Schwarz-Pick lemma for harmonic maps which are conformal at a point

Franc Forstnerič

Univerza v Ljubljani

University of Granada, 12 March 2021

Abstract

- We shall prove a sharp estimate on the norm of the differential of a harmonic map from the unit disc $\mathbb D$ in $\mathbb C$ to the unit ball $\mathbb B^n$ in $\mathbb R^n$, $n\geq 2$, at any point where the map is conformal.
- In dimension n=2, this generalizes the classical Schwarz–Pick lemma to harmonic maps $\mathbb{D} \to \mathbb{D}$ which are conformal (only) at the reference point.
- In dimensions n ≥ 3 it gives the optimal Schwarz-Pick lemma for conformal minimal discs D → Bⁿ.
- We shall then give a differential-geometric interpretation, showing that every conformal harmonic immersion $M \to \mathbb{B}^n$ from a hyperbolic conformal surface is distance-decreasing in the Poincaré metric on M and the Cayley–Klein metric \mathcal{CK} on the ball \mathbb{B}^n , and the extremal maps are the conformal embeddings of the disc \mathbb{D} onto affine discs in \mathbb{B}^n .
- Using these results, we lay foundations of the hyperbolicity theory for domains in Rⁿ based on minimal surfaces.

F.F. & D.Kalaj, Hyperbolicity theory for conformal minimal surfaces in \mathbb{R}^n . https://arxiv.org/abs/2102.12403

The classical Schwarz-Pick Lemma

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ denote the unit disc.

The following result is due to Karl Hermann Amandus Schwarz, 1869, with an improvement by Georg Alexander Pick, 1915.

Theorem (Schwarz–Pick lemma for holomorphic maps)

If $f:\mathbb{D} o \mathbb{D}$ is a holomorphic map then for every $z\in \mathbb{D}$ we have that

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2},$$
 (1)

with equality at one point if and only if f is a biholomorphism of the disc \mathbb{D} .

By using precompositions and postcompositions by holomorphic automorphisms of \mathbb{D} , the proof reduces to the case z=0 and f(0)=0. In this special case, it follows from the maximum principle applied to the holomorphic function g(z)=f(z)/z on \mathbb{D} .

This is the most fundamental rigidity result in complex analysis which leads to the theory of Kobayashi hyperbolic manifolds.

Differential-theoretic interpretation

Let \mathcal{P} denote the **Poincaré metric** on the disc $\mathbb{D} = \{|z| < 1\}$:

$$\mathcal{P}(z,\xi) = \frac{|\xi|}{1-|z|^2}, \qquad z \in \mathbb{D}, \ \xi \in \mathcal{T}_z \mathbb{C} \cong \mathbb{C}.$$

Then, the Schwarz–Pick lemma is equivalent to the statement that for any holomorphic map $f:\mathbb{D}\to\mathbb{D}$ we have

$$\mathcal{P}(f(z), df_z(\xi)) \leq \mathcal{P}(z, \xi), \quad z \in \mathbb{D}, \ \xi \in \mathbb{C},$$

with equality at one point if and only if f is an automorphism of \mathbb{D} ,

$$f(z) = e^{it} \frac{z+a}{1+\bar{a}z}, \quad z, a \in \mathbb{D}, \ t \in \mathbb{R}.$$

That is, holomorphic maps $\mathbb{D} \to \mathbb{D}$ are distance-decreasing in the Poincaré metric, and orientation-preserving isometries are precisely the elements of $\operatorname{Aut}(\mathbb{D})$. The analogus conclusion holds for the Poincaré distance function

$$\mathrm{dist}_{\mathcal{P}}(z,w) = \frac{1}{2}\log\left(\frac{|1-z\overline{w}|+|z-w|}{|1-z\overline{w}|-|z-w|}\right), \quad z,w \in \mathbb{D}.$$

Schwarz-Pick Lemma for harmonic maps which are conformal at a point

The following special case of our main result gives the same conclusion at a given point for a much bigger class of maps.

Corollary

Let $f:\mathbb{D}\to\mathbb{D}$ be a harmonic map. If f is conformal at a point $z\in\mathbb{D}$, then at this point we have that

$$|f'(z)| = ||df_z|| \le \frac{1 - |f(z)|^2}{1 - |z|^2},$$
 (2)

with equality if and only if f is a conformal diffeomorphism of the disc \mathbb{D} .

