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Abstract

We shall prove a sharp estimate on the norm of the differential of a
harmonic map from the unit disc D in C to the unit ball Bn in Rn, n ≥ 2,
at any point where the map is conformal.

In dimension n = 2, this generalizes the classical Schwarz–Pick lemma to
harmonic maps D→ D which are conformal (only) at the reference point.

In dimensions n ≥ 3 it gives the optimal Schwarz–Pick lemma for
conformal minimal discs D→ Bn.

We shall then give a differential-geometric interpretation, showing that
every conformal harmonic immersion M → Bn from a hyperbolic
conformal surface is distance-decreasing in the Poincaré metric on M and
the Cayley–Klein metric CK on the ball Bn, and the extremal maps are
the conformal embeddings of the disc D onto affine discs in Bn.

Using these results, we lay foundations of the hyperbolicity theory for
domains in Rn based on minimal surfaces.
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The classical Schwarz–Pick Lemma

Let D = {z ∈ C : |z | < 1} denote the unit disc.

The following result is due to Karl Hermann Amandus Schwarz, 1869, with
an improvement by Georg Alexander Pick, 1915.

Theorem (Schwarz–Pick lemma for holomorphic maps)

If f : D→ D is a holomorphic map then for every z ∈ D we have that

|f ′(z)| ≤ 1− |f (z)|2
1− |z |2 , (1)

with equality at one point if and only if f is a biholomorphism of the disc D.

By using precompositions and postcompositions by holomorphic automorphisms
of D, the proof reduces to the case z = 0 and f (0) = 0. In this special case, it
follows from the maximum principle applied to the holomorphic function
g(z) = f (z)/z on D.

This is the most fundamental rigidity result in complex analysis which leads to
the theory of Kobayashi hyperbolic manifolds.



Differential-theoretic interpretation

Let P denote the Poincaré metric on the disc D = {|z | < 1}:

P(z , ξ) =
|ξ|

1− |z |2 , z ∈ D, ξ ∈ TzC ∼= C.

Then, the Schwarz–Pick lemma is equivalent to the statement that for any
holomorphic map f : D→ D we have

P(f (z), dfz (ξ)) ≤ P(z , ξ), z ∈ D, ξ ∈ C,

with equality at one point if and only if f is an automorphism of D,

f (z) = eit
z + a

1 + āz
, z , a ∈ D, t ∈ R.

That is, holomorphic maps D→ D are distance-decreasing in the Poincaré
metric, and orientation-preserving isometries are precisely the elements of
Aut(D). The analogus conclusion holds for the Poincaré distance function

distP (z ,w) =
1

2
log

(
|1− zw |+ |z −w |
|1− zw | − |z −w |

)
, z ,w ∈ D.



Schwarz–Pick Lemma for harmonic maps which are
conformal at a point

The following special case of our main result gives the same conclusion at a
given point for a much bigger class of maps.

Corollary
Let f : D→ D be a harmonic map. If f is conformal at a point z ∈ D, then at
this point we have that

|f ′(z)| = ‖dfz‖ ≤
1− |f (z)|2

1− |z |2 , (2)

with equality if and only if f is a conformal diffeomorphism of the disc D.

By using precompositions by holomorphic automorphisms of D, the proof
reduces to the case z = 0. On the other hand, postcompositions of harmonic
maps D→ D by holomorphic automorphism of D need not be harmonic, so
we cannot exchange f (0) and 0. Also, f (z)/z need not be harmonic. The
standard proof of the classical Schwarz–Pick lemma breaks down at this point.

Without conformality, this fails for some harmonic diffeomorphisms of D.



Schwarz-Pick lemma for harmonic maps into balls

Theorem (1)

Let f : D→ Bn is a harmonic map for some n ≥ 2 which is conformal at a
point z ∈ D. Denote by θ ∈ [0, π/2] the angle between the vector f (z) and
the plane dfz (R2). Then at this point we have that

‖dfz‖ ≤
1− |f (z)|2

1− |z |2
1√

1− |f (z)|2 sin2 θ
,

with equality if and only if f is a conformal diffeomorphism onto the affine disc
Σ = (f (z) + dfz (R2)) ∩Bn.

This is a precise Schwarz–Pick lemma for conformal harmonic maps
D→ Bn for any n ≥ 2, saying that the extremal maps are precisely the
conformal parameterizations of affine linear discs in the ball.

In dimension n = 2 we have θ = 0, so the previous corollary is a special case.



