Schwarz-Pick lemma for harmonic maps which are conformal at a point

Franc Forstnerič

Univerza v Ljubljani

Institute of Mathematics, Physics and Mechanics

University of Granada, 12 March 2021

Abstract

- We shall prove a sharp estimate on the norm of the differential of a harmonic map from the unit disc \mathbb{D} in \mathbb{C} to the unit ball \mathbb{B}^{n} in $\mathbb{R}^{n}, n \geq 2$, at any point where the map is conformal.
- In dimension $n=2$, this generalizes the classical Schwarz-Pick lemma to harmonic maps $\mathbb{D} \rightarrow \mathbb{D}$ which are conformal (only) at the reference point.
- In dimensions $n \geq 3$ it gives the optimal Schwarz-Pick lemma for conformal minimal discs $\mathbb{D} \rightarrow \mathbb{B}^{n}$.
- We shall then give a differential-geometric interpretation, showing that every conformal harmonic immersion $M \rightarrow \mathbb{B}^{n}$ from a hyperbolic conformal surface is distance-decreasing in the Poincaré metric on M and the Cayley-Klein metric $\mathcal{C} \mathcal{K}$ on the ball \mathbb{B}^{n}, and the extremal maps are the conformal embeddings of the disc \mathbb{D} onto affine discs in \mathbb{B}^{n}.
- Using these results, we lay foundations of the hyperbolicity theory for domains in \mathbb{R}^{n} based on minimal surfaces.
F.F. \& D.Kalaj, Hyperbolicity theory for conformal minimal surfaces in \mathbb{R}^{n}.
https://arxiv.org/abs/2102.12403

The classical Schwarz-Pick Lemma

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ denote the unit disc.
The following result is due to Karl Hermann Amandus Schwarz, 1869, with an improvement by Georg Alexander Pick, 1915.

Theorem (Schwarz-Pick lemma for holomorphic maps)

If $f: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic map then for every $z \in \mathbb{D}$ we have that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq \frac{1-|f(z)|^{2}}{1-|z|^{2}} \tag{1}
\end{equation*}
$$

with equality at one point if and only if f is a biholomorphism of the disc \mathbb{D}.

By using precompositions and postcompositions by holomorphic automorphisms of \mathbb{D}, the proof reduces to the case $z=0$ and $f(0)=0$. In this special case, it follows from the maximum principle applied to the holomorphic function $g(z)=f(z) / z$ on \mathbb{D}.

This is the most fundamental rigidity result in complex analysis which leads to the theory of Kobayashi hyperbolic manifolds.

Differential-theoretic interpretation

Let \mathcal{P} denote the Poincaré metric on the disc $\mathbb{D}=\{|z|<1\}$:

$$
\mathcal{P}(z, \xi)=\frac{|\xi|}{1-|z|^{2}}, \quad z \in \mathbb{D}, \xi \in T_{z} \mathrm{C} \cong \mathrm{C} .
$$

Then, the Schwarz-Pick lemma is equivalent to the statement that for any holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ we have

$$
\mathcal{P}\left(f(z), d f_{z}(\xi)\right) \leq \mathcal{P}(z, \xi), \quad z \in \mathbb{D}, \xi \in \mathbb{C}
$$

with equality at one point if and only if f is an automorphism of \mathbb{D},

$$
f(z)=e^{i t} \frac{z+a}{1+\bar{a} z}, \quad z, a \in \mathbb{D}, t \in \mathbb{R} .
$$

That is, holomorphic maps $\mathbb{D} \rightarrow \mathbb{D}$ are distance-decreasing in the Poincaré metric, and orientation-preserving isometries are precisely the elements of $\operatorname{Aut}(\mathbb{D})$. The analogus conclusion holds for the Poincaré distance function

$$
\operatorname{dist}_{\mathcal{P}}(z, w)=\frac{1}{2} \log \left(\frac{|1-z \bar{w}|+|z-w|}{|1-z \bar{w}|-|z-w|}\right), \quad z, w \in \mathbb{D} .
$$

Schwarz-Pick Lemma for harmonic maps which are conformal at a point

The following special case of our main result gives the same conclusion at a given point for a much bigger class of maps.