By using precompositions by holomorphic automorphisms of $\mathbb D$, the proof reduces to the case z=0. On the other hand, postcompositions of harmonic maps $\mathbb D\to\mathbb D$ by holomorphic automorphism of $\mathbb D$ need not be harmonic, so we cannot exchange f(0) and 0. Also, f(z)/z need not be harmonic. The standard proof of the classical Schwarz–Pick lemma breaks down at this point.

Without conformality, this fails for some harmonic diffeomorphisms of \mathbb{D} .

Schwarz-Pick lemma for harmonic maps into balls

Theorem (1)

Let $f: \mathbb{D} \to \mathbb{B}^n$ is a harmonic map for some $n \geq 2$ which is conformal at a point $z \in \mathbb{D}$. Denote by $\theta \in [0, \pi/2]$ the angle between the vector f(z) and the plane $df_z(\mathbb{R}^2)$. Then at this point we have that

$$\|df_z\| \leq \frac{1-|f(z)|^2}{1-|z|^2} \frac{1}{\sqrt{1-|f(z)|^2\sin^2\theta}},$$

with equality if and only if f is a conformal diffeomorphism onto the affine disc $\Sigma = (f(z) + df_z(\mathbb{R}^2)) \cap \mathbb{B}^n$.

This is a precise Schwarz–Pick lemma for conformal harmonic maps $\mathbb{D} \to \mathbb{B}^n$ for any $n \geq 2$, saying that the extremal maps are precisely the conformal parameterizations of affine linear discs in the ball.

In dimension n=2 we have $\theta=0$, so the previous corollary is a special case.

An estimate without conformality

Note that for a fixed value of $|f(z)| \in [0,1)$, the maximum of the right hand side over angles $\theta \in [0,\pi/2]$ equals $\frac{\sqrt{1-|f(z)|^2}}{1-|z|^2}$ and is reached precisely at $\theta=\pi/2$, i.e, when the vector f(z) is orthogonal to $\Lambda=df_z(\mathbb{R}^2)$, unless f(z)=0 in which case it equals $\frac{1}{1-|z|^2}$ for all θ . We show that this weaker estimate holds for all harmonic maps $\mathbb{D}\to\mathbb{B}^n$.

Theorem (2)

For every harmonic map $f: \mathbb{D} \to \mathbb{B}^n \ (n \geq 2)$ we have that

$$\frac{1}{\sqrt{2}}|\nabla f(z)| \leq \frac{\sqrt{1-|f(z)|^2}}{1-|z|^2}, \quad z \in \mathbb{D}.$$
 (3)

Equality holds for some $z_0 \in \mathbb{D}$ if $f(z_0)$ is orthogonal to the 2-plane $\Lambda = df_{z_0}(\mathbb{R}^2)$ and f is a conformal diffeomorphism onto the affine disc $(f(z_0) + \Lambda) \cap \mathbb{B}^n$.

In particular, if $f(z_0) = 0$ then $|\nabla f(z_0)| \leq \frac{\sqrt{2}}{1 - |z_0|^2}$, with equality if and only if f is a conformal diffeomorphism onto the linear disc $\Lambda \cap \mathbb{B}^n$.

Quantitative Calabi-Yau problem

Theorem 2 implies a bound on the area of the image of f. It is classical that for a \mathscr{C}^1 map $f:D\to\mathbb{R}^n$ $(n\geq 2)$ from a domain $D\subset\mathbb{R}^2$ we have

Area
$$f(D) \leq \frac{1}{2} \int_{D} |\nabla f|^{2} dx dy$$
,

with equality if and only if f is conformal. Hence, if $f: \mathbb{D} \to \mathbb{B}^n$ is a harmonic map then Theorem 2 implies for every 0 < r < 1 that

Area
$$f(r\mathbb{D}) \le \int_{|z| < r} \frac{1 - |f(z)|^2}{(1 - |z|^2)^2} dx dy \le \frac{\pi r^2}{1 - r^2}, \quad z = x + iy.$$

The second inequality is obtained by deleting the term $-|f(z)|^2$ in the numerator, so it may be far from optimal. However, assuming that $|f| \le c$ for some 0 < c < 1, it is optimal up to a multiplicative constant.