An estimate without conformality

Note that for a fixed value of |f (z)| ∈ [0, 1), the maximum of the right hand

side over angles θ ∈ [0, π/2] equals

√
1−|f (z)|2
1−|z |2 and is reached precisely at

θ = π/2, i.e, when the vector f (z) is orthogonal to Λ = dfz (R2), unless
f (z) = 0 in which case it equals 1

1−|z |2 for all θ. We show that this weaker

estimate holds for all harmonic maps D→ Bn.

Theorem (2)

For every harmonic map f : D→ Bn (n ≥ 2) we have that

1√
2
|∇f (z)| ≤

√
1− |f (z)|2
1− |z |2 , z ∈ D. (3)

Equality holds for some z0 ∈ D if f (z0) is orthogonal to the 2-plane
Λ = dfz0 (R

2) and f is a conformal diffeomorphism onto the affine disc
(f (z0) + Λ) ∩Bn.

In particular, if f (z0) = 0 then |∇f (z0)| ≤
√
2

1−|z0|2 , with equality if and only if

f is a conformal diffeomorphism onto the linear disc Λ ∩Bn.



Quantitative Calabi–Yau problem

Theorem 2 implies a bound on the area of the image of f . It is classical that
for a C 1 map f : D → Rn (n ≥ 2) from a domain D ⊂ R2 we have

Area f (D) ≤ 1

2

∫
D
|∇f |2dxdy ,

with equality if and only if f is conformal. Hence, if f : D→ Bn is a harmonic
map then Theorem 2 implies for every 0 < r < 1 that

Area f (rD) ≤
∫
|z |<r

1− |f (z)|2
(1− |z |2)2 dxdy ≤ πr2

1− r2
, z = x + iy .

The second inequality is obtained by deleting the term −|f (z)|2 in the
numerator, so it may be far from optimal. However, assuming that |f | ≤ c for
some 0 < c < 1, it is optimal up to a multiplicative constant.

Problem (Quantitative Calabi–Yau problem for minimal discs)

Are there complete minimal discs in the ball achieving the asymptotic rate of
growth of the area in the above inequality up to a multiplicative constant?



Discussion

The precise upper bound on the size of the gradient of harmonic maps
f : D→ Bn with a given centre f (0) = x ∈ Bn \ {0} is not known, except for
n = 1. The harmonic Schwarz lemma says that any harmonic function
f : Bm → (−1,+1) for m ≥ 2 satisfies the estimate

|∇f (0)| ≤ 2
Vol(Bm−1)

Vol(Bm)
,

with equality if and only if f = U ◦ R where R is an orthogonal rotation on Rm

and U is the harmonic function on Bm whose boundary values equal +1 on the
upper hemisphere S+ and −1 on the lower hemisphere S−. In this case,
f (0) = 0. For m = 2 the inequality reads |∇f (0)| ≤ 4

π . A simple proof was
given by Kalaj and Vuorinen (2012) who showed more generally that any
harmonic function f : D→ (−1,+1) satisfies the sharp estimate

|∇f (z)| ≤ 4

π

1− |f (z)|2
1− |z |2 for every z ∈ D.

This follows from the classical Schwarz–Pick lemma applied to the holomorphic
function φ ◦ F : D→ D, where F = f + ig : D→ Ω = (−1,+1)× iR is a
holomorphic extension of f and φ : Ω→ D is a biholomorphism.



Proof of the main theorem, 1

It suffices to prove Theorem 1 for z = 0. Indeed, with f and z as in the
theorem, let φz ∈ Aut(D) be such that φz (0) = z . The harmonic map
g = f ◦ φz : D→ Bn is then conformal at the origin. Since |φ′z (0)| = 1− |z |2,
the estimate follows from the same estimate for the map g applied at z = 0.

We now give an explicit conformal parameterization of affine discs in Bn.
We may use postcomposition of maps D→ Bn by orthogonal rotations of Rn.
Fix a point q ∈ Bn and a 2-plane 0 ∈ Λ ⊂ Rn, and consider the affine disc
Σ = (q + Λ) ∩Bn. Let p ∈ Σ be the closest point to the origin.

If n = 2 then p = 0 and Σ = D. Suppose now that n = 3; the case n > 3 will
be the same. By an orthogonal rotation we may assume that

p = (0, 0, p) and Σ =
{
(x , y , p) : x2 + y2 < 1− p2

}
.

Let q = (b1, b2, p) ∈ Σ, and let θ denote the angle between q and Σ. Set

c =
√

1− p2 =
√

1− |q|2 sin2 θ, a =
b1 + ib2

c
∈ D, |a| = |q| cos θ

c
.

We orient Σ by the tangent vectors ∂x , ∂y .



