a
stress-energy tensor Tµν of dust type.
The problem is that through every point
there passes a closed timelike curve.
An observer could go back in time.

Malaga and Granada, February 10-14, 2020 A gravitational collapse singularity theorem 9/31



Minkowski spacetime

M = R4, g = −dt2 + dx2 + dy2 + dz2.
In pictures we suppress 1 or 2 space dimensions.
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Non-chronological flat example

A spacetime of topology S1 × R3 which satisfies Einstein’s equations in which
there are closed timelike curves.
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Raychaudhuri equation

In 1955 an unknown Indian theoretical physicist,
Amal Kumar Raychaudhuri published an equation
expressing the evolution of the divergence of a
congruence of geodesics.
For a surface-orthogonal lightlike congruence
generated by the vector field n it takes the form

d
dt
θ = − 1

2
θ2 − 2σ2 − Ric(n)

where θ is the expansion, σ the shear, and Ric the
Ricci tensor. By Einstein equations Ric(n) = T (n, n),
and by positivity of energy T (n, n) ≥ 0, thus

d
dt
θ ≤ − 1

2
θ2, θ =

1

2A

dA

dt

which if θ(t0) < 0 implies θ → −∞ or refocusing within finite affine parameter
interval ∆t provided the affine parameter extends that far.
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Maximization

Causal geodesics locally maximize the proper time (length functional)

τ(x) =

∫
x(t)

√
−g(ẋ, ẋ)dt, x : I →M

among causal curves, but not beyond conjugate points.

Lemma

If two points are connected by a causal curve which is not a maximizing lightlike
geodesic then they are connected by a timelike curve.

Physically speaking, any two events p and q are connected by a light ray running
from p to q or we can find an ideal observer moving from p to q.

We write q ∈ I+(L), where I+(L) is the chronological future of L.
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Penrose’s theorem

In 1965 Roger Penrose introduced methods of global differential geometry to the
study of spacetime singularities.

A spacetime which

(a) admits a non-compact Cauchy hypersurface

(b) for which
the null energy condition T (n, n) = Ric(n) ≥ 0
holds, and

(c) which admits a trapped surface namely a
surface for which both ingoing and outgoing
lightlike geodesics contract θ± < 0,

is future null geodesically incomplete.

The point was to show that singularities necessarily
form when certain conditions are met (e.g. in a
gravitational collapse), and are not due to symmetry assumptions used to find
exact solutions e.g. Schwarzschild

g = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2, dΩ2 = dθ2 + sin2 θdϕ2
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A loophole argument
• Under global hyperbolicity trapped surfaces lead to the formation of

geodesic singularities

• By cosmic censorship the singularity is hidden behind the horizon of a black
hole

• The collapsing matter radiates out gravitational energy till the spacetime
becomes approximately stationary, that is the black hole converges to a
stationary Kerr black hole

• Quantum field theory in curved spacetimes implies that the Kerr black holes
evaporates (Hawking’s radiation)

• Studies by Kodama (1979), Wald (1984) and Lesourd (2019) show that an
evaporating black hole cannot be globally hyperbolic

⇒ The assumption of global hyperbolicity in a gravitational collapse is physically
untenable as it is inconsistent with black hole evaporation. Perhaps the singularity
can be avoided by dropping it?

Our problem

Show that it is possible to remove the global hyperbolicity assumption in
Penrose’s theorem. In this way the prediction of a singularity becomes consistent
with quantum field theory and black hole evaporation.
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The Big-Bang unavoidable singularity

In 1965-66 Stephen Hawking immediately realizes that Penrose’s argument works
for the universe as a whole.

A spacetime which satisfies

(a) it admits a Cauchy hypersurface

(b) the (timelike unit) normals to the Cauchy
hypersurface are expanding θ > ε > 0
(universe expansion), and

(c) Ric(v) ≥ 0 for every timelike vector,

is timelike geodesically past incomplete.

The point was to show that the Universe had a
singular beginning due to Hubble observational law. Singularities found in exact
solutions were not merely due to symmetry assumptions (cosmological principle)
used to find them e.g. Friedmann - Lemâıtre - Robertson - Walker

g = −dt2 + a(t)2(
1

1− kr2
dr2 + r2dΩ2)
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Removal of causality conditions from Hawking’s theorem

Both Penrose’s and Hawking’s theorem depend on global hyperbolicity, and hence
assume chronology. However, Hawking was able to remove all causality
assumption from his theorem

Theorem (Hawking 1966,1967)

Let (M, g) be such that

(1) the timelike convergence condition holds on M (i.e. Ric(v) ≥ 0 for all
timelike vectors v),

(2) M contains a C2 compact spacelike hypersurface S (hence without edge),

(3) S is contracting, i.e. the expansion scalar θ (i.e. the mean curvature of S) is
negative.

Then M is future timelike geodesically incomplete.