Problem (Quantitative Calabi-Yau problem for minimal discs)

Are there complete minimal discs in the ball achieving the asymptotic rate of growth of the area in the above inequality up to a multiplicative constant?

Discussion

The precise upper bound on the size of the gradient of harmonic maps $f: \mathbb{D} \to \mathbb{B}^n$ with a given centre $f(0) = \mathbf{x} \in \mathbb{B}^n \setminus \{0\}$ is not known, except for n=1. The **harmonic Schwarz lemma** says that any harmonic function $f: \mathbb{B}^m \to (-1,+1)$ for $m \geq 2$ satisfies the estimate

$$|\nabla f(0)| \leq 2 \frac{\operatorname{Vol}(\mathbb{B}^{m-1})}{\operatorname{Vol}(\mathbb{B}^m)},$$

with equality if and only if $f=U\circ R$ where R is an orthogonal rotation on \mathbb{R}^m and U is the harmonic function on \mathbb{B}^m whose boundary values equal +1 on the upper hemisphere S^+ and -1 on the lower hemisphere S^- . In this case, f(0)=0. For m=2 the inequality reads $|\nabla f(0)|\leq \frac{4}{\pi}$. A simple proof was given by Kalaj and Vuorinen (2012) who showed more generally that any harmonic function $f:\mathbb{D}\to (-1,+1)$ satisfies the sharp estimate

$$|\nabla f(z)| \le \frac{4}{\pi} \frac{1 - |f(z)|^2}{1 - |z|^2}$$
 for every $z \in \mathbb{D}$.

This follows from the classical Schwarz–Pick lemma applied to the holomorphic function $\phi \circ F : \mathbb{D} \to \mathbb{D}$, where $F = f + \mathrm{i}g : \mathbb{D} \to \Omega = (-1, +1) \times \mathrm{i}\mathbb{R}$ is a holomorphic extension of f and $\phi : \Omega \to \mathbb{D}$ is a biholomorphism.

Proof of the main theorem, 1

It suffices to prove Theorem 1 for z=0. Indeed, with f and z as in the theorem, let $\phi_z\in \operatorname{Aut}(\mathbb D)$ be such that $\phi_z(0)=z$. The harmonic map $g=f\circ\phi_z:\mathbb D\to\mathbb B^n$ is then conformal at the origin. Since $|\phi_z'(0)|=1-|z|^2$, the estimate follows from the same estimate for the map g applied at z=0.

We now give an explicit conformal parameterization of affine discs in \mathbb{B}^n . We may use postcomposition of maps $\mathbb{D} \to \mathbb{B}^n$ by orthogonal rotations of \mathbb{R}^n . Fix a point $\mathbf{q} \in \mathbb{B}^n$ and a 2-plane $0 \in \Lambda \subset \mathbb{R}^n$, and consider the affine disc $\Sigma = (\mathbf{q} + \Lambda) \cap \mathbb{B}^n$. Let $\mathbf{p} \in \Sigma$ be the closest point to the origin.

If n=2 then $\mathbf{p}=0$ and $\Sigma=\mathbb{D}$. Suppose now that n=3; the case n>3 will be the same. By an orthogonal rotation we may assume that

$$\mathbf{p} = (0, 0, p)$$
 and $\Sigma = \{(x, y, p) : x^2 + y^2 < 1 - p^2\}$.

Let $\mathbf{q} = (b_1, b_2, p) \in \Sigma$, and let θ denote the angle between \mathbf{q} and Σ . Set

$$c=\sqrt{1-p^2}=\sqrt{1-|\mathbf{q}|^2\sin^2\theta}, \quad \ a=\frac{b_1+\mathrm{i}\,b_2}{c}\in\mathbb{D}, \quad \ |a|=\frac{|\mathbf{q}|\cos\theta}{c}.$$

We orient Σ by the tangent vectors ∂_x , ∂_y .