Proof, 2

Every orientation preserving conformal parameterization f : D→ Σ with
f (0) = q is then of the form

f (z) =

(
c < eitz + a

1 + āeitz
, c = eitz + a

1 + āeitz
, p

)
=

(
c

eitz + a

1 + āeitz
, p

)
for z ∈ D and some t ∈ R. If n = 2 then p = 0, c = 1, and we drop the last
coordinate. We have

‖df0‖ = c (1− |a|2) = c2 − c2|a|2
c

=
1− |q|2 sin2 θ − |q|2 cos2 θ

c

=
1− |q|2√

1− |q|2 sin2 θ
=

1− |f (0)|2√
1− |f (0)|2 sin2 θ

.

This shows that the conformal parameterizations of affine discs satisfy the
equality in the theorem at every point.



Proof, 3

Let f : D→ B3 be as above, where we may assume that t = 0.

Suppose that g : D→ B3 is a harmonic map such that g(0) = f (0), g is
conformal at 0, and dg0(R

2) = df0(R
2). Up to replacing g by g(eitz) or

g(eit z̄) for some t ∈ R, we may assume that

dg0 = r df0 for some r > 0.

We must prove that r ≤ 1, and that r = 1 if and only if g = f .

Consider the holomorphic map F : D→ Ω = B3 × iR3 given by

F (z) =

(
c

z + a

1 + āz
,−c i z + a

1 + āz
, p

)
, z ∈ D.

Then, f = <F . Let G : D→ Ω be the holomorphic map with <G = g and
G (0) = F (0). By the Cauchy–Riemann equations, condition dg0 = r df0
implies

G ′(0) = r F ′(0).



Proof, 4

It follows that the map (F (z)− G (z))/z is holomorphic on D and

lim
z→0

F (z)− G (z)

z
= F ′(0)− G ′(0) = (1− r)F ′(0).

Since g : D→ B3 is a bounded harmonic map, it has a nontangential
boundary value at almost every point of the circle T = bD. Since the Hilbert
transform is an isometry on the Hilbert space L2(T), the same is true for G .

Denote by 〈·, ·〉 the complex bilinear form on Cn given by

〈z ,w〉 =
n

∑
i=1

ziwi

for z ,w ∈ Cn. Note that on vectors in Rn this is the Euclidean inner product.



Proof, 5

For each z = eit ∈ bD the vector f (z) ∈ bB3 is the unit normal vector to the
sphere bB3 at the point f (z). Since B3 is strongly convex, we have that

<
〈
F (z)− G (z), f (z)

〉
=
〈
f (z)− g(z), f (z)

〉
≥ 0 a.e. z ∈ bD,

and the value is positive for almost every z ∈ bD if and only if g 6= f .

Consider the function f̃ on the circle bD given by

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

Explicit calculation, taking into account zz̄ = 1, shows that

f̃ (z) =


c
2

(
1 + a2 + 4(<a)z + (1 + ā2)z2

)
c
2

(
i(1− a2) + 4(=a)z + i(ā2 − 1)z2

)
p (z + a)(1 + āz)

 .



Conclusion of the proof

We extend f̃ to all z ∈ C by letting it equal the holomorphic polynomial map
on the right hand side above. Since |1 + āz |2 > 0 for z ∈ D, we have

h(z) := <
〈
F (z)− G (z), |1 + āz |2f (z)

〉
=

〈
f (z)− g(z), |1 + āz |2f (z)

〉
≥ 0 a.e. z ∈ bD,

and h > 0 almost everywhere on bD if and only if g 6= f . From the definition
of f̃ we see that

h(z) = <
〈
F (z)− G (z)

z
, f̃ (z)

〉
a.e. z ∈ bD

Since the maps (F (z)− G (z))/z and f̃ (z) are holomorphic on D, h extends
to a nonnegative harmonic function on D which is positive on D unless f = g .
At z = 0 we have

h(0) = <
〈
F ′(0)− G ′(0), f̃ (0)

〉
= (1− r)<

〈
F ′(0), f̃ (0)

〉
≥ 0,

with equality if and only if f = g . Applying this argument to the linear map
g(z) = f (0) + r df0(z) (z ∈ D) for a small r > 0 we get < 〈F ′(0), f̃ (0)〉 > 0.
It follows that r ≤ 1, with equality if and only if g = f .



Discussion

The above proof is motivated by the seminal work of Lempert (1981) on
Kobayashi extremal holomorphic discs in bounded strongly convex domains
Ω ⊂ Cn with smooth boundaries.

