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Plan of the talk

Basics on minimal surfaces
Connection with holomorphic null curves in C3

Our contribution to the Calabi-Yau problem; brief history
The main tools: Riemann-Hilbert problem for null curves, exposing
points, gluing techniques
Proper null curves in C3 with a bounded coordinate function
Applications to null curves in SL2(C) and to Bryant surfaces in the
hyperbolic 3-space

Based on joint work with Antonio Alarcón, University of Granada.

Preprint: http://arxiv.org/abs/1308.0903
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Conformal minimal surfaces in R3

Assume that M is a Riemann surface, i.e., a smooth orientable
surface with a choice of a conformal=complex structure.

Definition
A smooth immersion M → R3 is conformal if it preserves angles, and
is minimal if its mean curvature is identically zero.

Every Riemann surface is conformally equivalent to a closed
embedded surface in R3 (Rüedy 1971).

Denote by Θ : M → R its mean curvature and by ν : M → S2 ⊂ R3

its Gauss map. Then
∆G = 2Θν .

Hence a conformal immersion M→ R3 is minimal iff it is harmonic.
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Complete bounded minimal surfaces in R3

An immersion G : M → R3 is said to be complete if the pullback
G∗ds2 of the Euclidean metric ds2 on R3 is a complete metric on
M. Equivalently, the G-image of any curve in M which terminates
on the boundary bM is infinitely long in R3.

We give a contribution to the conformal Calabi-Yau problem:

Theorem

Every bordered Riemann surface admits a complete conformal
minimal immersion into R3 with bounded image.

What is new in comparison to the existing results is that we do not
change the complex structure on the Riemann surface.
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Holomorphic null curves in C3

This theorem is a corollary to a comparable result concerning
holomorphic null curves in C3.

Definition (Null curves)
Let M be a Riemann surface. A holomorphic immersion

F = (F1,F2,F3) : M → C3

is a null curve if the derivative F ′ = (F ′1,F
′
2,F

′
3) with respect to any

local holomorphic coordinate ζ = x + ıy on M satisfies

(F ′1)2 + (F ′2)2 + (F ′3)2 = 0.

5 / 26



Connection between null curves and minimal surfaces

If F = G + ıH : M → C3 is a holomorphic null curve, then

G = ℜF : M → R3, H = ℑF : M → R3

are conformal harmonic (hence minimal) immersions into R3.
Conversely, a conformal minimal immersion G : D→ R3 of the disc
D = {z ∈ C : |z|< 1} is the real part of a holomorphic null curve
F : D→C3. (This fails on non-simply connected Riemann surfaces
due to the period problem for the harmonic conjugate.)
If F = G + ıH : M → C3 is a null curve then

F ∗ds2
C3 = 2G∗ds2

R3 = 2H∗ds2
R3 .

It follows that the real and the imaginary part of a complete null
curve in C3 are complete conformal minimal surfaces in R3.
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The calculation

Let F = G + ıH = (F 1,F 2,F 3) : M → C3 be a holomorphic null
curve and ζ = x + ıy a local holomorphic coordinate on M. Then

0 =
3

∑
j=1

(F j
ζ

)2 =
3

∑
j=1

(F j
x )2 =

3

∑
j=1

(
Gj

x + ıH j
x

)2

=
3

∑
j=1

(
(Gj

x )2− (H j
x )2
)

+ 2i
3

∑
j=1

Gj
xH j

x .

Since Hx =−Gy by the CR equations, this reads

0 = |Gx |2−|Gy |2−2i Gx ·Gy ⇐⇒ |Gx |= |Gy |, Gx ·Gy = 0.

It follows that G is conformal harmonic and

F ∗ds2
C3 = |Fx |2(dx2 + dy2) = 2|Gx |2(dx2 + dy2) = 2G∗ds2

R3 = 2H∗ds2
R3 .
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Example: catenoid and helicoid

Example: The catenoid and the helicoid are conjugate minimal
surfaces – the real and the imaginary part of the same null curve

F (ζ ) = (cosζ ,sinζ ,−ıζ ), ζ = x + ıy ∈ C.

Consider the family of minimal surfaces (t ∈ R):

Gt (ζ ) = ℜ
(
eıtF (ζ )

)
= cos t

cosx ·coshy
sinx ·coshy

y

+ sin t

 sinx ·sinhy
−cosx ·sinhy

x


At t = 0 we have a catenoid, and at t =±π/2 we have a (left or right
handed) helicoid.
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Helicatenoid (Source: Wikipedia)

The family of minimal surfaces Gt (ζ ) = ℜ
(
eıtF (ζ )

)
, t ∈ R:
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The first main result

This shows that the existence of complete bounded conformal minimal
immersions M → R3 follows from part (B) of the following result.