Corollary

Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be a harmonic map. If f is conformal at a point $z \in \mathbb{D}$, then at this point we have that

$$
\begin{equation*}
\left|f^{\prime}(z)\right|=\left\|d f_{z}\right\| \leq \frac{1-|f(z)|^{2}}{1-|z|^{2}} \tag{2}
\end{equation*}
$$

with equality if and only if f is a conformal diffeomorphism of the disc \mathbb{D}.

By using precompositions by holomorphic automorphisms of \mathbb{D}, the proof reduces to the case $z=0$. On the other hand, postcompositions of harmonic maps $\mathbb{D} \rightarrow \mathbb{D}$ by holomorphic automorphism of \mathbb{D} need not be harmonic, so we cannot exchange $f(0)$ and 0 . Also, $f(z) / z$ need not be harmonic. The standard proof of the classical Schwarz-Pick lemma breaks down at this point.

Without conformality, this fails for some harmonic diffeomorphisms of \mathbb{D}.

Schwarz-Pick lemma for harmonic maps into balls

Theorem (1)

Let $f: \mathbb{D} \rightarrow \mathbb{B}^{n}$ is a harmonic map for some $n \geq 2$ which is conformal at a point $z \in \mathbb{D}$. Denote by $\theta \in[0, \pi / 2]$ the angle between the vector $f(z)$ and the plane $d f_{z}\left(\mathbb{R}^{2}\right)$. Then at this point we have that

$$
\left\|d f_{z}\right\| \leq \frac{1-|f(z)|^{2}}{1-|z|^{2}} \frac{1}{\sqrt{1-|f(z)|^{2} \sin ^{2} \theta}}
$$

with equality if and only if f is a conformal diffeomorphism onto the affine disc $\Sigma=\left(f(z)+d f_{z}\left(\mathbb{R}^{2}\right)\right) \cap \mathbb{B}^{n}$.

This is a precise Schwarz-Pick lemma for conformal harmonic maps $\mathbb{D} \rightarrow \mathbb{B}^{n}$ for any $n \geq 2$, saying that the extremal maps are precisely the conformal parameterizations of affine linear discs in the ball.

In dimension $n=2$ we have $\theta=0$, so the previous corollary is a special case.

An estimate without conformality

Note that for a fixed value of $|f(z)| \in[0,1)$, the maximum of the right hand side over angles $\theta \in[0, \pi / 2]$ equals $\frac{\sqrt{1-|f(z)|^{2}}}{1-|z|^{2}}$ and is reached precisely at $\theta=\pi / 2$, i.e, when the vector $f(z)$ is orthogonal to $\Lambda=d f_{z}\left(\mathbb{R}^{2}\right)$, unless $f(z)=0$ in which case it equals $\frac{1}{1-|z|^{2}}$ for all θ. We show that this weaker estimate holds for all harmonic maps $\mathbb{D} \rightarrow \mathbb{B}^{n}$.

Theorem (2)

For every harmonic map $f: \mathbb{D} \rightarrow \mathbb{B}^{n}(n \geq 2)$ we have that

$$
\begin{equation*}
\frac{1}{\sqrt{2}}|\nabla f(z)| \leq \frac{\sqrt{1-|f(z)|^{2}}}{1-|z|^{2}}, \quad z \in \mathbb{D} \tag{3}
\end{equation*}
$$

Equality holds for some $z_{0} \in \mathbb{D}$ if $f\left(z_{0}\right)$ is orthogonal to the 2-plane $\Lambda=d f_{z_{0}}\left(\mathbb{R}^{2}\right)$ and f is a conformal diffeomorphism onto the affine disc $\left(f\left(z_{0}\right)+\Lambda\right) \cap \mathbb{B}^{n}$.
In particular, if $f\left(z_{0}\right)=0$ then $\left|\nabla f\left(z_{0}\right)\right| \leq \frac{\sqrt{2}}{1-\left|z_{0}\right|^{2}}$, with equality if and only if f is a conformal diffeomorphism onto the linear disc $\Lambda \cap \mathbb{B}^{n}$.

