

3 >

G Previous results and Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Previous results and Problem

Theorem (Martín, Savas, Smoczyk)

Suppose that M is a translator soliton in \mathbb{R}^{n+1} such that the function $|A|^2 \cdot H^{-2}$ attains a local maximum on $M \setminus H^{-1}(0)$ then M is the grim reaper cylinder.

B b

Previous results and Problem

Theorem (Martín, Pérez-García, Savas, Smoczyk)

Let $f: M \longrightarrow \mathbb{R}^3$ be a connected, properly embedded translating soliton of \mathbb{R}^3 with locally bounded genus and \mathbb{C} be a cylinder whose axis is perpendicular direction of translation of M := f(M). Assume that M is C^1 -asymptotic outside a cylinder to two half-planes. Then we have one, and only one, of these two possibilities:

- a. both half-planes are contain in the same vertical plane Π and $M = \Pi$,
- b. both half-planes are include in different parallel planes and M coincides with a grim reaper cylinder.

通下 イヨト イヨト

Previous results and Problem

Problem

- i. Is it possible get a more natural characterization of the grim reaper? That is, is it possible remove the hypothesis of locally finite genus on the compact sets?
- ii. Is it possible generalize for all dimension?

Translating Solitons Maximum Principle Compactness Theorems

<ロ> (四) (四) (三) (三)

Translating Solitons

Translating Solitons Maximum Principle Compactness Theorems

Translating Solitons

Definition

We say that a oriented hypersurface $f: M \longrightarrow \mathbb{R}^{n+1}$ is a translating soliton of the mean curvature flow if its mean curvature vector field **H** satisfy

$$\mathbf{H} = \mathbf{v}^{\perp}$$

where $v \in \mathbb{R}^{n+1}$ is a fixed vector. In particular, we have

$$H = -\langle \mathbf{v}, \boldsymbol{\xi} \rangle, \tag{1}$$

<ロ> (四) (四) (日) (日) (日)

where ξ is the Gauss map of M. This means that, up to an intrinsic diffeomorphism of M, $M_t := M + tv$ is a mean curvature flow.

/ 5 3 \

Translating Solitons Maximum Principle Compactness Theorems

Translating Solitons

Definition

We say that a oriented hypersurface $f: M \longrightarrow \mathbb{R}^{n+1}$ is a translating soliton of the mean curvature flow if its mean curvature vector field **H** satisfy

$$\mathbf{H} = \mathbf{v}^{\perp}$$

where $v \in \mathbb{R}^{n+1}$ is a fixed vector. In particular, we have

$$H = -\langle \mathbf{v}, \mathbf{\xi} \rangle, \tag{1}$$

where ξ is the Gauss map of M. This means that, up to an intrinsic diffeomorphism of M, $M_t := M + tv$ is a mean curvature flow.

Remark

For the sake of simplicity, in this presentation we only work with translating solitons with respect to vector e_{n+1} .

Translating Solitons Maximum Principle Compactness Theorems

B b

Translating Solitons

Theorem (Ilmanen)

The translating solitons with respect to vector e_{n+1} in \mathbb{R}^{n+1} are minimal hypersurfaces with respect to metric $g = e^{\frac{2}{n} \times_{n+1}} \langle \cdot, \cdot \rangle$, where $\langle \cdot, \cdot \rangle$ is the Euclidean metric.

Translating Solitons Maximum Principle Compactness Theorems

Translating Solitons

Definition

Let \mathcal{H} a open half-hyperplane in \mathbb{R}^{n+1} and w the unit inward pointing co-normal to $\partial \mathcal{H}$. For a fixed positive number δ , denoted by \mathcal{H}_{δ} the set given by

$$\mathfrak{H}_{\delta} := \{ p + tw; p \in \mathfrak{d} \mathfrak{H} \text{ and } t > \delta \}$$

We say that a smooth hypersurface M is C^k -asymptotic to the open half-hyperplane \mathcal{H} if M can be represent to a graph of the a C^{∞} function $\varphi : \mathcal{H} \longrightarrow \mathbb{R}$ such that for every $\epsilon > 0$ there exists $\delta > 0$ so that for any $j \in \{1, 2, ..., k\}$ it holds

$$\sup_{\mathfrak{H}_{\delta}} |\phi| < \varepsilon \text{ and } \sup_{\mathfrak{H}_{\delta}} |D^{j}\phi| < \varepsilon$$

