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Previous results and Problem

Theorem (Mart́ın,Savas,Smoczyk)

Suppose that M is a translator soliton in Rn+1 such that the function
|A|2 · H−2 attains a local maximum on M \ H−1(0) then M is the grim
reaper cylinder.
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Theorem (Mart́ın,Pérez-Garćıa,Savas,Smoczyk)

Let f : M −→ R3 be a connected, properly embedded translating soliton
of R3 with locally bounded genus and C be a cylinder whose axis is
perpendicular direction of translation of M := f (M). Assume that M is
C 1-asymptotic outside a cylinder to two half-planes. Then we have one,
and only one, of these two possibilities:

a. both half-planes are contain in the same vertical plane Π and M = Π,

b. both half-planes are include in different parallel planes and M
coincides with a grim reaper cylinder.
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Previous results and Problem

Problem

i. Is it possible get a more natural characterization of the grim reaper?
That is, is it possible remove the hypothesis of locally finite genus on
the compact sets?

ii. Is it possible generalize for all dimension?
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Translating Solitons

Definition

We say that a oriented hypersurface f : M −→ Rn+1 is a translating
soliton of the mean curvature flow if its mean curvature vector field H
satisfy

H = v⊥,

where v ∈ Rn+1 is a fixed vector. In particular, we have

H = −〈v , ξ〉, (1)

where ξ is the Gauss map of M. This means that, up to an intrinsic
diffeomorphism of M, Mt := M + tv is a mean curvature flow.

Remark

For the sake of simplicity, in this presentation we only work with
translating solitons with respect to vector en+1.
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Translating Solitons

Theorem (Ilmanen)

The translating solitons with respect to vector en+1 in Rn+1 are minimal
hypersurfaces with respect to metric g = e

2
n xn+1〈·, ·〉, where 〈·, ·〉 is the

Euclidean metric.
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Translating Solitons

Definition

Let H a open half-hyperplane in Rn+1 and w the unit inward pointing
co-normal to ∂H. For a fixed positive number δ, denoted by Hδ the set
given by

Hδ := {p + tw ; p ∈ ∂H and t > δ}

We say that a smooth hypersurface M is C k−asymptotic to the open
half-hyperplane H if M can be represent to a graph of the a C∞−
function ϕ : H −→ R such that for every ε > 0 there exists δ > 0 so that
for any j ∈ {1, 2, . . . , k} it holds

sup
Hδ

|ϕ| < ε and sup
Hδ

|D jϕ| < ε
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Translating Solitons

Definition

A smooth hypersurface M is C k−asymptotic outside the cylinder to two
half-hyperplane H1 and H2 if there exists a solid cylinder C such that:

a. the solid cylinder C contains the boundaries of the half-hyperplane H1

and H2,

b. M \ C consists of two connected components M1 and M2 that are
C k−asymptotic to H1 and H2, respectively.

Remark

The solid cylinder in Rn+1 that we are considering are those whose
boundary is isometric to S1(r)× Rn−1, where S1(r) is the sphere of
radius r .
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Maximum Principle

Definition

We say that a varifold V minimizes area to first order if the first variation
of V , denoted by δV , satisfy

δV (X ) > 0,

for every compactly supported C 1 tangent vectorfield X on N satisfying

〈X ,ν∂N〉 > 0

at all point of ∂N, where ν∂N is the inward normal.
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Maximum Principle

Theorem (Strong Maximum Principle for Minimal Hypersurfaces-B.
Solomon & B. White)

Suppose that N is a smooth Riemannian manifold, not necessarily
complete, with boundary, that ∂N is connected, and that N is mean
convex, i.e., that

〈H,ν∂N〉 > 0

on ∂N where H is the mean curvature vector of ∂N and where ν is the
unit normal to ∂N that points into N. Let m = dim(N) − 1, and suppose
that V is an m-dimensional varifold that minimizes area to first order in
N. Then if spt V contains any point of ∂N, then it must contain all of
∂N.
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Compactness Theorems

Theorem (Compactness Theorem for Integral Varifold-Allard)

Let {Mi } be a sequence of minimal hypersurfaces in Rn+1, with not
necessary the canonic metric, whose area is locally bounded, then a
subsequence of {Mi } converge weakly to a stationary integral varifold M∞.