Every orientation preserving conformal parameterization $f:\mathbb{D}\to\Sigma$ with $f(0)=\mathbf{q}$ is then of the form

$$f(z) = \left(c \, \Re \frac{e^{\mathrm{i}t}z + a}{1 + \bar{a}e^{\mathrm{i}t}z}, c \, \Im \frac{e^{\mathrm{i}t}z + a}{1 + \bar{a}e^{\mathrm{i}t}z}, p\right) = \left(c \, \frac{e^{\mathrm{i}t}z + a}{1 + \bar{a}e^{\mathrm{i}t}z}, p\right)$$

for $z\in\mathbb{D}$ and some $t\in\mathbb{R}$. If n=2 then $p=0,\ c=1,$ and we drop the last coordinate. We have

$$\begin{aligned} \|df_0\| &= c (1 - |a|^2) = \frac{c^2 - c^2 |a|^2}{c} = \frac{1 - |\mathbf{q}|^2 \sin^2 \theta - |\mathbf{q}|^2 \cos^2 \theta}{c} \\ &= \frac{1 - |\mathbf{q}|^2}{\sqrt{1 - |\mathbf{q}|^2 \sin^2 \theta}} = \frac{1 - |f(0)|^2}{\sqrt{1 - |f(0)|^2 \sin^2 \theta}}. \end{aligned}$$

This shows that the conformal parameterizations of affine discs satisfy the equality in the theorem at every point.

Let $f: \mathbb{D} \to \mathbb{B}^3$ be as above, where we may assume that t = 0.

Suppose that $g: \mathbb{D} \to \mathbb{B}^3$ is a harmonic map such that g(0) = f(0), g is conformal at 0, and $dg_0(\mathbb{R}^2) = df_0(\mathbb{R}^2)$. Up to replacing g by $g(e^{\mathrm{i}t}z)$ or $g(e^{\mathrm{i}t}\bar{z})$ for some $t \in \mathbb{R}$, we may assume that

$$dg_0 = r df_0$$
 for some $r > 0$.

We must prove that $r \leq 1$, and that r = 1 if and only if g = f.

Consider the holomorphic map $F:\mathbb{D} \to \Omega = \mathbb{B}^3 imes \mathfrak{i}\mathbb{R}^3$ given by

$$F(z) = \left(c \frac{z+a}{1+\bar{a}z}, -c i \frac{z+a}{1+\bar{a}z}, p\right), \quad z \in \mathbb{D}.$$

Then, $f=\Re F$. Let $G:\mathbb{D}\to\Omega$ be the holomorphic map with $\Re G=g$ and G(0)=F(0). By the Cauchy–Riemann equations, condition $dg_0=r\,df_0$ implies

$$G'(0) = r F'(0).$$

It follows that the map (F(z) - G(z))/z is holomorphic on $\mathbb D$ and

$$\lim_{z\to 0}\frac{F(z)-G(z)}{z}=F'(0)-G'(0)=(1-r)F'(0).$$

Since $g: \mathbb{D} \to \mathbb{B}^3$ is a bounded harmonic map, it has a nontangential boundary value at almost every point of the circle $\mathbb{T} = b\mathbb{D}$. Since the Hilbert transform is an isometry on the Hilbert space $L^2(\mathbb{T})$, the same is true for G.

Denote by $\langle \cdot, \cdot \rangle$ the complex bilinear form on \mathbb{C}^n given by

$$\langle z, w \rangle = \sum_{i=1}^n z_i w_i$$

for $z, w \in \mathbb{C}^n$. Note that on vectors in \mathbb{R}^n this is the Euclidean inner product.

For each $z=\mathrm{e}^{\mathrm{i}t}\in b\mathbb{D}$ the vector $f(z)\in b\mathbb{B}^3$ is the unit normal vector to the sphere $b\mathbb{B}^3$ at the point f(z). Since \mathbb{B}^3 is strongly convex, we have that

$$\Re \langle F(z) - G(z), f(z) \rangle = \langle f(z) - g(z), f(z) \rangle \ge 0$$
 a.e. $z \in b\mathbb{D}$,

and the value is positive for almost every $z \in b\mathbb{D}$ if and only if $g \neq f$.

Consider the function \tilde{f} on the circle $b\mathbb{D}$ given by

$$\tilde{f}(z) = z|1 + \bar{a}z|^2 f(z), \quad |z| = 1.$$

Explicit calculation, taking into account $z\bar{z} = 1$, shows that

$$\tilde{f}(z) = \begin{pmatrix} \frac{c}{2} \left(1 + a^2 + 4(\Re a)z + (1 + \bar{a}^2)z^2\right) \\ \\ \frac{c}{2} \left(i(1 - a^2) + 4(\Im a)z + i(\bar{a}^2 - 1)z^2\right) \\ \\ p\left(z + a\right)(1 + \bar{a}z) \end{pmatrix}.$$