- 4 帰 ト 4 ヨ ト 4 ヨ ト

Translating Solitons Maximum Principle Compactness Theorems

Translating Solitons

Definition

A smooth hypersurface M is C^k -asymptotic outside the cylinder to two half-hyperplane \mathcal{H}_1 and \mathcal{H}_2 if there exists a solid cylinder \mathcal{C} such that:

- a. the solid cylinder ${\mathfrak C}$ contains the boundaries of the half-hyperplane ${\mathcal H}_1$ and ${\mathcal H}_2,$
- b. $M \setminus \mathcal{C}$ consists of two connected components M_1 and M_2 that are C^k -asymptotic to \mathcal{H}_1 and \mathcal{H}_2 , respectively.

Translating Solitons Maximum Principle Compactness Theorems

イロト イポト イヨト イヨト

Translating Solitons

Definition

A smooth hypersurface M is C^k -asymptotic outside the cylinder to two half-hyperplane \mathcal{H}_1 and \mathcal{H}_2 if there exists a solid cylinder \mathcal{C} such that:

- a. the solid cylinder ${\mathfrak C}$ contains the boundaries of the half-hyperplane ${\mathcal H}_1$ and ${\mathcal H}_2,$
- b. $M \setminus \mathcal{C}$ consists of two connected components M_1 and M_2 that are C^k -asymptotic to \mathcal{H}_1 and \mathcal{H}_2 , respectively.

Remark

The solid cylinder in \mathbb{R}^{n+1} that we are considering are those whose boundary is isometric to $\mathbb{S}^1(r) \times \mathbb{R}^{n-1}$, where $\mathbb{S}^1(r)$ is the sphere of radius r.

Translating Solitons Maximum Principle Compactness Theorems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Translating Solitons Maximum Principle Compactness Theorems

Maximum Principle

Definition

We say that a varifold V minimizes area to first order if the first variation of V , denoted by δV , satisfy

 $\delta V(X) \ge 0$,

for every compactly supported C^1 tangent vectorfield X on N satisfying

 $\langle X, v_{\partial N} \rangle \geqslant 0$

1531

- 4 回 ト 4 ヨ ト 4 ヨ ト

at all point of ∂N , where $v_{\partial N}$ is the inward normal.

Translating Solitons Maximum Principle Compactness Theorems

Maximum Principle

Theorem (Strong Maximum Principle for Minimal Hypersurfaces-B. Solomon & B. White)

Suppose that N is a smooth Riemannian manifold, not necessarily complete, with boundary, that ∂N is connected, and that N is mean convex, i.e., that

 $\langle \bm{\mathsf{H}}, \bm{\nu}_{\partial \textit{N}} \rangle \geqslant 0$

on ∂N where **H** is the mean curvature vector of ∂N and where v is the unit normal to ∂N that points into N. Let $m = \dim(N) - 1$, and suppose that V is an m-dimensional varifold that minimizes area to first order in N. Then if spt V contains any point of ∂N , then it must contain all of ∂N .

/ 5 3 V

・ロト ・ 同ト ・ ヨト ・ ヨト

Translating Solitons Maximum Principle Compactness Theorems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Translating Solitons Maximum Principle Compactness Theorems

Compactness Theorems

Theorem (Compactness Theorem for Integral Varifold-Allard)

Let $\{M_i\}$ be a sequence of minimal hypersurfaces in \mathbb{R}^{n+1} , with not necessary the canonic metric, whose area is locally bounded, then a subsequence of $\{M_i\}$ converge weakly to a stationary integral varifold M_{∞} .

Translating Solitons Maximum Principle Compactness Theorems

Compactness Theorems

Theorem (Compactness Theorem for Integral Varifold-Allard)

Let $\{M_i\}$ be a sequence of minimal hypersurfaces in \mathbb{R}^{n+1} , with not necessary the canonic metric, whose area is locally bounded, then a subsequence of $\{M_i\}$ converge weakly to a stationary integral varifold M_{∞} .