Quantitative Calabi-Yau problem

Theorem 2 implies a bound on the area of the image of f. It is classical that for a \mathscr{C}^{1} map $f: D \rightarrow \mathbb{R}^{n}(n \geq 2)$ from a domain $D \subset \mathbb{R}^{2}$ we have

$$
\text { Area } f(D) \leq \frac{1}{2} \int_{D}|\nabla f|^{2} d x d y
$$

with equality if and only if f is conformal. Hence, if $f: \mathbb{D} \rightarrow \mathbb{B}^{n}$ is a harmonic map then Theorem 2 implies for every $0<r<1$ that

$$
\text { Area } f(r \mathbb{D}) \leq \int_{|z|<r} \frac{1-|f(z)|^{2}}{\left(1-|z|^{2}\right)^{2}} d x d y \leq \frac{\pi r^{2}}{1-r^{2}}, \quad z=x+\mathfrak{i} y
$$

The second inequality is obtained by deleting the term $-|f(z)|^{2}$ in the numerator, so it may be far from optimal. However, assuming that $|f| \leq c$ for some $0<c<1$, it is optimal up to a multiplicative constant.

Problem (Quantitative Calabi-Yau problem for minimal discs)

Are there complete minimal discs in the ball achieving the asymptotic rate of growth of the area in the above inequality up to a multiplicative constant?

Discussion

The precise upper bound on the size of the gradient of harmonic maps $f: \mathbb{D} \rightarrow \mathbb{B}^{n}$ with a given centre $f(0)=\mathbf{x} \in \mathbb{B}^{n} \backslash\{0\}$ is not known, except for $n=1$. The harmonic Schwarz lemma says that any harmonic function
$f: \mathbb{B}^{m} \rightarrow(-1,+1)$ for $m \geq 2$ satisfies the estimate

$$
|\nabla f(0)| \leq 2 \frac{\operatorname{Vol}\left(\mathbb{B}^{m-1}\right)}{\operatorname{Vol}\left(\mathbb{B}^{m}\right)}
$$

with equality if and only if $f=U \circ R$ where R is an orthogonal rotation on \mathbb{R}^{m} and U is the harmonic function on \mathbb{B}^{m} whose boundary values equal +1 on the upper hemisphere S^{+}and -1 on the lower hemisphere S^{-}. In this case, $f(0)=0$. For $m=2$ the inequality reads $|\nabla f(0)| \leq \frac{4}{\pi}$. A simple proof was given by Kalaj and Vuorinen (2012) who showed more generally that any harmonic function $f: \mathbb{D} \rightarrow(-1,+1)$ satisfies the sharp estimate

$$
|\nabla f(z)| \leq \frac{4}{\pi} \frac{1-|f(z)|^{2}}{1-|z|^{2}} \text { for every } z \in \mathbb{D}
$$

This follows from the classical Schwarz-Pick lemma applied to the holomorphic function $\phi \circ F: \mathbb{D} \rightarrow \mathbb{D}$, where $F=f+\mathfrak{i g}: \mathbb{D} \rightarrow \Omega=(-1,+1) \times \mathfrak{i} \mathbb{R}$ is a holomorphic extension of f and $\phi: \Omega \rightarrow \mathbb{D}$ is a biholomorphism.