Theorem

Let M be a bordered Riemann surface.
(A) There exists a proper complete holomorphic immersion M → B2

into the unit ball of C2.
(B) There exists a proper complete null holomorphic embedding

F : M ↪→ B3 into the unit ball of C3.

(B) answers a question of Martín, Umehara and Yamada (2009).

Part (A) holds for immersions into any Stein manifold (X ,ds2) of
dimension > 1 with a chosen Riemannian metric.

[A. Alarcón, F. Forstnerič: Every bordered Riemann surface is a complete
proper curve in a ball. Math. Ann. 2013]
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Strongly pseudoconvex domains as complete
bounded complex submanifolds of CN

1985 Løw Every strongly pseudoconvex Stein domain M admits a
proper holomorphic embedding φ : M → Dm into a polydisc.

Let h : D→ B2 be a complete proper holomorphic immersion. Then

H : Dm→ (B2)m ⊂ C2m, H(z1, . . . ,zm) = (h(z1), . . . ,h(zm))

is a complete proper holomorphic immersion. Similarly we get
complete proper holomorphic embeddings Dm→ (B3)m.
Hence F = H ◦φ : M → (B2)m is a complete proper immersion.

Corollary
Every strongly pseudoconvex Stein domain admits a complete
bounded holomorphic embedding into CN for large N.
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A brief history of the Calabi-Yau problem

1965 E. Calabi conjectured that there does not exist any complete
minimal surface in R3 with a bounded coordinate function.

1977 P. Yang asked whether there exist any complete bounded
complex submanifolds of Cn for n > 1. Note that complex
submanifolds of complex Euclidean spaces are minimal.

1979 P. Jones constructed a complete bounded holomorphic
immersion D→ C2 of the disc, using BMO methods.

1980 L.P. Jorge & F. Xavier constructed complete minimal surfaces in
R3 with a bounded coordinate function, thereby disproving
Calabi’s conjecture.

1996 N. Nadirashvili constructed a complete bounded conformal
minimal immersion D→ R3, hence a complete null curve in C3.
His technique does not control the imaginary part.
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A brief history...continued

2000 S.-T. Yau: Review of geometry and analysis ("The Millenium
Lecture"). Mathematics: frontiers and perspectives, AMS.
The problem became known as the Calabi-Yau problem.

2008 T.H. Colding and W.P. Minicozzi II: An embedded complete
minimal surface M ↪→ R3 with finite genus and at most countably
many ends is proper in R3, and M is algebraic.

2009 F. Martín, M. Umehara and K. Yamada constructed complete
bounded holomorphic curves in C2 with arbitrary finite topology.

2012 L. Ferrer, F. Martín and W.H. Meeks found complete bounded
minimal surfaces in R3 with arbitrary topology.

2013 A. Alarcón and F.J. Lopez: Examples of (i) complete bounded
null curves in C3, (ii) complete bounded immersed holomorphic
curves in C2 with arbitrary topology, and (iii) complete bounded
embedded holomorphic curves in C2.
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Geometry of the null quadric

The directional variety of null curves:

A = {(z1,z2,z3) ∈ C3 : z2
1 + z2

2 + z2
3 = 0}

A is a complex cone with vertex at 0; A∗ = A\{0} is smooth.
L = {[z1 : z2 : z3] ∈ C3 : z2

1 + z2
2 + z2

3 = 0} ∼= CP1 ↪→ CP2.
pr : A∗→ L is a holomorphic fiber bundle with fiber C∗.
It follows that A∗ is an Oka manifold.
The spinor representation:

π : C2→ A, π(u,v) =
(
u2−v2, i(u2 + v2),2uv

)
.

The map π : C2 \{0}→ A∗ is a nonramified two-sheeted covering.
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Construction of holomorphic null curves

Let M be a bordered Riemann surface. Fix a nowhere vanishing
holomorphic 1-form θ on M; such exists by the Oka-Grauert principle.
There is a bijective correspondence (up to constants)

{F : M → C3 null curve}←→ {f : M → A∗ holomorphic, f θ exact}

F (x) = F (p) +
∫ x

p
f θ , dF = f θ .