Translating Solitons Maximum Principle Compactness Theorems

Compactness Theorems

Theorem (Compactness Theorem for Integral Varifold-Allard)

Let $\{M_i\}$ be a sequence of minimal hypersurfaces in \mathbb{R}^{n+1} , with not necessary the canonic metric, whose area is locally bounded, then a subsequence of $\{M_i\}$ converge weakly to a stationary integral varifold M_{∞} .

When we have stability then

Ē

<ロ> (四) (四) (日) (日) (日)

Theorem (Strong Compactness Theorem-Allard)

Let $\{M_i\}$ be a sequence of stable minimal hypersurfaces in \mathbb{R}^{n+1} , with not necessary the canonic metric, with locally bounded area, then there exist a closed set, Sing, and a stationary variety, M_{∞} , such that a subsequence of $\{M_i\}$ converges smoothly to M_{∞} away from Sing. Moreover, the set Sing has Haussdorff dimension at most n-7. Hence it is empty for n < 7

Translating Solitons Maximum Principle Compactness Theorems

Compactness Theorems

Theorem (Shahriyari)

Let M be a graphical translator hypersurface. Then, as minimal graphical hypersurface in \mathbb{R}^{n+1} with the Ilmanen's metric, is stable.

Translating Solitons Maximum Principle Compactness Theorems

Compactness Theorems

Definition (Sets convergence)

We say that a sequence of sets $\{S_i\}$ in a Riemannian manifold N converges as sets to S provided

$$S = \{x \in N; \limsup_{i} dist(x, S_i) = 0\} = \{x \in N; \liminf_{i} dist(x, S_i) = 0\},\$$

where $dist(x, A) = \inf\{dist(x, a); a \in A\}$.

<ロ> (四) (四) (日) (日) (日)

Translating Solitons Maximum Principle Compactness Theorems

Compactness Theorems

Theorem (Allard Regularity-B. White)

Let $\{M_i\}$ be a sequence of properly embedded minimal hypersurfaces without boundary in \mathbb{R}^{n+1} , with not necessarily the canonic metric. Suppose that the M_i converges, as sets, to a subset of a connected smoothly embedded hypersurface M. Suppose also that some point in Mhas a neighbourhood $U \subset \mathbb{R}^{n+1}$ such that $M_i \cap U$ converges weakly to $M \cap U$ with multiplicity one, i.e., such that

$$\int_{M_i} \phi \longrightarrow \int_M \phi$$

for every continuous, compactly supported function $\varphi : U \longrightarrow \mathbb{R}$. Then M_i converges to M smoothly and with multiplicity one everywhere.

・ロト ・ 同ト ・ ヨト ・ ヨト

- 4 回 ト 4 ヨ ト 4 ヨ ト

Compactness Lemma and applications

In all presentation from here we only work with complete connected immersions $f: M^n \longrightarrow \mathbb{R}^{n+1}$ that satisfy the following conditions:

- (i) *M* is a properly embedded hypersurface;
- (ii) *M* is a translating soliton with respect to e_{n+1} ;
- (iii) C is a cylinder given by $C = \{(x_1, ..., x_{n+1}); x_1^2 + x_{n+1}^2 \le r_0\}$, for some $r_0 > 0$;

(iv) *M* is C^1 -asymptotic outside a cylinder to two half-hyperplanes \mathcal{H}_1 and \mathcal{H}_2 .

Compactness Lemma and applications

Lemma (Compactness)

Let M be a hypersurface as above. Suppose that $\{b_i\}_{i\in\mathbb{N}}$ is a sequence in \mathbb{R}^{n-1} and let $\{M_i\}_{i\in\mathbb{N}}$ be a sequence of hypersurfaces given by $M_i := M + (0, b_i, 0)$. Then, up to a subsequence, $\{M_i\}$ converges weakly to a connected stationary integral varifold M_{∞} . Moreover, M_{∞} is smooth outside a cylinder and away to singular set of dimension at most n - 7 and the convergence is smooth outside cylinder and away to singular set.