Conclusion of the proof

We extend \tilde{f} to all $z\in\mathbb{C}$ by letting it equal the holomorphic polynomial map on the right hand side above. Since $|1+\bar{a}z|^2>0$ for $z\in\overline{\mathbb{D}}$, we have

$$\begin{array}{ll} h(z) & := & \Re \left\langle F(z) - G(z), |1 + \bar{a}z|^2 f(z) \right\rangle \\ & = & \left\langle f(z) - g(z), |1 + \bar{a}z|^2 f(z) \right\rangle \geq 0 \quad \text{a.e. } z \in b\mathbb{D}, \end{array}$$

and h>0 almost everywhere on $b\mathbb{D}$ if and only if $g\neq f$. From the definition of \tilde{f} we see that

$$h(z) = \Re \left\langle \frac{F(z) - G(z)}{z}, \tilde{f}(z) \right\rangle$$
 a.e. $z \in b\mathbb{D}$

Since the maps (F(z)-G(z))/z and $\tilde{f}(z)$ are holomorphic on \mathbb{D} , h extends to a nonnegative harmonic function on \mathbb{D} which is positive on \mathbb{D} unless f=g. At z=0 we have

$$h(0) = \Re \left\langle F'(0) - G'(0), \tilde{f}(0) \right\rangle = (1-r) \Re \left\langle F'(0), \tilde{f}(0) \right\rangle \geq 0,$$

with equality if and only if f=g. Applying this argument to the linear map $g(z)=f(0)+r\,df_0(z)\ (z\in\mathbb{D})$ for a small r>0 we get $\Re\langle F'(0),\tilde{f}(0)\rangle>0$. It follows that $r\leq 1$, with equality if and only if g=f.

Discussion

The above proof is motivated by the seminal work of **Lempert (1981)** on Kobayashi extremal holomorphic discs in bounded strongly convex domains $\Omega \subset \mathbb{C}^n$ with smooth boundaries.

In Lempert's terminology, a proper holomorphic disc $F:\mathbb{D}\to\Omega$ extending continuously to $\overline{\mathbb{D}}$ is a **stationary disc** if, denoting by $\nu(z)$ the unit normal to $b\Omega$ along the boundary circle $F(b\mathbb{D})$, there is a positive function q>0 on $b\mathbb{D}$ such that the function $z\,q(z)\overline{\nu(z)}$ extends from the circle |z|=1 to a holomorphic function $\tilde{f}(z)$ on \mathbb{D} . The use of such a function, along with the convexity of the domain, enables the arguments used above to show that a stationary disc F is the unique Kobayashi extremal disc in Ω through the point F(a) in the tangent direction F'(a) for every $a\in\mathbb{D}$.

In our case v(z) = f(z), which is real-valued, and a suitable function \tilde{f} is

$$\tilde{f}(z) = z|1 + \bar{a}z|^2 f(z), \quad |z| = 1.$$

The fact that $\Omega = \mathbb{B}^n \times i\mathbb{R}^n$ is an unbounded tube does not matter since the affine conformal discs in \mathbb{B}^n lift to proper holomorphic discs in Ω without any boundary points at infinity.

The Cayley-Klein metric on the ball

We can interpret Theorem 1 as the distance-decreasing property of conformal harmonic maps $\mathbb{D} \to \mathbb{B}^n$ with respect to the following Riemannian metric \mathcal{CK} on \mathbb{B}^n , called the **Cayley–Klein metric**:

$$\mathcal{CK}(\mathbf{x}, \mathbf{v}) = rac{\sqrt{1 - |\mathbf{x}|^2 \sin^2 \phi}}{1 - |\mathbf{x}|^2} \, |\mathbf{v}|, \qquad \mathbf{x} \in \mathbb{B}^n, \; \mathbf{v} \in \mathbb{R}^n,$$

where $\phi \in [0, \pi/2]$ is the angle between the vector \mathbf{x} and the line $\mathbb{R}\mathbf{v} \subset \mathbb{R}^n$. Equivalently,

$$\mathcal{CK}(\mathbf{x},\mathbf{v})^2 = \frac{(1-|\mathbf{x}|^2)|\mathbf{v}|^2 + |\mathbf{x}\cdot\mathbf{v}|^2}{(1-|\mathbf{x}|^2)^2} = \frac{|\mathbf{v}|^2}{1-|\mathbf{x}|^2} + \frac{|\mathbf{x}\cdot\mathbf{v}|^2}{(1-|\mathbf{x}|^2)^2}.$$