In Lempert’s terminology, a proper holomorphic disc F : D→ Ω extending
continuously to D is a stationary disc if, denoting by ν(z) the unit normal to
bΩ along the boundary circle F (bD), there is a positive function q > 0 on bD

such that the function z q(z)ν(z) extends from the circle |z | = 1 to a
holomorphic function f̃ (z) on D. The use of such a function, along with the
convexity of the domain, enables the arguments used above to show that a
stationary disc F is the unique Kobayashi extremal disc in Ω through the point
F (a) in the tangent direction F ′(a) for every a ∈ D.

In our case ν(z) = f (z), which is real-valued, and a suitable function f̃ is

f̃ (z) = z |1 + āz |2f (z), |z | = 1.

The fact that Ω = Bn × iRn is an unbounded tube does not matter since the
affine conformal discs in Bn lift to proper holomorphic discs in Ω without any
boundary points at infinity.



The Cayley–Klein metric on the ball

We can interpret Theorem 1 as the distance-decreasing property of conformal
harmonic maps D→ Bn with respect to the following Riemannian metric CK
on Bn, called the Cayley–Klein metric:

CK(x, v) =

√
1− |x|2 sin2 φ

1− |x|2 |v|, x ∈ Bn, v ∈ Rn,

where φ ∈ [0, π/2] is the angle between the vector x and the line Rv ⊂ Rn.
Equivalently,

CK(x, v)2 =
(1− |x|2)|v|2 + |x · v|2

(1− |x|2)2 =
|v|2

1− |x|2 +
|x · v|2

(1− |x|2)2 .

The Cayley–Klein model, also called the Beltrami–Klein model of hyperbolic
geometry was introduced by Arthur Cayley (1859) and Eugenio Beltrami
(1968), and it was developed by Felix Klein (1871, 1873). The underlying
space is the n-dimensional unit ball, and geodesics are straight line segments
with ideal endpoints on the boundary sphere. This is a special case of the
Hilbert metric on convex domains in Rn, introduced by David Hilbert in 1895.



Comments on the Cayley–Klein metric

The Cayley–Klein metric CK is the restriction of the Kobayashi metric on the
unit ball Bn

C ⊂ Cn to points x ∈ Bn = Bn
C ∩Rn and tangent vectors in

TxRn ∼= Rn.

It also equals 1/
√
n+ 1 times the Bergman metric on Bn

C restricted to Bn and
real tangent vectors. (On the ball of Cn, most holomorphically invariant
metrics coincide up to scalar factors.)

The metric CK is not conformally equivalent to the Euclidean metric on Bn.

It coincide with the Poincaré metric on Bn, given by
|v|

1−|x|2 , in the radial

direction parallel to the base point x ∈ Bn, but is strictly smaller in the
direction perpendicular to x. We have that

|v|√
1− |x|2

≤ CK(x, v) ≤ |v|
1− |x|2 ,

with the upper bound reached for φ = 0 and the lower bound for φ = π/2.



Comparison with a Finsler metric

The inequality in Theorem 1 can be rewritten as√
1− |f (z)|2 sin2 θ

1− |f (z)|2 |dfz (ξ)| ≤
|ξ|

1− |z |2 , ξ ∈ TzD = R2,

where θ ∈ [0, π/2] is the angle between f (z) and the 2-plane Λ = dfz (R2).

Let G2(R
n) denote the Grassmann manifold of all 2-planes in Rn, and define

M(x, Λ) =

√
1− |x|2 sin2 θ

1− |x|2 , x ∈ Bn, Λ ∈ G2(R
n),

where θ ∈ [0, π/2] is the angle between x and Λ. Note that

M(x, Λ) = inf
{

1/‖df0‖ : f ∈ CH(D, Bn), f (0) = x, df0(R
2) = Λ}.



Comparison with a Finsler metric

If v 6= 0 is a vector having angle φ ∈ [0, π/2] with the line Rx, then every
2-plane Λ containing v makes an angle θ ∈ [0, φ] with x, and the maximum of
θ over all such Λ equals φ. Hence,

CK(x, v)/|v| = min
{
M(x, Λ) : Λ ∈ G2(R

n), 0 6= v ∈ Λ
}

,

M(x, Λ) = max
{
CK(x, v)/|v| : v ∈ Λ

}
for all Λ ∈ G1(R

n).

Applying this with x = f (z) and v = dfz (ξ) ∈ Λ = dfz (R2) gives

CK
(
f (z), dfz (ξ)

)
≤ M(f (z), dfz (R

2))· |dfz (ξ)|

=

√
1− |f (z)|2 sin2 θ

1− |f (z)|2 |dfz (ξ)|

≤ |ξ|
1− |z |2 = PD(z , ξ).

The first inequality is equality if and only if the angle φ between the line f (z)R
and the vector dfz (ξ) ∈ Λ equals θ.