When we have stability then

Theorem (Strong Compactness Theorem-Allard)

Let {Mi } be a sequence of stable minimal hypersurfaces in Rn+1, with not
necessary the canonic metric, with locally bounded area, then there exist
a closed set, Sing, and a stationary variety, M∞, such that a subsequence
of {Mi } converges smoothly to M∞ away from Sing. Moreover, the set
Sing has Haussdorff dimension at most n − 7. Hence it is empty for n < 7

Eddygledson Souza Gama (Nino) joint: Francisco Mart́ın A Characterization of the Grim Reaper Cylinder



Previous results and Problem
Background

Compactness Lemma and applications
Main Theorem

References

Translating Solitons
Maximum Principle
Compactness Theorems

Compactness Theorems

Theorem (Compactness Theorem for Integral Varifold-Allard)

Let {Mi } be a sequence of minimal hypersurfaces in Rn+1, with not
necessary the canonic metric, whose area is locally bounded, then a
subsequence of {Mi } converge weakly to a stationary integral varifold M∞.

When we have stability then

Theorem (Strong Compactness Theorem-Allard)

Let {Mi } be a sequence of stable minimal hypersurfaces in Rn+1, with not
necessary the canonic metric, with locally bounded area, then there exist
a closed set, Sing, and a stationary variety, M∞, such that a subsequence
of {Mi } converges smoothly to M∞ away from Sing. Moreover, the set
Sing has Haussdorff dimension at most n − 7. Hence it is empty for n < 7

Eddygledson Souza Gama (Nino) joint: Francisco Mart́ın A Characterization of the Grim Reaper Cylinder



Previous results and Problem
Background

Compactness Lemma and applications
Main Theorem

References

Translating Solitons
Maximum Principle
Compactness Theorems

Compactness Theorems

Theorem (Compactness Theorem for Integral Varifold-Allard)

Let {Mi } be a sequence of minimal hypersurfaces in Rn+1, with not
necessary the canonic metric, whose area is locally bounded, then a
subsequence of {Mi } converge weakly to a stationary integral varifold M∞.

When we have stability then

Theorem (Strong Compactness Theorem-Allard)

Let {Mi } be a sequence of stable minimal hypersurfaces in Rn+1, with not
necessary the canonic metric, with locally bounded area, then there exist
a closed set, Sing, and a stationary variety, M∞, such that a subsequence
of {Mi } converges smoothly to M∞ away from Sing. Moreover, the set
Sing has Haussdorff dimension at most n − 7. Hence it is empty for n < 7

Eddygledson Souza Gama (Nino) joint: Francisco Mart́ın A Characterization of the Grim Reaper Cylinder



Previous results and Problem
Background

Compactness Lemma and applications
Main Theorem

References

Translating Solitons
Maximum Principle
Compactness Theorems

Compactness Theorems

Theorem (Shahriyari)

Let M be a graphical translator hypersurface. Then, as minimal graphical
hypersurface in Rn+1 with the Ilmanen’s metric, is stable.

