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Abstract

Let M be an open Riemann surface.

Alarcón and Forstnerič, 2015 (Crelle’s Journal, in press):
Every conformal minimal immersion M → R3 is isotopic to the real part
of a holomorphic null curve M → C3.

This is a basic h-principle. We upgrade it to a parametric h-principle:

Theorem (F. Lárusson & F. Forstnerič, 2016)

For any n ≥ 3, the inclusion ι : <N∗(M, Cn) ↪→M∗(M, Rn) of the
space of real parts of nonflat null holomorphic immersions M → Cn into
the space of nonflat conformal minimal immersions M → Rn satisfies the
parametric h-principle with approximation; in particular, it is a weak
homotopy equivalence.

If M has finitely generated homology group H1(M; Z), then
<N∗(M, Cn) is a strong deformation retract of M∗(M, Rn)



Areas of mathematics involved in this result

Analogous results hold for several other related spaces of maps to be
introduced.

Based on collaboration with Finnur Lárusson, University of Adelaide.

The proof brings together four diverse topics from differential geometry,
holomorphic geometry, and topology; namely

the theory of minimal surfaces in Rn,

modern Oka theory (a branch of complex analysis),

Gromov’s convex integration theory, and

the theory of absolute neighborhood retracts (to get strong
homotopy equivalences for surfaces M of finite topological type).



Weierstrass representation of minimal surfaces

Let M be an open Riemann surface and n ≥ 3. The following are
equivalent for a conformal immersion u = (u1, . . . , un) : M → Rn:

u parametrizes a minimal surface.

u has identically vanishing mean curvature vector.

u is harmonic: 4u = 0.

Φ = ∂u = (φ1, . . . , φn) is a nowhere vanishing holomorphic 1-form
satisfying the nullity condition

(φ1)
2 + (φ2)

2 + · · ·+ (φn)
2 = 0.

Conversely, if Φ = (φ1, . . . , φn) is as above and∫
γ
<(Φ) = 0 for all γ ∈ H1(M; Z)

then u(p) = u(p0) +
∫ p

p0
<Φ, p0, p ∈ M,

is a conformal minimal immersion M → Rn.



The null quadric

A = An−1 = {(z1, . . . , zn) ∈ Cn : z21 + z22 + · · ·+ z2n = 0}.
Every conformal minimal immersion M → Rn (n ≥ 3) is of the form

u(p) = u(p0) +
∫ p

p0
< (f θ) , p0, p ∈ M

where θ is a nowhere vanishing holomorphic 1-form on M,

f = 2∂u/θ = (f1, . . . , fn) : M → A∗ = A \ {0} ⊂ Cn

is a holomorphic map and the real periods of f θ vanish.

If the complex periods of f θ vanish, then

F (p) = F (p0) +
∫ p

p0
f θ ∈ Cn, p0, p ∈ M

is a holomorphic null curve in Cn with u = <F . Equivalently:

Flux(u)(γ) :=
∫

γ
=(f θ) = 0 ∀γ ∈ H1(M; Z).



A diagram of spaces and maps

N∗(M, Cn): nonflat holomorphic null curves M → Cn

M∗(M, Rn): nonflat conformal minimal immersions M → Rn

N∗(M, Cn)
φ //

<
��

O(M,A∗)
� � // C (M,A∗)

<N∗(M, Cn) �
� ι //M∗(M, Rn)

ψ

OO

Our main theorem: ι is a weak homotopy equivalence (WHE).

The projection < : F 7→ <F of a null curve to its real part is clearly
a homotopy equivalence.

The map φ is given by F 7→ ∂F/θ, and ψ is given by u 7→ 2∂u/θ.
Hence, if one of the maps φ, ψ is a WHE, then so is the other one.
We prove that both of them are WHEs.

The inclusion O(M,A∗) ↪→ C (M,A∗) is a WHE by the
Oka-Grauert principle (since A∗ is an Oka manifold).



