The Calabi-Yau problem, null curves, and Bryant surfaces

Franc Forstnerič

University of Ljubljana

University of Granada 19 September 2013

Plan of the talk

- Basics on minimal surfaces
- Connection with holomorphic null curves in C³
- Our contribution to the Calabi-Yau problem; brief history
- The main tools: Riemann-Hilbert problem for null curves, exposing points, gluing techniques
- \bullet Proper null curves in \mathbb{C}^3 with a bounded coordinate function
- Applications to null curves in $SL_2(\mathbb{C})$ and to Bryant surfaces in the hyperbolic 3-space

Based on joint work with Antonio Alarcón, University of Granada.

Preprint: http://arxiv.org/abs/1308.0903

Conformal minimal surfaces in \mathbb{R}^3

Assume that M is a **Riemann surface**, i.e., a smooth orientable surface with a choice of a conformal=complex structure.

Definition

A smooth immersion $M \to \mathbb{R}^3$ is **conformal** if it preserves angles, and is **minimal** if its mean curvature is identically zero.

- Every Riemann surface is conformally equivalent to a closed embedded surface in \mathbb{R}^3 (Rüedy 1971).
- Denote by $\Theta: M \to \mathbb{R}$ its mean curvature and by $v: M \to \mathbb{S}^2 \subset \mathbb{R}^3$ its Gauss map. Then

$$\Delta G = 2\Theta v$$
.

• Hence a conformal immersion $M \to \mathbb{R}^3$ is minimal iff it is harmonic.

Complete bounded minimal surfaces in \mathbb{R}^3

- An immersion $G: M \to \mathbb{R}^3$ is said to be **complete** if the pullback G^*ds^2 of the Euclidean metric ds^2 on \mathbb{R}^3 is a complete metric on M. Equivalently, the G-image of any curve in M which terminates on the boundary bM is infinitely long in \mathbb{R}^3 .
- We give a contribution to the conformal Calabi-Yau problem:

Theorem

Every bordered Riemann surface admits a complete conformal minimal immersion into \mathbb{R}^3 with bounded image.

 What is new in comparison to the existing results is that we do not change the complex structure on the Riemann surface.

Holomorphic null curves in \mathbb{C}^3

This theorem is a corollary to a comparable result concerning holomorphic null curves in \mathbb{C}^3 .

Definition (Null curves)

Let *M* be a Riemann surface. A holomorphic immersion

$$F = (F_1, F_2, F_3) \colon M \to \mathbb{C}^3$$

is a **null curve** if the derivative $F' = (F'_1, F'_2, F'_3)$ with respect to any local holomorphic coordinate $\zeta = x + \imath y$ on M satisfies

$$(F_1')^2 + (F_2')^2 + (F_3')^2 = 0.$$

Connection between null curves and minimal surfaces

• If $F = G + \iota H : M \to \mathbb{C}^3$ is a holomorphic null curve, then

$$G = \Re F : M \to \mathbb{R}^3, \quad H = \Im F : M \to \mathbb{R}^3$$

are conformal harmonic (hence minimal) immersions into \mathbb{R}^3 .

- Conversely, a conformal minimal immersion $G: \mathbb{D} \to \mathbb{R}^3$ of the disc $\mathbb{D} = \{z \in \mathbb{C} \colon |z| < 1\}$ is the real part of a holomorphic null curve $F: \mathbb{D} \to \mathbb{C}^3$. (This fails on non-simply connected Riemann surfaces due to the period problem for the harmonic conjugate.)
- If $F = G + \iota H \colon M \to \mathbb{C}^3$ is a null curve then

$$F^*ds^2_{\mathbb{C}^3} = 2G^*ds^2_{\mathbb{R}^3} = 2H^*ds^2_{\mathbb{R}^3}.$$

• It follows that the real and the imaginary part of a complete null curve in \mathbb{C}^3 are complete conformal minimal surfaces in \mathbb{R}^3 .