Proof of the main theorem, 1

It suffices to prove Theorem 1 for $z=0$. Indeed, with f and z as in the theorem, let $\phi_{z} \in \operatorname{Aut}(\mathbb{D})$ be such that $\phi_{z}(0)=z$. The harmonic map $g=f \circ \phi_{z}: \mathbb{D} \rightarrow \mathbb{B}^{n}$ is then conformal at the origin. Since $\left|\phi_{z}^{\prime}(0)\right|=1-|z|^{2}$, the estimate follows from the same estimate for the map g applied at $z=0$.
We now give an explicit conformal parameterization of affine discs in \mathbb{B}^{n}. We may use postcomposition of maps $\mathbb{D} \rightarrow \mathbb{B}^{n}$ by orthogonal rotations of \mathbb{R}^{n}. Fix a point $\mathbf{q} \in \mathbb{B}^{n}$ and a 2-plane $0 \in \Lambda \subset \mathbb{R}^{n}$, and consider the affine disc $\Sigma=(\mathbf{q}+\Lambda) \cap \mathbb{B}^{n}$. Let $\mathbf{p} \in \Sigma$ be the closest point to the origin.
If $n=2$ then $\mathbf{p}=0$ and $\Sigma=\mathbb{D}$. Suppose now that $n=3$; the case $n>3$ will be the same. By an orthogonal rotation we may assume that

$$
\mathbf{p}=(0,0, p) \quad \text { and } \quad \Sigma=\left\{(x, y, p): x^{2}+y^{2}<1-p^{2}\right\} .
$$

Let $\mathbf{q}=\left(b_{1}, b_{2}, p\right) \in \Sigma$, and let θ denote the angle between \mathbf{q} and Σ. Set

$$
c=\sqrt{1-p^{2}}=\sqrt{1-|\mathbf{q}|^{2} \sin ^{2} \theta}, \quad a=\frac{b_{1}+\mathfrak{i} b_{2}}{c} \in \mathbb{D}, \quad|a|=\frac{|\mathbf{q}| \cos \theta}{c}
$$

We orient Σ by the tangent vectors $\partial_{x}, \partial_{y}$.

Proof, 2

Every orientation preserving conformal parameterization $f: \mathbb{D} \rightarrow \Sigma$ with $f(0)=\mathbf{q}$ is then of the form

$$
f(z)=\left(c \Re \frac{e^{\mathrm{i} t} z+a}{1+\bar{a} e^{\mathrm{i} t} z}, c \Im \frac{e^{\mathrm{i} t} z+a}{1+\bar{a} e^{\mathrm{i} t} z}, p\right)=\left(c \frac{e^{\mathrm{i} t} z+a}{1+\bar{a} e^{\mathrm{i} t} z}, p\right)
$$

for $z \in \mathbb{D}$ and some $t \in \mathbb{R}$. If $n=2$ then $p=0, c=1$, and we drop the last coordinate. We have

$$
\begin{aligned}
\left\|d f_{0}\right\| & =c\left(1-|a|^{2}\right)=\frac{c^{2}-c^{2}|a|^{2}}{c}=\frac{1-|\mathbf{q}|^{2} \sin ^{2} \theta-|\mathbf{q}|^{2} \cos ^{2} \theta}{c} \\
& =\frac{1-|\mathbf{q}|^{2}}{\sqrt{1-|\mathbf{q}|^{2} \sin ^{2} \theta}}=\frac{1-|f(0)|^{2}}{\sqrt{1-|f(0)|^{2} \sin ^{2} \theta}}
\end{aligned}
$$

This shows that the conformal parameterizations of affine discs satisfy the equality in the theorem at every point.