Connected components of the space M∗(M , Rn)

Recall that H1(M; Z) ∼= Zl with l ∈ Z+ ∪ {∞}.
The punctured null quadric An−1

∗ ⊂ Cn is simply connected when n ≥ 4,
while π1(A

2
∗) ∼= Z2 in view of the two-sheeted universal covering

π : C2
∗ = C2 \ {0} → A2

∗, π(u, v) =
(
u2 − v2, i(u2 + v2), 2uv

)
.

Hence, the path components of the space C (M,A2
∗) are in one-to-one

correspondence with the elements of (Z2)
l , and C (M,An−1

∗ ) is path
connected if n ≥ 4.

Corollary

Let M be a connected open Riemann surface with H1(M; Z) ∼= Zl .
Then the path connected components of M∗(M, R3) and N∗(M, C3)
are in one-to-one correspondence with the elements of (Z2)

l .
If n ≥ 4 then M∗(M, Rn) and N∗(M, Cn) are path connected.



Weierstrass representation in dimension n = 3

We illustrate the Corollary by a few examples in dimension n = 3.

Let M be C∗ = C \ {0} or an annulus, with θ = dz .

Since π1(A∗) = Z2, there are precisely two homotopy classes of
holomorphic maps f : M → A∗.

Let π : C2
∗ → A∗ be the universal covering map as above. Note that f is

nullhomotopic if and only if it factors through π.

Consider the Weierstrass representation:

f1 = (1− g2)η, f2 = i(1 + g2)η, f3 = 2gη,

where g is meromorphic and η is holomorphic on M. Assume for
simplicity that g is holomorphic or, equivalently, that η has no zeros.

Then, f factors through π if and only if η has a square root on M.

Indeed, if η has a square root then f = π(
√

η, g
√

η); conversely, if

f = π(u, v) for some holomorphic map (u, v) : M → C2
∗, then u2 = η.



Examples in dimension n = 3

1. A flat null curve: M = C∗ = C \ {0} and f : C∗ → A∗ ⊂ C3 is the
map f (ζ) = ζ(1, i, 0). In this case, g = 0 and η(ζ) = ζ does not have a
square root on M. Thus, the flat null curve

F (ζ) = 1
2 (ζ

2, iζ2, 0), ζ ∈ C∗

lies in the nontrivial isotopy class.

2. The catenoid: M = C∗, g(ζ) = ζ, and η(ζ) = 1/ζ2. Since η has a
square root on M, we are in the trivial isotopy class.
The same holds for the helicoid which is parameterized by C.

3. Henneberg’s surface:

M = C \ {0, 1,−1, i,−i}, g(ζ) = ζ, η(ζ) = 1− ζ−4.

On a small punctured disc centered at one of the points 1, −1, i, or −i,
η does not have a square root, so we are in the nontrivial isotopy class.

On the punctured disc D∗ = D \ {0}, the function η has a square root,
so we are in the trivial isotopy class.

http://mathworld.wolfram.com/Catenoid.html
https://upload.wikimedia.org/wikipedia/commons/c/ce/Helicatenoid.gif
https://en.wikipedia.org/wiki/Henneberg_surface


Meeks’s minimal Möbius strip

4. Double sheeted covering of Meeks’s minimal Möbius strip:

M = C∗, g(ζ) = ζ2
ζ + 1

ζ − 1
, η(ζ) = i

(ζ − 1)2

ζ4
.

Note that η has a square root on M. Despite the pole of g at 1, we get a
factorization through π and we are in the trivial isotopy class.

Let F = u + iv : C∗ → C3 be the null curve with this Weierstrass data.
Then u is invariant with respect to the fixed-point-free antiholomorphic
involution

I(ζ) = −1/ζ̄ on ζ ∈ C∗,

and hence it induces a conformal minimal immersion C∗/I→ R3.

This is Meeks’s complete (proper) minimal Möbius strip in R3 with finite
total curvature −6π.



Meeks’s minimal Möbius strip

W.H. Meeks: The classification of complete minimal surfaces in R3 with
total curvature greater than −8π. Duke Math. J. 48 (1981) 523–535

The illustration: c© Antonio Alarcón.