The second inequality is equality of and only if f is a conformal diffeomorphism
onto the linear disc (f (z) + dfz (R2)) ∩Bn.



Conformal harmonic maps are distance-decreasing

Corollary

If f : D→ Bn is a conformal harmonic map then

CK
(
f (z), dfz (ξ)

)
≤ |ξ|

1− |z |2 = PD(z , ξ), z ∈ D, ξ ∈ R2, (4)

with equality for some z ∈ D and ξ ∈ R2 \ {0} if and only if f is a conformal
diffeomorphism onto the affine disc Σ = (f (z) + dfz (R2)) ∩Bn and the vector
dfz (ξ) is tangent to the diameter of Σ through the point f (z).

The analogous conclusion holds if D is replaced by any hyperbolic conformal
surface M with the Poincaré metric PM . Equality can only occur if M = D.

A hyperbolic conformal surface is one whose universal conformal covering is the
disc. One introduces the Poincaré metric on such surface M by asking that the
universal covering projection h : D→ M be a local isometry. The result is
trivial unless M is of hyperbolic type, i.e., it admits bounded harmonic
functions.



A pseudodistance on a domain in Rn

There is a natural procedure to define a pseudodistance function ρ = ρD on
any domain D ⊂ Rn using conformal minimal discs D→ D. It is motivated by
Kobayashi’s construction of his pseudometric on complex manifolds.

Fix a pair of points x, y ∈ D and consider finite chains of conformal harmonic
discs fi : D→ D and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk (ak ) = y.

To any such chain we associate the number

k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

≥ 0.

The i-th term in the sum is the Poincaré distance from 0 to ai in D.

The pseudodistance ρD : D ×D → R+ is the infimum of the numbers obtained
in this way. Clearly it satisfies the triangle inequality.

If D is a domain in Cn and we use only holomorphic discs, then the
corresponding pseudodistance ρ is precisely the one of Kobayashi.



Distance-decreasing property

Lemma
(A) Conformal harmonic maps M → D from any hyperbolic conformal surface
are distance-decreasing in the Poincaré distance function on M and the
distance ρD on D.

(B) ρD is the largest pseudodistance function on D for which this holds.

Proof of (A) For M = D, this follows from the definition since every
conformal harmonic map f : D→ D is a candidate for computing ρD and we
are taking the infimum. For general M, the result follows by precomposing f by
a universal conformal covering h : D→ M.

Proof of (B) Suppose that τ is a pseudodistance on D such that every
conformal harmonic map D→ D is distance-decreasing. Let fi : D→ D and
ai ∈ D for i = 1, . . . , k be a chain connecting the points x, y ∈ D. Then,

τ(x, y) ≤
k

∑
i=1

τ(fi (0), fi (ai )) ≤
k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

.

Taking the infimum over all such chains gives τ(x, y) ≤ ρD (x, y).



ρBn = distCK

Theorem
On the ball Bn, we have ρBn = distCK.

Proof Fix a pair of distinct points x, y ∈ Bn. Let p be the point on the affine
line L through x and y which is closest to the origin.

Let Λ ⊂ Rn be the affine 2-plane containing L and such that p is orthogonal to
Λ (such Λ is unique unless p = 0). Then, Σ := Λ ∩Bn is an affine disc, and
the points x and y lie on the diameter L∩Bn of Σ.

These diameters are geodesics (length minimizers) for the Cayley–Klein metric
on Bn, and distCK(x, y) equals the Poincaré distance between x and y within
the affine disc Σ.

By the previous lemma applied with τ = distCK, we have
distCK(x, y) ≤ ρBn (x, y). Since the affine disc Σ is a candidate for computing
ρBn (x, y), equality follows.



Hyperbolic domains

Definition (Hyperbolic domains in Rn)

A domain D ⊂ Rn (n ≥ 3) is hyperbolic if the pseudodistance ρD is a distance
function on D, and is complete hyperbolic if (D, ρD ) is a complete metric
space (i.e., Cauchy sequences converge).

Example

(A) The ball Bn ⊂ Rn (n ≥ 3) is complete hyperbolic since the Cayley–Klein
metric is complete.

(B) Every bounded domain D ⊂ Rn is hyperbolic since it is contained in a ball.
However, it need not be complete hyperbolic.

(C) Every bounded strongly convex domain in Rn is complete hyperbolic.

(D) The half-space Hn = {x = (x1, . . . , xn) ∈ Rn : xn > 0} is not hyperbolic
since the pseudodistance ρHn vanishes on planes xn = const.



Problems

Problem

(A) Is the complement of a catenoid in R3 hyperbolic?

(B) Is every bounded strongly mean-convex domain in R3 complete
hyperbolic?
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