Why is it possible to remove chronology?

Because the hypersurface S is global so conditions on it have, so to say, global
character. In general it is easier to remove the causality condition from singularity
theorems that are cosmological in scope. Another matter is to do the same for
singularity theorems concerned with gravitational collapse, since they are local.
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Penrose’s theorem

If geodesics are complete the projection of the ingoing lightlike geodesics, taken
before the conjugate point, gives a compact set (to be discussed later). The same
holds for the outgoing congruence (though the figure does not suggest so), so the
Cauchy hypersurface is really the union of two compact sets hence compact: the
contradiction proves that the geodesics are incomplete (geodesic singularity).

Malaga and Granada, February 10-14, 2020 A gravitational collapse singularity theorem 18/31



The edge of the horismos E+(S)

The basic step in Penrose’s theorem is to show that E+(S) = J+(S)\I+(S) is
compact and has no edge. In this non-globally hyperbolic example it has edge.

S

E+(S)
γ

γ

σ

D+(E+(S))

One needs causal simplicity to have J+(S) = J+(S). Then since J+(S) = I+(S)
one gets E+(S) = İ+(S), namely E+(S) is an achronal boundary hence a
topological hypersurface (thus with no edge).
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Hawking and Ellis commented Penrose’s theorem as follows [HE, p. 285]

The real weakness of the theorem is the requirement that there be a Cauchy
hypersurface H. This was used in two places: first, to show that (M, g)
was causally simple which implied that the generators of J̇+(S) had past
endpoints on S, [i.e. J̇+(S) = E+(S)] and second, to ensure that under
the [global timelike vector field flow-projection] map every point of J̇+(S)
was mapped into a point of H.
[Penrose’s theorem] does not answer the question of whether singularities
occur in physically realistic solutions. To decide this we need a theorem
which does not assume the existence of Cauchy hypersurfaces.
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Hawking and Penrose’s theorem

Hawking and Penrose’s answer this problem with their theorem.

Theorem (Hawking and Penrose 1970)

Let (M, g) be a chronological spacetime which satisfies the causal convergence
condition and the causal genericity condition. Suppose that there exists a trapped
surface, then (M, g) is causally geodesically incomplete.

..but it is weaker than Penrose’s

The singularity might well be to the past of the future trapped surface so, in the
context of a spacetime that had origin through a Big Bang singularity, Hawking
and Penrose’s theorem does not provide any new information for what concerns
the formation of a singularity through gravitational collapse. The singularity that
it signals could just be the Big Bang singularity.

Moreover, the genericity condition has no physical justification, e.g. think of
geodesics imprisoned in compact Cauchy horizons where the condition is known to
be violated.
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Bardeen spacetime

Bardeen (1968) gave an example of null geodesically complete spacetime that
satisfies all assumptions of Penrose’s theorem but global hyperbolicity.

It was obtained through
a regularization of the singularity in the maximally
extended Reissner-Nordström solution (e2 < m2).

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2),

f(r) = 1−
2m

r
+
e2

r2
→ f(r) = 1−

2mr2

(r2 + e2)3/2

The redefinition removes the singularity
and preserves the null convergence (energy)
condition. Moreover, there are trapped surfaces.

Implications

Hawking and Ellis (1973) concluded that the global hyperbolicity condition in
Penrose’s theorem is necessary. Borde (1994) suggested that no, the conclusion
likely fails because E+(S) ‘swallows’ the whole universe. He suggested that
Penrose’ theorem could hold in all those cases in which there are no closed
compact spacelike hypersurfaces (open universes).
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Causality in black hole evaporation cannot be good

This is the typical Penrose conformal diagram for an evaporating black hole.
Determinism (global hyperbolicity) does not hold because prediction might hold
but retrodiction certainly fails.

PSfrag replacements

p

q

r=0

r=0

I +

I −

Notice that p ∈ J−(q) but q /∈ J+(p). That is, future reflectivity is violated (while
past reflectivity holds).
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Future reflectivity

Definition

The spacetime (M, g) is future reflecting if any of the following equivalent
properties holds true. For every p, q ∈M
(i) (p, q) ∈ J̄ ⇒ q ∈ J+(p),

(ii) p ∈ J−(q)⇒ q ∈ J+(p),

(iii) p ∈ J̇−(q)⇒ q ∈ J̇+(p) ,

(iv) I−(p) ⊂ I−(q)⇒ I+(q) ⊂ I+(p) ,

(v) ↑I−(p) = I+(p),

(vi) p 7→ I+(p) is outer continuous,

(vii) the volume function t+(p) = −µ(I+(p)) is continuous.
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Causality in black hole evaporation cannot be good

p

q = σ(τ )

r

σ

γ

N

∂ ↑I−(p)

Let N be a future C0 null hypersurface
(i.e. the black hole horizon). Let p ∈ N
be a representative point of such a region and let
r ∈ I−(p). Consider two timelike curves γ and
σ, the former curve γ : [0,∞)→M , γ(0) = r,
p = γ(a), a > 0, represents matter that leaves
r and crosses the horizon at p, while the latter
curve σ : [0,∞)→M , σ(0) = r, σ ∩ J+(N) = ∅,
is future inextendible and represents an observer
that looks at the infalling matter without being
itself causally influenced by the horizon.
We are interested in those observers σ that can witness the whole falling history,
i.e. γ([0, a)) ⊂ J−(σ).