Eddygledson Souza Gama (Nino) joint: Francisco Mart́ın A Characterization of the Grim Reaper Cylinder



Previous results and Problem
Background

Compactness Lemma and applications
Main Theorem

References

Translating Solitons
Maximum Principle
Compactness Theorems

Compactness Theorems

Definition (Sets convergence)

We say that a sequence of sets {Si } in a Riemannian manifold N
converges as sets to S provided

S = {x ∈ N; lim sup
i

dist(x , Si ) = 0} = {x ∈ N; lim inf
i

dist(x , Si ) = 0},

where dist(x , A) = inf{dist(x , a); a ∈ A}.
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Compactness Theorems

Theorem (Allard Regularity-B. White)

Let {Mi } be a sequence of properly embedded minimal hypersurfaces
without boundary in Rn+1, with not necessarily the canonic metric.
Suppose that the Mi converges, as sets, to a subset of a connected
smoothly embedded hypersurface M. Suppose also that some point in M
has a neighbourhood U ⊂ Rn+1 such that Mi ∩ U converges weakly to
M ∩ U with multiplicity one, i.e., such that∫

Mi

ϕ −→
∫
M

ϕ

for every continuous, compactly supported function ϕ : U −→ R. Then
Mi converges to M smoothly and with multiplicity one everywhere.
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Compactness Lemma and applications

In all presentation from here we only work with complete connected
immersions f : Mn −→ Rn+1 that satisfy the following conditions:

(i) M is a properly embedded hypersurface;

(ii) M is a translating soliton with respect to en+1;

(iii) C is a cylinder given by C = {(x1, . . . , xn+1); x2
1 + x2

n+1 6 r0}, for
some r0 > 0;;

(iv) M is C 1-asymptotic outside a cylinder to two half-hyperplanes H1

and H2.
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Lemma (Compactness)

Let M be a hypersurface as above. Suppose that {bi }i∈N is a sequence in
Rn−1 and let {Mi }i∈N be a sequence of hypersurfaces given by
Mi := M + (0, bi , 0). Then, up to a subsequence, {Mi } converges weakly
to a connected stationary integral varifold M∞. Moreover, M∞ is smooth
outside a cylinder and away to singular set of dimension at most n − 7
and the convergence is smooth outside cylinder and away to singular set.
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Figure : Transversal section of the behaviour of Mi .
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Lemma (Characterization of the Hyperplane)

Let M be a hypersurface as above. Then, the half-hyperplanes H1 and
H2 must be parallels to en+1. Moreover, if H1 and H2 are parts of the
same hyperplane Π, then M must coincides with Π.
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Figure : Transversal section of the behaviour of M+
1 (δ) and Gt0,l0 .Eddygledson Souza Gama (Nino) joint: Francisco Mart́ın A Characterization of the Grim Reaper Cylinder
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Lemma (Maximum Principle for unbounded domains)

Let M be a hypersurface as in above conditions and assume that the
half-hyperplanes H1 and H2 are distinct. Consider a portion Σ of M (not
necessarily compact) with non-empty boundary ∂Σ such that the
xn+1−coordinate function of Σ is bounded. Then the supremum and the
infimum of the x1−coordinate function of Σ are reached along the
boundary of Σ i.e., there not exists sequence {pi } in the interior of Σ such
that limi→∞ dist (pi ,∂Σ) > 0 and limi→∞ x1(pi ) = supΣ x1 or
limi→∞ x1(pi ) = infΣ x1.
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Main Theorem

Theorem (Characterization of the Grim Reaper Cylinder)

Let f : M −→ Rn+1 be a connected, properly embedded translating
soliton of Rn+1 and C be a cylinder whose axis is perpendicular direction
of translation of M := f (M). Assume that M is C 1-asymptotic outside a
cylinder to two half-hyperplanes. Then we have one, and only one, of
these two possibilities:

(a) both half-hyperplanes are contain in the same vertical plane Π and
M = Π;

(b) both half-hyperplanes are include in different parallel planes and M
coincides with a grim reaper cylinder.
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Main Theorem

For simplicity, we will assume that half-hyperplanes that M asymptotic
are contains in Π(−δ) := {(x1, . . . , xn+1) ∈ Rn+1 : x1 = −δ} and
Π(δ) := {(x1, . . . , xn+1) ∈ Rn+1 : x1 = δ}, respectively.
Moreover, given any subset A of Rn+1 and for each t ∈ R we define the
sets