The calculation

• Let $F = G + \iota H = (F^1, F^2, F^3) : M \to \mathbb{C}^3$ be a holomorphic null curve and $\zeta = x + \iota y$ a local holomorphic coordinate on M. Then

$$0 = \sum_{j=1}^{3} (F_{\zeta}^{j})^{2} = \sum_{j=1}^{3} (F_{x}^{j})^{2} = \sum_{j=1}^{3} (G_{x}^{j} + \iota H_{x}^{j})^{2}$$
$$= \sum_{j=1}^{3} ((G_{x}^{j})^{2} - (H_{x}^{j})^{2}) + 2i \sum_{j=1}^{3} G_{x}^{j} H_{x}^{j}.$$

• Since $H_x = -G_y$ by the CR equations, this reads

$$0 = |G_X|^2 - |G_Y|^2 - 2i G_X \cdot G_Y \iff |G_X| = |G_Y|, \ G_X \cdot G_Y = 0.$$

It follows that G is conformal harmonic and

$$F^*ds_{\mathbb{C}^3}^2 = |F_{\scriptscriptstyle X}|^2(dx^2 + dy^2) = 2|G_{\scriptscriptstyle X}|^2(dx^2 + dy^2) = 2G^*ds_{\mathbb{R}^3}^2 = 2H^*ds_{\mathbb{R}^3}^2.$$

Example: catenoid and helicoid

Example: The **catenoid** and the **helicoid** are conjugate minimal surfaces – the real and the imaginary part of the same null curve

$$F(\zeta) = (\cos \zeta, \sin \zeta, -\iota \zeta), \qquad \zeta = x + \iota y \in \mathbb{C}.$$

Consider the family of minimal surfaces ($t \in \mathbb{R}$):

$$G_{t}(\zeta) = \Re \left(e^{it}F(\zeta)\right)$$

$$= \cos t \begin{pmatrix} \cos x \cdot \cosh y \\ \sin x \cdot \cosh y \\ y \end{pmatrix} + \sin t \begin{pmatrix} \sin x \cdot \sinh y \\ -\cos x \cdot \sinh y \\ x \end{pmatrix}$$

At t=0 we have a catenoid, and at $t=\pm\pi/2$ we have a (left or right handed) helicoid.

Helicatenoid (Source: Wikipedia)

The family of minimal surfaces $G_t(\zeta) = \Re(e^{t}F(\zeta)), t \in \mathbb{R}$:

The first main result

This shows that the existence of complete bounded conformal minimal immersions $M \to \mathbb{R}^3$ follows from part (B) of the following result.

Theorem

Let M be a bordered Riemann surface.

- (A) There exists a proper complete holomorphic immersion $M \to \mathbb{B}^2$ into the unit ball of \mathbb{C}^2 .
- (B) There exists a proper complete null holomorphic embedding $F: M \hookrightarrow \mathbb{B}^3$ into the unit ball of \mathbb{C}^3 .
- (B) answers a question of Martín, Umehara and Yamada (2009).

Part (A) holds for immersions into any Stein manifold (X, ds^2) of dimension > 1 with a chosen Riemannian metric.

[A. Alarcón, F. Forstnerič: Every bordered Riemann surface is a complete proper curve in a ball. Math. Ann. 2013]

Strongly pseudoconvex domains as complete bounded complex submanifolds of \mathbb{C}^N

1985 Løw Every strongly pseudoconvex Stein domain M admits a proper holomorphic embedding $\phi: M \to \mathbb{D}^m$ into a polydisc.

Let $h \colon \mathbb{D} \to \mathbb{B}^2$ be a complete proper holomorphic immersion. Then

$$H \colon \mathbb{D}^m \to (\mathbb{B}^2)^m \subset \mathbb{C}^{2m}, \quad H(z_1, \dots, z_m) = (h(z_1), \dots, h(z_m))$$

is a complete proper holomorphic immersion. Similarly we get complete proper holomorphic embeddings $\mathbb{D}^m \to (\mathbb{B}^3)^m$. Hence $F = H \circ \phi : M \to (\mathbb{B}^2)^m$ is a complete proper immersion.

Corollary

Every strongly pseudoconvex Stein domain admits a complete bounded holomorphic embedding into \mathbb{C}^N for large N.