The **Cayley–Klein model**, also called the **Beltrami–Klein model** of hyperbolic geometry was introduced by Arthur Cayley (1859) and Eugenio Beltrami (1968), and it was developed by Felix Klein (1871, 1873). The underlying space is the n-dimensional unit ball, and geodesics are straight line segments with ideal endpoints on the boundary sphere. This is a special case of the Hilbert metric on convex domains in \mathbb{R}^n , introduced by David Hilbert in 1895.

Comments on the Cayley-Klein metric

The Cayley–Klein metric \mathcal{CK} is the restriction of the Kobayashi metric on the unit ball $\mathbb{B}^n_\mathbb{C} \subset \mathbb{C}^n$ to points $\mathbf{x} \in \mathbb{B}^n = \mathbb{B}^n_\mathbb{C} \cap \mathbb{R}^n$ and tangent vectors in $T_{\mathbf{x}}\mathbb{R}^n \cong \mathbb{R}^n$.

It also equals $1/\sqrt{n+1}$ times the Bergman metric on $\mathbb{B}^n_{\mathbb{C}}$ restricted to \mathbb{B}^n and real tangent vectors. (On the ball of \mathbb{C}^n , most holomorphically invariant metrics coincide up to scalar factors.)

The metric \mathcal{CK} is not conformally equivalent to the Euclidean metric on \mathbb{B}^n . It coincide with the Poincaré metric on \mathbb{B}^n , given by $\frac{|\mathbf{v}|}{1-|\mathbf{x}|^2}$, in the radial direction parallel to the base point $\mathbf{x} \in \mathbb{B}^n$, but is strictly smaller in the direction perpendicular to \mathbf{x} . We have that

$$\frac{|\mathbf{v}|}{\sqrt{1-|\mathbf{x}|^2}} \ \leq \ \mathcal{CK}(\mathbf{x},\mathbf{v}) \ \leq \ \frac{|\mathbf{v}|}{1-|\mathbf{x}|^2},$$

with the upper bound reached for $\phi = 0$ and the lower bound for $\phi = \pi/2$.

Comparison with a Finsler metric

The inequality in Theorem 1 can be rewritten as

$$\frac{\sqrt{1-|f(z)|^2\sin^2\theta}}{1-|f(z)|^2}|df_z(\xi)| \leq \frac{|\xi|}{1-|z|^2}, \quad \xi \in T_z \mathbb{D} = \mathbb{R}^2,$$

where $\theta \in [0,\pi/2]$ is the angle between f(z) and the 2-plane $\Lambda = \mathit{df}_z(\mathbb{R}^2)$.

Let $G_2(\mathbb{R}^n)$ denote the Grassmann manifold of all 2-planes in \mathbb{R}^n , and define

$$\mathcal{M}(\mathbf{x},\Lambda) \ = \ \frac{\sqrt{1-|\mathbf{x}|^2\sin^2\theta}}{1-|\mathbf{x}|^2}, \quad \ \mathbf{x}\in\mathbb{B}^n, \ \Lambda\in \textit{G}_2(\mathbb{R}^n),$$

where $\theta \in [0, \pi/2]$ is the angle between **x** and Λ . Note that

$$\mathcal{M}(\mathbf{x},\Lambda) = \inf\{1/\|df_0\| : f \in \mathrm{CH}(\mathbb{D},\mathbb{B}^n), \ f(0) = \mathbf{x}, \ df_0(\mathbb{R}^2) = \Lambda\}.$$

Comparison with a Finsler metric

If $\mathbf{v} \neq \mathbf{0}$ is a vector having angle $\phi \in [0, \pi/2]$ with the line $\mathbb{R}\mathbf{x}$, then every 2-plane Λ containing \mathbf{v} makes an angle $\theta \in [0, \phi]$ with \mathbf{x} , and the maximum of θ over all such Λ equals ϕ . Hence,

$$\begin{split} \mathcal{CK}(\mathbf{x},\mathbf{v})/|\mathbf{v}| &= & \min \big\{ \mathcal{M}(\mathbf{x},\Lambda) : \Lambda \in \mathit{G}_{2}(\mathbb{R}^{n}), \ \mathbf{0} \neq \mathbf{v} \in \Lambda \big\}, \\ \mathcal{M}(\mathbf{x},\Lambda) &= & \max \big\{ \mathcal{CK}(\mathbf{x},\mathbf{v})/|\mathbf{v}| : \mathbf{v} \in \Lambda \big\} \ \text{ for all } \Lambda \in \mathit{G}_{1}(\mathbb{R}^{n}). \end{split}$$