Proof, 3

Let $f: \mathbb{D} \rightarrow \mathbb{B}^{3}$ be as above, where we may assume that $t=0$.
Suppose that $g: \mathbb{D} \rightarrow \mathbb{B}^{3}$ is a harmonic map such that $g(0)=f(0), g$ is conformal at 0 , and $d g_{0}\left(\mathbb{R}^{2}\right)=d f_{0}\left(\mathbb{R}^{2}\right)$. Up to replacing g by $g\left(e^{i t} z\right)$ or $g\left(e^{\mathrm{it}} \bar{z}\right)$ for some $t \in \mathbb{R}$, we may assume that

$$
d g_{0}=r d f_{0} \quad \text { for some } r>0
$$

We must prove that $r \leq 1$, and that $r=1$ if and only if $g=f$.
Consider the holomorphic map $F: \mathbb{D} \rightarrow \Omega=\mathbb{B}^{3} \times \mathfrak{i} \mathbb{R}^{3}$ given by

$$
F(z)=\left(c \frac{z+a}{1+\bar{a} z},-c i \frac{z+a}{1+\bar{a} z}, p\right), \quad z \in \mathbb{D} .
$$

Then, $f=\Re F$. Let $G: \mathbb{D} \rightarrow \Omega$ be the holomorphic map with $\Re G=g$ and $G(0)=F(0)$. By the Cauchy-Riemann equations, condition $d g_{0}=r d f_{0}$ implies

$$
G^{\prime}(0)=r F^{\prime}(0)
$$

Proof, 4

It follows that the map $(F(z)-G(z)) / z$ is holomorphic on \mathbb{D} and

$$
\lim _{z \rightarrow 0} \frac{F(z)-G(z)}{z}=F^{\prime}(0)-G^{\prime}(0)=(1-r) F^{\prime}(0)
$$

Since $g: \mathbb{D} \rightarrow \mathbb{B}^{3}$ is a bounded harmonic map, it has a nontangential boundary value at almost every point of the circle $\mathbb{T}=b \mathbb{D}$. Since the Hilbert transform is an isometry on the Hilbert space $L^{2}(\mathbb{T})$, the same is true for G.

Denote by $\langle\cdot, \cdot\rangle$ the complex bilinear form on \mathbb{C}^{n} given by

$$
\langle z, w\rangle=\sum_{i=1}^{n} z_{i} w_{i}
$$

for $z, w \in \mathbb{C}^{n}$. Note that on vectors in \mathbb{R}^{n} this is the Euclidean inner product.

Proof, 5

For each $z=e^{i t} \in b \mathbb{D}$ the vector $f(z) \in b \mathbb{B}^{3}$ is the unit normal vector to the sphere $b \mathbb{B}^{3}$ at the point $f(z)$. Since \mathbb{B}^{3} is strongly convex, we have that

$$
\Re\langle F(z)-G(z), f(z)\rangle=\langle f(z)-g(z), f(z)\rangle \geq 0 \quad \text { a.e. } z \in b \mathbb{D}
$$

and the value is positive for almost every $z \in b \mathbb{D}$ if and only if $g \neq f$.
Consider the function \tilde{f} on the circle $b \mathbb{D}$ given by

$$
\tilde{f}(z)=z|1+\bar{a} z|^{2} f(z), \quad|z|=1
$$

Explicit calculation, taking into account $z \bar{z}=1$, shows that

$$
\tilde{f}(z)=\left(\begin{array}{c}
\frac{c}{2}\left(1+a^{2}+4(\Re a) z+\left(1+\bar{a}^{2}\right) z^{2}\right) \\
\frac{c}{2}\left(\mathfrak{i}\left(1-a^{2}\right)+4(\Im a) z+\mathfrak{i}\left(\bar{a}^{2}-1\right) z^{2}\right) \\
p(z+a)(1+\bar{a} z)
\end{array}\right)
$$