Parametric h-principle for <N∗(M , Cn) ↪→M∗(M , Rn)

Theorem

Assume that M is an open Riemann surface, Q ⊂ P are compact
Hausdorff spaces, D b M is a smoothly bounded Runge domain, and
u : M × P → Rn (n ≥ 3) is a continuous map satisfying the following:

(a) up = u(· , p) : M → Rn is a nonflat CMI for every p ∈ P;

(b) up |D : D → Rn has vanishing flux for every p ∈ P;

(c) Flux(up) = 0 for every p ∈ Q.

Given ε > 0, there exists a homotopy ut : M × P → Rn (t ∈ [0, 1]) such
that each map utp := ut(· , p) : M → Rn is a nonflat CMI satisfying

(1) utp = up for every (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);

(2) |utp(x)− up(x)| < ε for all x ∈ D and (p, t) ∈ P × [0, 1];

(3) utp |D has vanishing flux for every (p, t) ∈ P × [0, 1];

(4) Flux(u1p) = 0 for every p ∈ P.



The WHE-principle for <N∗(M , Cn) ↪→M∗(M , Rn)

This is the parametric h-principle with approximation for the inclusion

<N∗(M, Cn) = {u ∈M∗(M, Rn) : Flux(u) = 0} ↪−→M∗(M, Rn).

Assuming that this result holds, we now give:

Proof of the WHE-principle.

Let k ∈ Z+. Applying the h-principle with P = Sk (the real k-sphere)
and Q = ∅ shows that the inclusion induced map

πk (<N∗(M, Cn)) −→ πk (M∗(M, Rn)),

is surjective.

Applying the h-principle with P = B
k+1

(the closed ball in Rk+1) and
Q = Sk = bBk+1 shows that the above map is also injective.

Thus, it is an isomorphism for every k ∈ Z+.



Proof of the h-principle for <N∗(M , Cn) ↪→M∗(M , Rn)

Pick a smooth strongly subharmonic Morse exhaustion function
ρ : M → R and exhaust M by sublevel sets

Dj = {x ∈ M : ρ(x) < cj}, j ∈N

where c1 < c2 < c3 < . . . is an increasing sequence of regular values of ρ
such that limj→∞ cj = ∞ and each interval [cj , cj+1] contains at most
one critical value of the function ρ.

We may assume that D = D1.

Let ε > 0 be as in the theorem. Pick a sequence εj > 0 with

∑∞
j=1 εj < ε. Set

utp,1 := up |D1
, (p, t) ∈ P × [0, 1].



The recursive scheme

We recursively construct a sequence of homotopies of CMI’s

utp,j : D j −→ Rn, (p, t) ∈ P × [0, 1], j ∈N

satisfying the following conditions for every j = 2, 3, . . .:

(aj ) utp,j = up |D j
for (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);

(bj ) ‖utp,j − utp,j−1‖D j−1
< εj for all (p, t) ∈ P × [0, 1];

(cj ) Flux(utp,j |D j−1
) = Flux(utp,j−1) for every (p, t) ∈ P × [0, 1];

(dj ) Flux(u1p,j ) = 0 on D j for every p ∈ P.

These conditions imply that the limit

utp = lim
j→∞

utp,j : M → Rn

exists and satisfies the conclusion of the theorem.
Indeed, Conditions (1)–(4) follow from (aj )–(dj ), respectively.



The noncritical case

(a) The noncritical case: ρ has no critical values in [cj , cj+1].

Choose a Runge homology basis B = {γi : i = 1, . . . , l} for H1(D j ; Z),
such that B′ = {γ1, . . . , γm} for some m ∈ {0, . . . , l} is a homology
basis for H1(D; Z).

Then, B is also a homology basis for H1(D j+1; Z).

Denote by P the period map associated to B:

P(f ) =
(∫

γi

f θ

)
i=1,...,l

∈ (Cn)l , f ∈ A(D j ,A∗).

Also, P ′ : A(D,A∗)→ (Cn)m is the period map with respect to B′.