Theorem (The Oka principle for null curves)
Every continuous map f0 : M → A∗ of an open Riemann surface M to
A∗ is homotopic to a holomorphic map f : M → A∗ such that f θ has
vanishing periods. Furthermore, a generic null curve is an embedding.
The same holds whenever A∗ ⊂ Cn, n ≥ 3, is an Oka manifold.

[A. Alarcón, F. Forstnerič: Null curves and directed immersions of open
Riemann surfaces. Inventiones Math., in press]
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Idea of the construction of complete bounded
holomorphic immersions - Pythagora’s theorem

Let F0 : M → Cn be a holomorphic immersion satisfying
|F0| ≥ r0 > 0 on bM. We try to increase the boundary distance on
M with respect to the induced metric by a fixed number δ > 0.

To this end, we approximate F0 uniformly on a compact set in M
by an immersion F1 : M → Cn which at a point x ∈ bM adds a
displacement for approximately δ in a direction V ∈ Cn, |V |= 1,
approximately orthogonal to the point F0(x) ∈ Cn. The boundary
distance increases by ≈ δ , while the outer radius increases to

|F1(x)| ≈
√
|F0(x)|2 + δ 2 ≈ |F0(x)|+ δ 2

2|F0(x)|
≤ |F0(x)|+ δ 2

2r0
.

By choosing a sequence δj > 0 such that ∑j δj = +∞ while
∑j δ 2

j < ∞, we obtain by induction a limit immersion F : M → Cn

with bounded outer radius and with complete metric F ∗ds2.
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The main tools

This idea can be realized on short arcs I ⊂ bM, on which F0 does
not vary too much, by solving a Riemann-Hilbert problem.

Globally this method alone could lead to ‘sliding curtains’, creating
shortcuts in the new induced metric on M.

To localize the problem and eliminate any shortcuts, we
subdivide bM = ∪j Ij into a finite union of short arcs such that two
adjacent arcs Ij−1, Ij meet at a common endpoint xj . At the point
pj = F (xj) ∈ Cn we attach to F0(M) a smooth real curve λj of
length δ whose other endpoint qj increases the outer radius by δ 2.

By the method of exposing boundary points we modify the
immersion so that F0(xj) = qj . Hence any curve in M terminating
on bM near xj is elongated by approximately δ > 0.

In the next step we use a Riemann-Hilbert problem to increase the
boundary distance on the arcs Ij by approximately δ . These local
modifications are glued together by the method of sprays.
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Riemann-Hilbert problem for null curves

Theorem (Riemann-Hilbert problem for null discs)

Let F0 : D→ C3 be a null holomorphic immersion, let V ∈ A∗, let
µ : bD→ [0,+∞) be a continuous function, and consider the map

Y : bD×D→ C3, Y (ζ ,z) = F0(ζ ) + µ(ζ )zV .

Given numbers ε > 0 and 0 < r < 1, there exist a number r ′ ∈ [r ,1) and
a null holomorphic immersion F : D→ C3 satisfying the following:

dist(F (ζ ),Y (ζ ,bD)) < ε for ζ ∈ bD.
dist(F (ρζ ),Y (ζ ,D)) < ε for ζ ∈ bD and ρ ∈ [r ′,1).
F is ε-close to F0 in the C 1 topology on {ζ ∈ C : |ζ | ≤ r ′}.

Furthermore, if J is a compact arc in bD such that µ vanishes on
bD\J, and U is an open neighborhood of J in D, then

one can choose F to be ε-close to F0 in the C 1 topology on D\U.
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Proof

Consider the unbranched two-sheeted holomorphic covering

π : C2 \{(0,0)}→ A∗, π(u,v) =
(
u2−v2, i(u2 + v2),2uv

)
.

Since D is simply connected, the map F ′0 : D→ A∗ lifts to a map
(u,v) : D→ C2 \{(0,0)}. Hence we have

F ′0 = π(u,v) =
(

u2−v2, i(u2 + v2),2uv
)
∈ A∗

V = π(a,b) =
(

a2−b2, i(a2 + b2),2ab
)
∈ A∗

η =
√

µ : bD→ [0,∞)

η(ζ ) ≈ η̃(ζ ) =
N

∑
j=1

Ajζ
j−m (rational approximation)

µ(ζ ) ≈ η̃
2(ζ ) =

2N

∑
j=1

Bjζ
j−2m.
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Proof–continued

For any integer n ∈ N we consider the following functions and maps

un(ξ ) = u(ξ ) +
√

2n + 1η̃(ξ )ξ
na,

vn(ξ ) = v(ξ ) +
√

2n + 1η̃(ξ )ξ
nb,

Φn(ξ ) = π(un(ξ ),vn(ξ )) =
(
u2

n−v2
n , i(u

2
n−v2

n ),2unvn
)

: D→ A∗,

Fn(ζ ) = F0(0) +
∫

ζ

0
Φn(ξ )dξ , ζ ∈ D.