Conclusion of the proof

We extend \tilde{f} to all $z \in \mathbb{C}$ by letting it equal the holomorphic polynomial map on the right hand side above. Since $|1+\bar{a} z|^{2}>0$ for $z \in \overline{\mathbb{D}}$, we have

$$
\begin{aligned}
h(z) & \left.:=\Re\langle F(z)-G(z),| 1+\left.\bar{a} z\right|^{2} f(z)\right\rangle \\
& \left.=\langle f(z)-g(z),| 1+\left.\bar{a} z\right|^{2} f(z)\right\rangle \geq 0 \quad \text { a.e. } z \in b \mathbb{D}
\end{aligned}
$$

and $h>0$ almost everywhere on $b \mathbb{D}$ if and only if $g \neq f$. From the definition of \tilde{f} we see that

$$
h(z)=\Re\left\langle\frac{F(z)-G(z)}{z}, \tilde{f}(z)\right\rangle \quad \text { a.e. } z \in b \mathbb{D}
$$

Since the maps $(F(z)-G(z)) / z$ and $\tilde{f}(z)$ are holomorphic on \mathbb{D}, h extends to a nonnegative harmonic function on \mathbb{D} which is positive on \mathbb{D} unless $f=g$. At $z=0$ we have

$$
h(0)=\Re\left\langle F^{\prime}(0)-G^{\prime}(0), \tilde{f}(0)\right\rangle=(1-r) \Re\left\langle F^{\prime}(0), \tilde{f}(0)\right\rangle \geq 0
$$

with equality if and only if $f=g$. Applying this argument to the linear map $g(z)=f(0)+r d f_{0}(z)(z \in \mathbb{D})$ for a small $r>0$ we get $\Re\left\langle F^{\prime}(0), \tilde{f}(0)\right\rangle>0$. It follows that $r \leq 1$, with equality if and only if $g=f$.

Discussion

The above proof is motivated by the seminal work of Lempert (1981) on Kobayashi extremal holomorphic discs in bounded strongly convex domains $\Omega \subset \mathbb{C}^{n}$ with smooth boundaries.

In Lempert's terminology, a proper holomorphic disc $F: \mathbb{D} \rightarrow \Omega$ extending continuously to $\overline{\mathbb{D}}$ is a stationary disc if, denoting by $v(z)$ the unit normal to $b \Omega$ along the boundary circle $F(b \mathbb{D})$, there is a positive function $q>0$ on $b \mathbb{D}$ such that the function $z q(z) \overline{v(z)}$ extends from the circle $|z|=1$ to a holomorphic function $\tilde{f}(z)$ on \mathbb{D}. The use of such a function, along with the convexity of the domain, enables the arguments used above to show that a stationary disc F is the unique Kobayashi extremal disc in Ω through the point $F(a)$ in the tangent direction $F^{\prime}(a)$ for every $a \in \mathbb{D}$.

In our case $v(z)=f(z)$, which is real-valued, and a suitable function \tilde{f} is

$$
\tilde{f}(z)=z|1+\bar{a} z|^{2} f(z), \quad|z|=1
$$

The fact that $\Omega=\mathbb{B}^{n} \times i \mathbb{R}^{n}$ is an unbounded tube does not matter since the affine conformal discs in \mathbb{B}^{n} lift to proper holomorphic discs in Ω without any boundary points at infinity.

The Cayley-Klein metric on the ball

We can interpret Theorem 1 as the distance-decreasing property of conformal harmonic maps $\mathbb{D} \rightarrow \mathbb{B}^{n}$ with respect to the following Riemannian metric $\mathcal{C K}$ on \mathbb{B}^{n}, called the Cayley-Klein metric:

$$
\mathcal{C K}(\mathbf{x}, \mathbf{v})=\frac{\sqrt{1-|\mathbf{x}|^{2} \sin ^{2} \phi}}{1-|\mathbf{x}|^{2}}|\mathbf{v}|, \quad \mathbf{x} \in \mathbb{B}^{n}, \mathbf{v} \in \mathbb{R}^{n}
$$

where $\phi \in[0, \pi / 2]$ is the angle between the vector \mathbf{x} and the line $\mathbb{R} \mathbf{v} \subset \mathbb{R}^{n}$. Equivalently,