A+(t) = {(x1, . . . , xn+1) ∈ A; x1 > t} ,

A−(t) = {(x1, . . . , xn+1) ∈ A; x1 6 t} ,

A+(t) = {(x1, . . . , xn+1) ∈ A; xn+1 > t} ,

and
A−(t) = {(x1, . . . , xn+1) ∈ A; xn+1 6 t} .
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Main Theorem

Lemma

The both parts of M outside the cylinder C point in the same direction of
en+1.
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Figure : Transversal section of the behaviour of M and G
π
2 +δ,0.
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Lemma

M lie inside the slab S := (−δ, δ)× Rn

Eddygledson Souza Gama (Nino) joint: Francisco Mart́ın A Characterization of the Grim Reaper Cylinder



Previous results and Problem
Background

Compactness Lemma and applications
Main Theorem

References

Main Theorem

Figure : Transversal section of Σ.
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Lemma

2δ = π
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Main Theorem

Figure : Transversal section of the behaviour of G0,l with respect to M.
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Lemma

If t > 0 is sufficiently large then the two connected components of
M+(t) are graphs over the hyperplane [en+1]

⊥.
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Main Theorem

Lemma

There is a grim reaper cylinder that contains M “inside” it, i.e., M lies in
the convex region of the complement of a grim reaper cylinder.
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Main Theorem

Figure : Transversal section of the behaviour of Gt,−ε
+ with respect to M.
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Lemma

The hypersurface M is a graph over the hyperplane [en+1]
⊥.

Consider the sets Ti :=
(
−π2 , π2

)
× [i ,∞)n−1 × R, where i ∈ N, and call

α := lim
i

inf
Ti∩M

xn+1. Let
{

pi =
(
p1
i , . . . , pn+1

i

)}
be a sequence in M such

that

i. pi ∈ Ti ∩M and pn+1
i − inf

Ti∩M
xn+1 <

1

i

ii. {p1
i }→ p1∞ and −π2 < p1∞ < π

2 ;

iii. {pn+1
i }→ α;

and the sequence of hypersurfaces
{

Mi = M + (0,−p2
i , . . . ,−pn

i , 0)
}
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Consider the sets Si :=
(
−π2 , π2

)
× (−∞,−i ]n−1 × R, where i ∈ N,

β = lim
i

inf
Si∩M

xn+1 and
{

qi =
(
q1
i , . . . , qn+1

i

)}
is a sequence in M such

that

i. qi ∈ Si ∩M and qn+1
i − inf

Si∩M
xn+1 <

1

i

ii. {q1
i }→ q1∞ and −π2 < q1∞ < π

2 ;

iii. {qn+1
i }→ β.

and the sequence of hypersurfaces
{

Mi = M + (0,−q2
i , . . . ,−qn

i , 0)
}
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Figure : Picture of Λi and Λi (s0).
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Lemma

The hypersurface M is C∞−asymptotic outside the cylinder to a grim
reaper cylinder, with respect to the Euclidean metric.
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Main Theorem

Figure : Transversal section of the behaviour of M and G0,t in the left side and
transversal section of the behaviour of M \ C and G0,t \ C in the right side.
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As M is a graph over [en+1]
⊥ and it is also a translating soliton with

respect to en+1 we have H > 0. Hence, the function if ξj =< ξ, ej >

then the function hj =
ξj

H are well defined, where ξ is the Gauss map of
M, H is the mean curvature of M and {e1, . . . , en+1} is the canonic base
of Rn+1.

Lemma

The function hj =
ξj

H satisfy the following equality

∆hj+ < ∇hj ,∇(xn+1 + 2 log H) >= 0 (2)

for all j ∈ {2, . . . , n}, where |A| is a squared of second fundamental
formula of M.
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Lemma

The functions hj tends to zero as we approach infinity of M, for all
j ∈ {2, . . . , n}.
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