A brief history of the Calabi-Yau problem

- 1965 E. Calabi conjectured that there does not exist any complete minimal surface in \mathbb{R}^3 with a bounded coordinate function.
- 1977 P. Yang asked whether there exist any complete bounded complex submanifolds of \mathbb{C}^n for n > 1. Note that complex submanifolds of complex Euclidean spaces are minimal.
- 1979 P. Jones constructed a complete bounded holomorphic immersion $\mathbb{D} \to \mathbb{C}^2$ of the disc, using BMO methods.
- 1980 L.P. Jorge & F. Xavier constructed complete minimal surfaces in \mathbb{R}^3 with a bounded coordinate function, thereby disproving Calabi's conjecture.
- 1996 N. Nadirashvili constructed a complete bounded conformal minimal immersion $\mathbb{D} \to \mathbb{R}^3$, hence a complete null curve in \mathbb{C}^3 . His technique does not control the imaginary part.

A brief history...continued

- 2000 S.-T. Yau: Review of geometry and analysis ("The Millenium Lecture"). Mathematics: frontiers and perspectives, AMS. The problem became known as the Calabi-Yau problem.
- 2008 T.H. Colding and W.P. Minicozzi II: An embedded complete minimal surface $M \hookrightarrow \mathbb{R}^3$ with finite genus and at most countably many ends is proper in \mathbb{R}^3 , and M is algebraic.
- 2009 F. Martín, M. Umehara and K. Yamada constructed complete bounded holomorphic curves in \mathbb{C}^2 with arbitrary finite topology.
- 2012 L. Ferrer, F. Martín and W.H. Meeks found complete bounded minimal surfaces in \mathbb{R}^3 with arbitrary topology.
- 2013 A. Alarcón and F.J. Lopez: Examples of (i) complete bounded null curves in \mathbb{C}^3 , (ii) complete bounded immersed holomorphic curves in \mathbb{C}^2 with arbitrary topology, and (iii) complete bounded *embedded* holomorphic curves in \mathbb{C}^2 .

Geometry of the null quadric

• The directional variety of null curves:

$$\textit{A} = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \colon z_1^2 + z_2^2 + z_3^2 = 0\}$$

- *A* is a complex cone with vertex at 0; $A^* = A \setminus \{0\}$ is smooth.
- $\bullet \ L = \{[z_1:z_2:z_3] \in \mathbb{C}^3 \colon z_1^2 + z_2^2 + z_3^2 = 0\} \cong \mathbb{CP}^1 \hookrightarrow \mathbb{CP}^2.$
- ullet $pr: A^* \to L$ is a holomorphic fiber bundle with fiber \mathbb{C}^* .
- It follows that A* is an **Oka manifold**.
- The spinor representation:

$$\pi: \mathbb{C}^2 \to A, \quad \pi(u,v) = (u^2 - v^2, i(u^2 + v^2), 2uv).$$

The map $\pi: \mathbb{C}^2 \setminus \{0\} \to A^*$ is a nonramified two-sheeted covering.

Construction of holomorphic null curves

Let M be a bordered Riemann surface. Fix a nowhere vanishing holomorphic 1-form θ on M; such exists by the Oka-Grauert principle. There is a bijective correspondence (up to constants)

 $\{F \colon M \to \mathbb{C}^3 \text{ null curve}\} \longleftrightarrow \{f \colon M \to A^* \text{ holomorphic}, f\theta \text{ exact}\}$

$$F(x) = F(p) + \int_{p}^{x} f\theta, \quad dF = f\theta.$$

Theorem (The Oka principle for null curves)

Every continuous map $f_0 \colon M \to A^*$ of an open Riemann surface M to A^* is homotopic to a holomorphic map $f \colon M \to A^*$ such that $f \theta$ has vanishing periods. Furthermore, a generic null curve is an embedding. The same holds whenever $A^* \subset \mathbb{C}^n$, $n \geq 3$, is an Oka manifold.