$$
\mathcal{C K}(\mathbf{x}, \mathbf{v})^{2}=\frac{\left(1-|\mathbf{x}|^{2}\right)|\mathbf{v}|^{2}+|\mathbf{x} \cdot \mathbf{v}|^{2}}{\left(1-|\mathbf{x}|^{2}\right)^{2}}=\frac{|\mathbf{v}|^{2}}{1-|\mathbf{x}|^{2}}+\frac{|\mathbf{x} \cdot \mathbf{v}|^{2}}{\left(1-|\mathbf{x}|^{2}\right)^{2}}
$$

The Cayley-Klein model, also called the Beltrami-Klein model of hyperbolic geometry was introduced by Arthur Cayley (1859) and Eugenio Beltrami (1968), and it was developed by Felix Klein (1871, 1873). The underlying space is the n-dimensional unit ball, and geodesics are straight line segments with ideal endpoints on the boundary sphere. This is a special case of the Hilbert metric on convex domains in \mathbb{R}^{n}, introduced by David Hilbert in 1895.

Comments on the Cayley-Klein metric

The Cayley-Klein metric $\mathcal{C K}$ is the restriction of the Kobayashi metric on the unit ball $\mathbb{B}_{\mathbb{C}}^{n} \subset \mathbb{C}^{n}$ to points $\mathrm{x} \in \mathbb{B}^{n}=\mathbb{B}_{\mathbb{C}}^{n} \cap \mathbb{R}^{n}$ and tangent vectors in $T_{\mathrm{x}} \mathbb{R}^{n} \cong \mathbb{R}^{n}$.

It also equals $1 / \sqrt{n+1}$ times the Bergman metric on $\mathbb{B}_{\mathbb{C}}^{n}$ restricted to \mathbb{B}^{n} and real tangent vectors. (On the ball of \mathbb{C}^{n}, most holomorphically invariant metrics coincide up to scalar factors.)

The metric $\mathcal{C K}$ is not conformally equivalent to the Euclidean metric on \mathbb{B}^{n}. It coincide with the Poincaré metric on \mathbb{B}^{n}, given by $\frac{|\mathbf{v}|}{1-|\mathbf{x}|^{2}}$, in the radial direction parallel to the base point $x \in \mathbb{B}^{n}$, but is strictly smaller in the direction perpendicular to \mathbf{x}. We have that

$$
\frac{|\mathbf{v}|}{\sqrt{1-|\mathbf{x}|^{2}}} \leq \mathcal{C K}(\mathbf{x}, \mathbf{v}) \leq \frac{|\mathbf{v}|}{1-|\mathbf{x}|^{2}}
$$

with the upper bound reached for $\phi=0$ and the lower bound for $\phi=\pi / 2$.

Comparison with a Finsler metric

The inequality in Theorem 1 can be rewritten as

$$
\frac{\sqrt{1-|f(z)|^{2} \sin ^{2} \theta}}{1-|f(z)|^{2}}\left|d f_{z}(\xi)\right| \leq \frac{|\xi|}{1-|z|^{2}}, \quad \xi \in T_{z} \mathbb{D}=\mathbb{R}^{2}
$$

where $\theta \in[0, \pi / 2]$ is the angle between $f(z)$ and the 2-plane $\Lambda=d f_{z}\left(\mathbb{R}^{2}\right)$.
Let $G_{2}\left(\mathbb{R}^{n}\right)$ denote the Grassmann manifold of all 2-planes in \mathbb{R}^{n}, and define

$$
\mathcal{M}(\mathbf{x}, \Lambda)=\frac{\sqrt{1-|\mathbf{x}|^{2} \sin ^{2} \theta}}{1-|\mathbf{x}|^{2}}, \quad \mathbf{x} \in \mathbb{B}^{n}, \Lambda \in G_{2}\left(\mathbb{R}^{n}\right)
$$

where $\theta \in[0, \pi / 2]$ is the angle between \mathbf{x} and Λ. Note that

$$
\mathcal{M}(\mathbf{x}, \Lambda)=\inf \left\{1 /\left\|d f_{0}\right\|: f \in \mathrm{CH}\left(\mathbb{D}, \mathbb{B}^{n}\right), f(0)=\mathbf{x}, d f_{0}\left(\mathbb{R}^{2}\right)=\Lambda\right\}
$$