Applying this with $\mathbf{x}=f(z)$ and $\mathbf{v}=d\mathbf{f}_z(\xi)\in\Lambda=d\mathbf{f}_z(\mathbb{R}^2)$ gives

$$\begin{split} \mathcal{CK}\big(f(z), df_z(\xi)\big) & \leq & \mathcal{M}(f(z), df_z(\mathbb{R}^2)) \cdot |df_z(\xi)| \\ & = & \frac{\sqrt{1 - |f(z)|^2 \sin^2 \theta}}{1 - |f(z)|^2} \, |df_z(\xi)| \\ & \leq & \frac{|\xi|}{1 - |z|^2} = \mathcal{P}_{\mathbb{D}}(z, \xi). \end{split}$$

The first inequality is equality if and only if the angle ϕ between the line $f(z)\mathbb{R}$ and the vector $df_z(\xi) \in \Lambda$ equals θ .

The second inequality is equality of and only if f is a conformal diffeomorphism onto the linear disc $(f(z) + df_z(\mathbb{R}^2)) \cap \mathbb{B}^n$.

Conformal harmonic maps are distance-decreasing

Corollary

If $f: \mathbb{D} \to \mathbb{B}^n$ is a conformal harmonic map then

$$\mathcal{CK}ig(f(z),df_z(\xi)ig) \leq rac{|\xi|}{1-|z|^2} = \mathcal{P}_{\mathbb{D}}(z,\xi), \quad z \in \mathbb{D}, \ \xi \in \mathbb{R}^2,$$
 (4)

with equality for some $z \in \mathbb{D}$ and $\xi \in \mathbb{R}^2 \setminus \{0\}$ if and only if f is a conformal diffeomorphism onto the affine disc $\Sigma = (f(z) + df_z(\mathbb{R}^2)) \cap \mathbb{B}^n$ and the vector $df_z(\xi)$ is tangent to the diameter of Σ through the point f(z).

The analogous conclusion holds if $\mathbb D$ is replaced by any hyperbolic conformal surface M with the Poincaré metric $\mathcal P_M$. Equality can only occur if $M = \mathbb D$.

A hyperbolic conformal surface is one whose universal conformal covering is the disc. One introduces the Poincaré metric on such surface M by asking that the universal covering projection $h:\mathbb{D}\to M$ be a local isometry. The result is trivial unless M is of hyperbolic type, i.e., it admits bounded harmonic functions

A pseudodistance on a domain in \mathbb{R}^n

There is a natural procedure to define a pseudodistance function $\rho=\rho_D$ on any domain $D\subset\mathbb{R}^n$ using conformal minimal discs $\mathbb{D}\to D$. It is motivated by Kobayashi's construction of his pseudometric on complex manifolds.

Fix a pair of points $\mathbf{x}, \mathbf{y} \in D$ and consider finite chains of conformal harmonic discs $f_i : \mathbb{D} \to D$ and points $a_i \in \mathbb{D}$ $(i = 1, \dots, k)$ such that

$$f_1(0) = \mathbf{x}, \quad f_{i+1}(0) = f_i(a_i) \text{ for } i = 1, \dots, k-1, \quad f_k(a_k) = \mathbf{y}.$$

To any such chain we associate the number

$$\sum_{i=1}^{k} \frac{1}{2} \log \frac{1+|a_i|}{1-|a_i|} \ge 0.$$

The *i*-th term in the sum is the Poincaré distance from 0 to a_i in \mathbb{D} .

The pseudodistance $\rho_D: D \times D \to \mathbb{R}_+$ is the infimum of the numbers obtained in this way. Clearly it satisfies the triangle inequality.

If D is a domain in \mathbb{C}^n and we use only holomorphic discs, then the corresponding pseudodistance ρ is precisely the one of Kobayashi.