[A. Alarcón, F. Forstnerič: Null curves and directed immersions of open Riemann surfaces. Inventiones Math., in press]

Idea of the construction of complete bounded holomorphic immersions - Pythagora's theorem

- Let $F_0: \overline{M} \to \mathbb{C}^n$ be a holomorphic immersion satisfying $|F_0| \ge r_0 > 0$ on bM. We try to increase the boundary distance on M with respect to the induced metric by a fixed number $\delta > 0$.
- To this end, we approximate F_0 uniformly on a compact set in M by an immersion $F_1: \overline{M} \to \mathbb{C}^n$ which at a point $x \in bM$ adds a displacement for approximately δ in a direction $V \in \mathbb{C}^n$, |V| = 1, approximately orthogonal to the point $F_0(x) \in \mathbb{C}^n$. The boundary distance increases by $\approx \delta$, while the outer radius increases to

$$|F_1(x)| \approx \sqrt{|F_0(x)|^2 + \delta^2} \approx |F_0(x)| + \frac{\delta^2}{2|F_0(x)|} \le |F_0(x)| + \frac{\delta^2}{2r_0}.$$

• By choosing a sequence $\delta_j > 0$ such that $\sum_j \delta_j = +\infty$ while $\sum_j \delta_j^2 < \infty$, we obtain by induction a limit immersion $F \colon M \to \mathbb{C}^n$ with bounded outer radius and with complete metric F^*ds^2 .

The main tools

- This idea can be realized on short arcs $I \subset bM$, on which F_0 does not vary too much, by solving a **Riemann-Hilbert problem**.
- Globally this method alone could lead to 'sliding curtains', creating shortcuts in the new induced metric on *M*.
- To **localize the problem** and **eliminate any shortcuts**, we subdivide $bM = \cup_j I_j$ into a finite union of short arcs such that two adjacent arcs I_{j-1} , I_j meet at a common endpoint x_j . At the point $p_j = F(x_j) \in \mathbb{C}^n$ we attach to $F_0(\overline{M})$ a smooth real curve λ_j of length δ whose other endpoint q_j increases the outer radius by δ^2 .
- By the method of **exposing boundary points** we modify the immersion so that $F_0(x_j) = q_j$. Hence any curve in M terminating on bM near x_j is elongated by approximately $\delta > 0$.
- In the next step we use a Riemann-Hilbert problem to increase the boundary distance on the arcs I_j by approximately δ . These local modifications are glued together by the method of sprays.

Riemann-Hilbert problem for null curves

Theorem (Riemann-Hilbert problem for null discs)

Let $F_0: \overline{\mathbb{D}} \to \mathbb{C}^3$ be a null holomorphic immersion, let $V \in A^*$, let $\mu: b\mathbb{D} \to [0, +\infty)$ be a continuous function, and consider the map

$$Y \colon b\mathbb{D} \times \overline{\mathbb{D}} \to \mathbb{C}^3, \quad Y(\zeta, z) = F_0(\zeta) + \mu(\zeta)zV.$$

Given numbers $\varepsilon > 0$ and 0 < r < 1, there exist a number $r' \in [r,1)$ and a null holomorphic immersion $F \colon \overline{\mathbb{D}} \to \mathbb{C}^3$ satisfying the following:

- $\operatorname{dist}(F(\zeta), Y(\zeta, b\mathbb{D})) < \varepsilon \text{ for } \zeta \in b\mathbb{D}.$
- $\operatorname{dist}(F(\rho\zeta), Y(\zeta, \overline{\mathbb{D}})) < \varepsilon \text{ for } \zeta \in b\mathbb{D} \text{ and } \rho \in [r', 1).$
- F is ε -close to F_0 in the \mathscr{C}^1 topology on $\{\zeta \in \mathbb{C} : |\zeta| \leq r'\}$.

Furthermore, if J is a compact arc in $b\mathbb{D}$ such that μ vanishes on $b\mathbb{D}\setminus J$, and U is an open neighborhood of J in $\overline{\mathbb{D}}$, then

• one can choose F to be ε -close to F_0 in the \mathscr{C}^1 topology on $\overline{\mathbb{D}} \setminus U$.