伺下 イヨト イヨト

Compactness Lemma and applications

Compactness Lemma and applications

Lemma (Characterization of the Hyperplane)

Let M be a hypersurface as above. Then, the half-hyperplanes \mathfrak{H}_1 and \mathfrak{H}_2 must be parallels to e_{n+1} . Moreover, if \mathfrak{H}_1 and \mathfrak{H}_2 are parts of the same hyperplane Π , then M must coincides with Π .

Compactness Lemma and applications

< ∃→

Compactness Lemma and applications

Lemma (Maximum Principle for unbounded domains)

Let M be a hypersurface as in above conditions and assume that the half-hyperplanes \mathfrak{H}_1 and \mathfrak{H}_2 are distinct. Consider a portion Σ of M (not necessarily compact) with non-empty boundary $\partial \Sigma$ such that the x_{n+1} -coordinate function of Σ is bounded. Then the supremum and the infimum of the x_1 -coordinate function of Σ are reached along the boundary of Σ i.e., there not exists sequence $\{p_i\}$ in the interior of Σ such that $\lim_{i\to\infty} dist (p_i, \partial \Sigma) > 0$ and $\lim_{i\to\infty} x_1(p_i) = \sup_{\Sigma} x_1$ or $\lim_{i\to\infty} x_1(p_i) = \inf_{\Sigma} x_1$.

・ 何 ト ・ ヨ ト ・ ヨ ト …

э

Main Theorem

Theorem (Characterization of the Grim Reaper Cylinder)

Let $f: M \longrightarrow \mathbb{R}^{n+1}$ be a connected, properly embedded translating soliton of \mathbb{R}^{n+1} and \mathbb{C} be a cylinder whose axis is perpendicular direction of translation of M := f(M). Assume that M is C^1 -asymptotic outside a cylinder to two half-hyperplanes. Then we have one, and only one, of these two possibilities:

- (a) both half-hyperplanes are contain in the same vertical plane Π and $M = \Pi$;
- (b) both half-hyperplanes are include in different parallel planes and M coincides with a grim reaper cylinder.

531

- 4 回 2 4 回 2 4 回 2 4

Main Theorem

For simplicity, we will assume that half-hyperplanes that M asymptotic are contains in $\Pi(-\delta) := \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1 = -\delta\}$ and $\Pi(\delta) := \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1 = \delta\}$, respectively. Moreover, given any subset A of \mathbb{R}^{n+1} and for each $t \in \mathbb{R}$ we define the sets

$$A_+(t) = \{(x_1, \ldots, x_{n+1}) \in A; x_1 \ge t\},$$

$$A_{-}(t) = \{(x_1, \ldots, x_{n+1}) \in A; x_1 \leq t\},$$

$$A^{+}(t) = \{(x_1, \dots, x_{n+1}) \in A; x_{n+1} \ge t\}$$

 $A^{-}(t) = \{(x_1, \ldots, x_{n+1}) \in A; x_{n+1} \leq t\}.$

and

B b

Main Theorem

Figure : Transversal section of the behaviour of M and $g^{\frac{\pi}{2}+\delta,0}$

Lemma

M lie inside the slab $S := (-\delta, \delta) \times \mathbb{R}^n$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Theorem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma $2\delta = \pi$ 5 • •

・ロト ・回 ト ・注 ト ・注 ト

ж

Main Theorem

Figure : Transversal section of the behaviour of $\mathcal{G}^{0,l}$ with respect to M.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Lemma

If t > 0 is sufficiently large then the two connected components of $M^+(t)$ are graphs over the hyperplane $[e_{n+1}]^{\perp}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

P

Main Theorem

Lemma

There is a grim reaper cylinder that contains M "inside" it, i.e., M lies in the convex region of the complement of a grim reaper cylinder.

~

3 >

Main Theorem

イロト 不得 トイヨト イヨト 二臣

Lemma

The hypersurface M is a graph over the hyperplane $[e_{n+1}]^{\perp}$.