The noncritical case, continued

Consider the continuous family of nonflat holomorphic maps

f tp := 2∂utp,j/θ : D j −→ A∗, p ∈ P, t ∈ [0, 1].

Conditions on utp,j : D j → Rn imply the following:

<P(f tp ) = 0, (p, t) ∈ P × [0, 1];

P ′(f tp |D) = 0, (p, t) ∈ P × [0, 1];

P(f 1p ) = 0, p ∈ P.

We embed f tp as the core f tp = f tp,0 of a period dominating spray

f tp,ζ : D j −→ A∗, ζ ∈ B ⊂ CN , p ∈ P, t ∈ [0, 1],

i.e., the period map

B 3 ζ 7−→ P(f tp,ζ) =
(∫

γi

f tp,ζ θ

)
i=1,...,l

∈ (Cn)l

is submersive at ζ = 0 for every (p, t) ∈ P × [0, 1].



The noncritical case, continued

Since A∗ is an Oka manifold and D j is a deformation retract of D j+1,
the parametric Oka property allows us to approximate the spray
f tp,ζ : D j → A∗ by a holomorphic spray

g t
p,ζ : D j+1 −→ A∗, (p, t) ∈ P × [0, 1], ζ ∈ rB

for some r ∈ (1/2, 1). If the approximation is sufficiently close, the
implicit function theorem gives (in view of the period domination
property of the spray f tp,ζ) a continuous map

ζ : P × [0, 1] −→ rB ⊂ CN ,

vanishing on (P × {0}) ∪ (Q × [0, 1]), such that the homotopy of
holomorphic maps

f̃ tp := g t
p,ζ(p,t) : D j+1 −→ A∗, (p, t) ∈ P × [0, 1]

satisfies the following period conditions:

P(f̃ tp ) = P(f tp ), (p, t) ∈ P × [0, 1].



The noncritical case, conclusion

Assume that the set D j (and hence D j+1) is connected.

Choose a point x0 ∈ D j and set for (p, t) ∈ P × [0, 1]:

utp,j+1(x) := utp,j (x0) +
∫ x

x0
<(f̃ tp θ), x ∈ D j+1.

Then, utp,j+1 : D j+1 → Rn is a continuous family of conformal minimal

immersions satisfying conditions (aj+1)–(dj+1).

In particular,
P(f̃ 1p ) = P(f 1p ) = 0 for p ∈ P

and hence u1p,j+1 has vanishing flux.

If D j is disconnected, we apply the same argument on the components.



The critical case

(a) The critical case: ρ contains a unique critical point x0 ∈ Dj+1 \D j .

Then, D j+1 deformation retracts onto a compact set S = D j ∪ E , where

E ⊂ M \Dj is an embedded arc attached with both endpoints to D j .

It suffices to construct an isotopy utp,j+1 satisfying (aj+1)–(dj+1) on a

neighborhood of S and apply the noncritical case to extend it to D j+1.

The key to the proof is to find smooth extension of the map
f tp = 2∂utp,j/θ : D j → A∗ across the arc E with the correct integral

in order to ensure the required period conditions on S = D j ∪ E .

This is accomplished by the following lemma whose proof uses a
parametric version of Gromov’s convex integration lemma.

Gromov, 1973; cf. D. Spring: Convex integration theory. Solutions to
the h-principle in geometry and topology. Birkhäuser/Springer Basel AG,
Basel, 2010.



An application of Gromov’s convex integration lemma

Lemma

Let Q ⊂ P be compact Hausdorff spaces and let σ : P × [0, 1]→ A∗ be
a continuous map. Consider σp = σ(p, · ) : [0, 1]→ A∗ as a family of
paths in A∗ depending continuously on the parameter p ∈ P . Set

αp =
∫ 1

0
σp(s) ds ∈ Cn, p ∈ P.