Definition

We say that the horizon N evaporates at p from the point of view of σ if there is
some finite t > 0 such that γ([0, a)) ⊂ J−(σ([0, t])

)
Waiting further time does not give more information on the infalling matter. In
Schwarzschild there is not such evaporation.
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Theorem

If an evaporating spacetime (M, g) is past reflective then it is not future reflective,
thus reflectivity, global hyperbolicity, causal simplicity, and causal continuity
cannot hold.

p

q = σ(τ )

r

σ

γ

N

∂ ↑I−(p)

This is due to the fact that defined
τ = inf t, q = σ(τ), we have under past
reflectivity γ([0, a)) ⊂ J−(q), in particular

p ∈ J−(q) but q /∈ J+(p). In particular,
the Lorentzian distance cannot be continuous
and the spacetime cannot be stationary.
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The improvement of Penrose’s theorem

Definition

We say that a spacetime is (spatially) open if it does not contain a compact
spacelike hypersurface.

Theorem

Let (M, g) be a past reflecting spacetime which is open and satisfies the null
convergence condition. Suppose that it admits a future trapped surface S such that
S ∩ C = ∅, then it is future null geodesically incomplete.

Thus we are weakening the assumptions

(a) global hyperbolicity

(b) the Cauchy hypersurfaces are non-compact

to the much weaker conditions (not even chronology is assumed!)

(a’) past reflectivity

(b’) the spacetime is open
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Borde’s intuition was correct

We don’t need to assume that the spacetime is open.

Definition

A compact and achronal set S is said to have an unavoidable or swallowing future
horismos if there exists an open neighborhood U of E+(S) such that
I−U (E+(S)) ⊂ IntD−(E+(S)).

In fact under this condition an observer, represented by an inextendible causal
curve, that were to pass through a neighborhood of the horismos E+(S) would be
forced to intersect it and hence to fall into its causal influence.

Theorem

Let (M, g) be a past reflecting spacetime which satisfies the null convergence
condition. Suppose that it admits a future trapped surface S such that S ∩ C = ∅,
then it is either future null geodesically incomplete or the horismos E+(S) is
compact, unavoidable and actually coincident with İ+(S).

Thus the singularity is avoided only if the horismos swallows the universe.
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Thus the singularity is avoided only if the horismos swallows the universe.

Malaga and Granada, February 10-14, 2020 A gravitational collapse singularity theorem 28/31



Ideas of the proof I: araying sets

A future trapped set which is a non-empty set S such that E+(S) is non-empty
and compact.

Under very weak causality conditions the notion of null araying set
is more convenient.

Definition

A future lightlike S-ray is a future inextendible causal curve which starts from S
and does not intersect I+(S). A set S is a future null araying set if there are no
future lightlike S-rays.

In short, the set S is araying if observers starting from it catch up with light.
Trapped and araying sets are related through the next result.

Theorem

Let S be a non-empty compact set that does not intersect C . If S is a future null
araying set then it is a future trapped set.

Under strong causality the converse holds true.
The proof of Penrose’s theorem, start by assuming null completeness and looking
for contradiction. From there one gets focusing and hence absence of lightlike
S-rays, that is the araying property and hence the trapped set property but is the
former stronger that is important.
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Ideas of the proof II: past reflectivity and edge

Theorem

Let (M, g) be past reflecting. If S is a compact and future null araying set that
does not intesect C , then İ+(S) = E+(S) and hence edge(E+(S)) = ∅.

Proof by contradiction: suppose there is q ∈ İ+(S)\E+(S) ..., then past

reflectivity is violated, q ∈ J+(p) but p /∈ J−(q).

p

q
b

qn

σn

σn

σ

A
A

B
B

Remove

Remove

Remove S

E+(S)

Malaga and Granada, February 10-14, 2020 A gravitational collapse singularity theorem 30/31



Conclusions

By dropping global hyperbolicity we have shown that determinism is not required
in order to infer geodesic singularities in gravitational collapse. In fact not even
chronology is required.

This solves some of the tension between general relativity and quantum field
theory (information loss), by showing that retrodiction is not necessary already at
the classical level, and by showing that both accomodate coherent descriptions of
black hole formation and evaporation in non-globally hyperbolic spacetimes.

Thank you for the attention!
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