Then Fn : D→ C3 is a null disc of the form

Fn(ζ ) = F0(ζ ) + Bn(ζ )V + An(ζ ).
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Proof–continued

The C-valued term Bn equals

Bn(ζ ) = (2n + 1)
2N

∑
j=1

∫
ζ

0
Bjξ

2n+j−2m dξ

=
2N

∑
j=1

2n + 1
2n + 1 + j−2m

Bj ζ
2n+1+j−2m.

Since the coefficients (2n + 1)/(2n + 1 + j−2m) in the sum for Bn
converge to 1 as n→+∞, we have

sup
|ζ |≤1

∣∣Bn(ζ )−ζ
2n+1

η̃
2(ζ )

∣∣→ 0 as n→ ∞.
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Proof–continued

The remainder C3-valued term An(ζ ) equals

An(ζ ) = 2
√

2n + 1
∫

ζ

0

N

∑
j=1

Aj ξ
n+j−m(u(ξ )(a, ıa,b) + v(ξ )(−b, ıb,a)

)
dξ

|An(ζ )| ≤ 2
√

2n + 1C0

N

∑
j=1
|Aj |

∫ |ζ |
0
|ξ |n+j−m d |ξ |

≤ 2C0

N

∑
j=1

√
2n + 1

n + 1 + j−m
|Aj |.

It follows that |An| → 0 uniformly on D as n→+∞. Hence

Fn(ζ )≈ F0(ζ ) + ζ
2n+1

µ̃(ζ )V , ζ ∈ D.

The theorem follows from this estimate.
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Null curves with a bounded coordinate

The Riemann-Hilbert problem for null curves also gives the following.

Theorem

Every bordered Riemann surface M carries a proper holomorphic null
embedding F = (F1,F2,F3) : M → C3 such that the function F3 is
bounded on M. (Thus (F1,F2) : M → C2 is a proper map.)

This contrasts the theorem of Hoffman and Meeks (1990) that
the only properly immersed minimal surfaces in R3 contained in a
half-space are planes.

This result has a nontrivial line of corollaries. A null curve in
SL2(C) is a holomorphic immersion F : M → SL2(C) of an open
Riemann surface M which is directed by the variety

B =

{
z =

(
z11 z12
z21 z22

)
: detz = z11z22−z12z21 = 0

}
⊂ C4.
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Null curves in SL2(C)

The biholomorphic map T : C3 \{z3 = 0}→ SL2(C)\{z11 = 0},

T (z1,z2,z3) =
1
z3

(
1 z1 + ız2

z1− ız2 z2
1 + z2

2 + z2
3

)
,

carries null curves into null curves.

Furthermore, if F = (F1,F2,F3) : M → C3 is a proper null curve
such that 1/2 < |F3|< 1 on M, then G = T ◦F : M → SL2(C) is a
proper null curve in SL2(C). This proves the following.

Corollary
Every bordered Riemann surface carries a proper holomorphic null
embedding into SL2(C).
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Bryant surfaces in hyperbolic 3-space

The projection of a null curve in SL2(C) to the hyperbolic 3-space
H 3 = SL2(C)/SU(2) is a Bryant surface, i.e., a conformally
immersed surface with constant mean curvature one in H 3.

Corollary
Every bordered Riemann surface is conformally equivalent to a
properly immersed Bryant surface in the hyperbolic 3-space H 3.

To the best of our knowledge, these are the first examples of
proper null curves in SL2(C), and Bryant surfaces in H 3, with
finite topology and hyperbolic conformal structure.

2002 Collin-Hauswirth-Rosenberg Properly embedded Bryant
surfaces in H 3 of finite topology have finite total curvature and
regular ends. Hence our examples cannot embedded.
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A few open problems

Does there exist a complete bounded holomorphic embedding
D ↪→ C2 of the disc? Of an arbitrary bordered Riemann surface?

Does there exist a proper minimal conformal immersion M ↪→ B3

of an arbitrary bordered Riemann surface M?

Is it possible to immerse or embed the ball B2 ⊂ C2 as a complete
bounded complex submanifold of C3, C4,...

Calabi’s conjecture is still open in dimensions n > 3: Do there
exist complete bounded minimal hypersurfaces of Rn when n > 3?
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