Given a continuous family αt
p ∈ Cn (p ∈ P, t ∈ [0, 1]) such that

αt
p = αp for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]),

there exists a homotopy of paths σt
p : [0, 1]→ A∗ (p ∈ P, t ∈ [0, 1])

satisfying the following conditions:

(i) σt
p = σp for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);

(ii) σt
p(0) = σp(0) and σt

p(1) = σp(1) for all p ∈ P and t ∈ [0, 1];

(iii)
∫ 1
0 σt

p(s) ds = αt
p for all p ∈ P and t ∈ [0, 1].



Main idea of the proof

Gromov’s 1-dimensional Convex Integration Lemma (1973):

Let Ω be an open connected set in a Banach space B. Fix a path
σ0 : [0, 1]→ Ω, and let Γ be the set of all paths σ : [0, 1]→ Ω which are
homotopic to σ0 with fixed ends σ(0) = σ0(0), σ(1) = σ0(1). Then,

I(Γ) :=
{∫ 1

0
σ(s) ds : σ ∈ Γ

}
= Co(Ω).

The main idea is to approximate the integral
∫ 1
0 σ(s) ds by Riemann

sums ∑N
i=1 σ(si )δi , which are convex combinations of points on the path.

We can represent any given vector α ∈ Co(Ω) as α = ∑N
i=1 pi δi with

pi ∈ Ω and ∑N
i=1 δi = 1 for some big N. Construct a path σ ∈ Γ which

spends approximately the time δi at pi for each i . Then,∫ 1

0
σ(s) ds ≈

N

∑
i=1

pi δi = α.

This shows that I(Γ) is open, convex, and dense in Co(Ω); hence it
equals Co(Ω). A similar argument applies in the parametric case.



How is this is lemma used?

We take B = Cn. The convex hull of the null quadric equals Cn:
Co(A) = Cn. Hence we can choose numbers 0 < r < R such that

{αt
p ∈ Cn : p ∈ P, t ∈ [0, 1]} ⊂ Co(Ar ,R )

where Ar ,R = {z ∈ A : r ≤ |z | ≤ R}.

Let Ω ⊂ Cn be a thin tubular neighborhood of Ar ,R . We apply Gromov’s
lemma with the pair Ω ⊂ Co(Ω) to get a deformation (σt

p) which enjoys
properties (i), (ii), and with (iii) replaced by an approximate condition∣∣∣∣∫ 1

0
σt
p(s) ds − αt

p

∣∣∣∣ < ε, p ∈ P, t ∈ [0, 1].

The small error is caused by projecting the paths from Ω to Ar ,R .

This is applied on a segment I ⊂ E of the arc E . The error is corrected
by using period dominating sprays on another disjoint segment I ′ ⊂ E .



Absolute neighbourhood retracts (ANR)

Much of basic algebraic topology is developed for CW complexes, for
example Whitehead’s theorem: A weak homotopy equivalence between
CW complexes is a homotopy equivalence.

Spaces of maps usually are not CW complexes, but sometimes they can
be shown to have the homotopy type of a CW complex by showing that
they are ANR. Whitehead’s theorem clearly holds for spaces with the
homotopy type of a CW complex.

A metric space X is ANR if whenever it is embedded as a closed
subspace of a metric space Y , some nbhd of X in Y retracts onto X .
There are several other nontrivially equivalent characterisations.

One is useful in practice: the Dugundji-Lefschetz characterisation.
Assuming that M is a surface with finitely generated H1(M; Z), the
DL-characterisation can be verified for our mapping spaces by using the
parametric h-principle with approximation that we proved.



Conclusion

Let M be a connected open Riemann surface and n ≥ 3.

N∗(M, Cn) //

��

O(M,A∗)
� � // C (M,A∗)

<N∗(M, Cn) �
� //M∗(M, Rn)

OO

These spaces all have the same weak homotopy type, and when M has
finite topological type even the same strong homotopy type, as the space
H of continuous maps from a wedge of circles to A∗.

< : Cn → Rn gives A∗ the structure of a fibre bundle, whose fibre is
Sn−2, over Rn \ {0}, which is homotopy equivalent to Sn−1.

Thus the structure of H can be understood in terms of spheres and
their loop spaces. The homotopy groups of H can be calculated in
terms of homotopy groups of spheres.