Consider the sets $T_i := \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times [i, \infty)^{n-1} \times \mathbb{R}$, where $i \in \mathbb{N}$, and call $\alpha := \lim_{t \to 0} \inf_{x_{n+1}} x_{n+1}$. Let $\{p_i = (p_i^1, \dots, p_i^{n+1})\}$ be a sequence in M such that i. $p_i \in T_i \cap M$ and $p_i^{n+1} - \inf_{T_i \cap M} x_{n+1} < \frac{1}{i}$ ii. $\{p_i^1\} \rightarrow p_{\infty}^1$ and $-\frac{\pi}{2} < p_{\infty}^1 < \frac{\pi}{2}$; iii. $\{p_i^{n+1}\} \rightarrow \alpha$: iii. $\{p_i^{n+1}\} \rightarrow \alpha$; and the sequence of hypersurfaces $\{M_i = M + (0, -p_i^2, ..., -p_i^n, 0)\}$ 1531

- 冊 ト - 三 ト - 三 ト -

Consider the sets $S_i := \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\infty, \frac{\pi}{2}\right)^{n-1} \times \mathbb{R}$, where $i \in \mathbb{N}$, $\beta = \lim_{i} \inf_{S_i \cap M} x_{n+1} \text{ and } \left\{ q_i = (q_i^1, \dots, q_i^{n+1}) \right\} \text{ is a sequence in } M \text{ such}$ that i. $q_i \in S_i \cap M$ and $q_i^{n+1} - \inf_{S_i \cap M} x_{n+1} < \frac{1}{i}$ ii. $\{q_i^1\} \rightarrow q_{\infty}^1$ and $-\frac{\pi}{2} < q_{\infty}^1 < \frac{\pi}{2}$; iii. $\{q_i^{n+1}\} \rightarrow \beta$. and the sequence of hypersurfaces $\{M_i = M + (0, -q_i^2, \dots, -q_i^n, 0)\}$

Main Theorem

Figure : Picture of Λ_i and $\Lambda_i(s_0)$.

э

Lemma

The hypersurface M is C^{∞} -asymptotic outside the cylinder to a grim reaper cylinder, with respect to the Euclidean metric.

B b

Main Theorem

Figure : Transversal section of the behaviour of M and $\mathcal{G}^{0,t}$ in the left side and transversal section of the behaviour of $M \setminus \mathcal{C}$ and $\mathcal{G}^{0,t} \setminus \mathcal{C}$ in the right side.

∃ →

Main Theorem

As *M* is a graph over $[e_{n+1}]^{\perp}$ and it is also a translating soliton with respect to e_{n+1} we have H > 0. Hence, the function if $\xi_j = \langle \xi, e_j \rangle$ then the function $h_j = \frac{\xi_j}{H}$ are well defined, where ξ is the Gauss map of *M*, *H* is the mean curvature of *M* and $\{e_1, \ldots, e_{n+1}\}$ is the canonic base of \mathbb{R}^{n+1} .

Lemma

The function $h_j = \frac{\xi_j}{H}$ satisfy the following equality

$$\Delta h_j + \langle \nabla h_j, \nabla (x_{n+1} + 2\log H) \rangle = 0 \tag{2}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

for all $j \in \{2, ..., n\}$, where |A| is a squared of second fundamental formula of M.

Lemma

The functions h_j tends to zero as we approach infinity of M, for all $j \in \{2, ..., n\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 520 (1994).

Martín, Francisco; Pérez-García, Jesús; Savas-Halilaj, Andreas and Smoczyk, Knut. A characterization of the grim reaper cylinder. Journal für die reine und angewandte Mathematik (Crelles Journal)(2015).

Martín, Francisco; Savas-Halilaj, Andreas and Smoczyk, Knut. On the topology of translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations. 54 (2015):2853-2882.

Pérez-García, Jesús. Translating Solitons of The Mean Curvature Flow. Doctoral Thesis. Doctoral Programme in Mathematics. Universidad de Granada(2016).

Shariyari, Leili. Translating graphs by mean curvature flow. Geometriae Dedicata. 175(2015):57-64.

Solomon, B. and White, B. A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals. Indiana University Mathematics Journal 38(1989): 683-691.

References

3 >

・ロト ・聞と ・ヨト ・ヨト

æ