Proof

Consider the unbranched two-sheeted holomorphic covering

$$\pi\colon \mathbb{C}^2\setminus\{(0,0)\}\to A^*,\quad \pi(u,v)=\big(u^2-v^2,i(u^2+v^2),2uv\big).$$

Since $\overline{\mathbb{D}}$ is simply connected, the map $F_0': \overline{\mathbb{D}} \to A^*$ lifts to a map $(u,v): \overline{\mathbb{D}} \to \mathbb{C}^2 \setminus \{(0,0)\}$. Hence we have

$$F_0' = \pi(u,v) = \left(u^2 - v^2, i(u^2 + v^2), 2uv\right) \in A^*$$

$$V = \pi(a,b) = \left(a^2 - b^2, i(a^2 + b^2), 2ab\right) \in A^*$$

$$\eta = \sqrt{\mu} : b\mathbb{D} \to [0,\infty)$$

$$\eta(\zeta) \approx \tilde{\eta}(\zeta) = \sum_{j=1}^{N} A_j \zeta^{j-m} \text{ (rational approximation)}$$

$$\mu(\zeta) \approx \tilde{\eta}^2(\zeta) = \sum_{j=1}^{2N} B_j \zeta^{j-2m}.$$

Proof-continued

For any integer $n \in \mathbb{N}$ we consider the following functions and maps

$$\begin{array}{lcl} u_{n}(\xi) & = & u(\xi) + \sqrt{2n+1}\,\tilde{\eta}(\xi)\xi^{n}a, \\ v_{n}(\xi) & = & v(\xi) + \sqrt{2n+1}\,\tilde{\eta}(\xi)\xi^{n}b, \\ \Phi_{n}(\xi) & = & \pi(u_{n}(\xi),v_{n}(\xi)) = (u_{n}^{2} - v_{n}^{2},i(u_{n}^{2} - v_{n}^{2}),2u_{n}v_{n}):\overline{\mathbb{D}} \to A^{*}, \\ F_{n}(\zeta) & = & F_{0}(0) + \int_{0}^{\zeta}\Phi_{n}(\xi)\,d\xi, \qquad \zeta \in \overline{\mathbb{D}}. \end{array}$$

Then $F_n \colon \overline{\mathbb{D}} \to \mathbb{C}^3$ is a null disc of the form

$$F_n(\zeta) = F_0(\zeta) + \mathbf{B}_n(\zeta) V + \mathbf{A}_n(\zeta).$$

Proof-continued

The \mathbb{C} -valued term \mathbf{B}_n equals

$$\mathbf{B}_{n}(\zeta) = (2n+1) \sum_{j=1}^{2N} \int_{0}^{\zeta} B_{j} \xi^{2n+j-2m} d\xi$$
$$= \sum_{j=1}^{2N} \frac{2n+1}{2n+1+j-2m} B_{j} \zeta^{2n+1+j-2m}.$$

Since the coefficients (2n+1)/(2n+1+j-2m) in the sum for \mathbf{B}_n converge to 1 as $n \to +\infty$, we have

$$\sup_{|\zeta| \leq 1} \left| \mathbf{B}_n(\zeta) - \zeta^{2n+1} \tilde{\eta}^2(\zeta) \right| \to 0 \quad \text{as } n \to \infty.$$

Proof-continued

The remainder \mathbb{C}^3 -valued term $\mathbf{A}_n(\zeta)$ equals

$$\mathbf{A}_{n}(\zeta) = 2\sqrt{2n+1} \int_{0}^{\zeta} \sum_{j=1}^{N} A_{j} \xi^{n+j-m} (u(\xi)(a, \iota a, b) + v(\xi)(-b, \iota b, a)) d\xi$$

$$|\mathbf{A}_{n}(\zeta)| \leq 2\sqrt{2n+1} C_{0} \sum_{j=1}^{N} |A_{j}| \int_{0}^{|\zeta|} |\xi|^{n+j-m} d|\xi|$$

$$\leq 2C_{0} \sum_{i=1}^{N} \frac{\sqrt{2n+1}}{n+1+j-m} |A_{j}|.$$

It follows that $|\mathbf{A}_n| \to 0$ uniformly on $\overline{\mathbb{D}}$ as $n \to +\infty$. Hence

$$F_n(\zeta) \approx F_0(\zeta) + \zeta^{2n+1} \tilde{\mu}(\zeta) V, \qquad \zeta \in \overline{\mathbb{D}}.$$

The theorem follows from this estimate.