Distance-decreasing property

Lemma

- (A) Conformal harmonic maps $M \to D$ from any hyperbolic conformal surface are distance-decreasing in the Poincaré distance function on M and the distance ρ_D on D.
- (B) ρ_D is the largest pseudodistance function on D for which this holds.
- **Proof of (A)** For $M=\mathbb{D}$, this follows from the definition since every conformal harmonic map $f:\mathbb{D}\to D$ is a candidate for computing ρ_D and we are taking the infimum. For general M, the result follows by precomposing f by a universal conformal covering $h:\mathbb{D}\to M$.
- **Proof of (B)** Suppose that τ is a pseudodistance on D such that every conformal harmonic map $\mathbb{D} \to D$ is distance-decreasing. Let $f_i : \mathbb{D} \to D$ and $a_i \in \mathbb{D}$ for $i = 1, \ldots, k$ be a chain connecting the points $\mathbf{x}, \mathbf{y} \in D$. Then,

$$\tau(\mathbf{x},\mathbf{y}) \leq \sum_{i=1}^{k} \tau(f_i(0), f_i(a_i)) \leq \sum_{i=1}^{k} \frac{1}{2} \log \frac{1+|a_i|}{1-|a_i|}.$$

Taking the infimum over all such chains gives $\tau(\mathbf{x}, \mathbf{y}) \leq \rho_D(\mathbf{x}, \mathbf{y})$.

$$\rho_{\mathbb{B}^n} = \operatorname{dist}_{\mathcal{CK}}$$

Theorem

On the ball \mathbb{B}^n , we have $\rho_{\mathbb{B}^n} = \operatorname{dist}_{\mathcal{CK}}$.

Proof Fix a pair of distinct points \mathbf{x} , $\mathbf{y} \in \mathbb{B}^n$. Let \mathbf{p} be the point on the affine line L through \mathbf{x} and \mathbf{y} which is closest to the origin.

Let $\Lambda \subset \mathbb{R}^n$ be the affine 2-plane containing L and such that \mathbf{p} is orthogonal to Λ (such Λ is unique unless $\mathbf{p}=\mathbf{0}$). Then, $\Sigma:=\Lambda\cap\mathbb{B}^n$ is an affine disc, and the points \mathbf{x} and \mathbf{y} lie on the diameter $L\cap\mathbb{B}^n$ of Σ .

These diameters are geodesics (length minimizers) for the Cayley–Klein metric on \mathbb{B}^n , and $\operatorname{dist}_{\mathcal{CK}}(\mathbf{x},\mathbf{y})$ equals the Poincaré distance between \mathbf{x} and \mathbf{y} within the affine disc Σ .

By the previous lemma applied with $\tau = \operatorname{dist}_{\mathcal{CK}}$, we have $\operatorname{dist}_{\mathcal{CK}}(\mathbf{x},\mathbf{y}) \leq \rho_{\mathbb{B}^n}(\mathbf{x},\mathbf{y})$. Since the affine disc Σ is a candidate for computing $\rho_{\mathbb{B}^n}(\mathbf{x},\mathbf{y})$, equality follows.

Hyperbolic domains

Definition (Hyperbolic domains in \mathbb{R}^n)

A domain $D \subset \mathbb{R}^n$ $(n \geq 3)$ is *hyperbolic* if the pseudodistance ρ_D is a distance function on D, and is *complete hyperbolic* if (D,ρ_D) is a complete metric space (i.e., Cauchy sequences converge).

Example

- (A) The ball $\mathbb{B}^n\subset\mathbb{R}^n$ $(n\geq 3)$ is complete hyperbolic since the Cayley–Klein metric is complete.
- (B) Every bounded domain $D \subset \mathbb{R}^n$ is hyperbolic since it is contained in a ball. However, it need not be complete hyperbolic.
- (C) Every bounded strongly convex domain in \mathbb{R}^n is complete hyperbolic.
- (D) The half-space $\mathbb{H}^n=\{\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n:x_n>0\}$ is not hyperbolic since the pseudodistance $\rho_{\mathbb{H}^n}$ vanishes on planes $x_n=const.$

Problems

Problem

- (A) Is the complement of a catenoid in \mathbb{R}^3 hyperbolic?
- (B) Is every bounded strongly mean-convex domain in \mathbb{R}^3 complete hyperbolic?

\sim Thank you for your attention \sim

Image Credit & Copyright: Oliver Dragičević