Null curves with a bounded coordinate

The Riemann-Hilbert problem for null curves also gives the following.

Theorem

Every bordered Riemann surface M carries a proper holomorphic null embedding $F = (F_1, F_2, F_3)$: $M \to \mathbb{C}^3$ such that the function F_2 is bounded on M. (Thus (F_1, F_2) : $M \to \mathbb{C}^2$ is a proper map.)

- This contrasts the theorem of Hoffman and Meeks (1990) that the only properly immersed minimal surfaces in \mathbb{R}^3 contained in a half-space are planes.
- This result has a nontrivial line of corollaries. A null curve in $SL_2(\mathbb{C})$ is a holomorphic immersion $F: M \to SL_2(\mathbb{C})$ of an open Riemann surface M which is directed by the variety

$$\mathscr{B} = \left\{ z = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} : \det z = z_{11} z_{22} - z_{12} z_{21} = 0 \right\} \subset \mathbb{C}^4.$$

Null curves in $SL_2(\mathbb{C})$

• The biholomorphic map $\mathscr{T}: \mathbb{C}^3 \setminus \{z_3 = 0\} \to SL_2(\mathbb{C}) \setminus \{z_{11} = 0\},$

$$\mathscr{T}(z_1, z_2, z_3) = \frac{1}{z_3} \begin{pmatrix} 1 & z_1 + \iota z_2 \\ z_1 - \iota z_2 & z_1^2 + z_2^2 + z_3^2 \end{pmatrix},$$

carries null curves into null curves.

• Furthermore, if $F = (F_1, F_2, F_3) : M \to \mathbb{C}^3$ is a proper null curve such that $1/2 < |F_3| < 1$ on M, then $G = \mathscr{T} \circ F : M \to SL_2(\mathbb{C})$ is a proper null curve in $SL_2(\mathbb{C})$. This proves the following.

Corollary

Every bordered Riemann surface carries a proper holomorphic null embedding into $SL_2(\mathbb{C})$.

Bryant surfaces in hyperbolic 3-space

• The projection of a null curve in $SL_2(\mathbb{C})$ to the hyperbolic 3-space $\mathscr{H}^3 = SL_2(\mathbb{C})/SU(2)$ is a **Bryant surface**, i.e., a conformally immersed surface with constant mean curvature one in \mathscr{H}^3 .

Corollary

Every bordered Riemann surface is conformally equivalent to a properly immersed Bryant surface in the hyperbolic 3-space \mathcal{H}^3 .

- To the best of our knowledge, these are the first examples of proper null curves in $SL_2(\mathbb{C})$, and Bryant surfaces in \mathscr{H}^3 , with finite topology and hyperbolic conformal structure.
- 2002 Collin-Hauswirth-Rosenberg Properly *embedded* Bryant surfaces in \mathscr{H}^3 of finite topology have finite total curvature and regular ends. Hence our examples cannot embedded.

A few open problems

- Does there exist a complete bounded holomorphic **embedding** $\mathbb{D} \hookrightarrow \mathbb{C}^2$ of the disc? Of an arbitrary bordered Riemann surface?
- Does there exist a **proper** minimal conformal immersion $M \hookrightarrow \mathbb{B}^3$ of an arbitrary bordered Riemann surface M?
- Is it possible to immerse or embed the ball $\mathbb{B}^2\subset\mathbb{C}^2$ as a complete bounded complex submanifold of \mathbb{C}^3 , \mathbb{C}^4 ,...
- Calabi's conjecture is still open in dimensions n > 3: Do there exist complete bounded minimal hypersurfaces of \mathbb{R}^n when n > 3?