Comparison with a Finsler metric

If $\mathbf{v} \neq \mathbf{0}$ is a vector having angle $\phi \in[0, \pi / 2]$ with the line $\mathbb{R} \mathbf{x}$, then every 2 -plane Λ containing \mathbf{v} makes an angle $\theta \in[0, \phi]$ with \mathbf{x}, and the maximum of θ over all such Λ equals ϕ. Hence,

$$
\begin{aligned}
\mathcal{C K}(\mathbf{x}, \mathbf{v}) /|\mathbf{v}| & =\min \left\{\mathcal{M}(\mathbf{x}, \Lambda): \Lambda \in G_{2}\left(\mathbb{R}^{n}\right), \mathbf{0} \neq \mathbf{v} \in \Lambda\right\} \\
\mathcal{M}(\mathbf{x}, \Lambda) & =\max \{\mathcal{C} \mathcal{K}(\mathbf{x}, \mathbf{v}) /|\mathbf{v}|: \mathbf{v} \in \Lambda\} \text { for all } \Lambda \in G_{1}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Applying this with $\mathbf{x}=f(z)$ and $\mathbf{v}=d f_{z}(\xi) \in \Lambda=d f_{z}\left(\mathbb{R}^{2}\right)$ gives

$$
\begin{aligned}
\mathcal{C K}\left(f(z), d f_{z}(\xi)\right) & \leq \mathcal{M}\left(f(z), d f_{z}\left(\mathbb{R}^{2}\right)\right) \cdot\left|d f_{z}(\xi)\right| \\
& =\frac{\sqrt{1-|f(z)|^{2} \sin ^{2} \theta}}{1-|f(z)|^{2}}\left|d f_{z}(\xi)\right| \\
& \leq \frac{|\xi|}{1-|z|^{2}}=\mathcal{P}_{\mathbb{D}}(z, \xi)
\end{aligned}
$$

The first inequality is equality if and only if the angle ϕ between the line $f(z) \mathbb{R}$ and the vector $d f_{z}(\xi) \in \Lambda$ equals θ.

The second inequality is equality of and only if f is a conformal diffeomorphism onto the linear disc $\left(f(z)+d f_{z}\left(\mathbb{R}^{2}\right)\right) \cap \mathbb{B}^{n}$.

Conformal harmonic maps are distance-decreasing

Corollary

If $f: \mathbb{D} \rightarrow \mathbb{B}^{n}$ is a conformal harmonic map then

$$
\begin{equation*}
\mathcal{C K}\left(f(z), d f_{z}(\xi)\right) \leq \frac{|\xi|}{1-|z|^{2}}=\mathcal{P}_{\mathbb{D}}(z, \xi), \quad z \in \mathbb{D}, \xi \in \mathbb{R}^{2} \tag{4}
\end{equation*}
$$

with equality for some $z \in \mathbb{D}$ and $\xi \in \mathbb{R}^{2} \backslash\{0\}$ if and only if f is a conformal diffeomorphism onto the affine disc $\Sigma=\left(f(z)+d f_{z}\left(\mathbb{R}^{2}\right)\right) \cap \mathbb{B}^{n}$ and the vector $d f_{z}(\xi)$ is tangent to the diameter of Σ through the point $f(z)$.

The analogous conclusion holds if \mathbb{D} is replaced by any hyperbolic conformal surface M with the Poincaré metric \mathcal{P}_{M}. Equality can only occur if $M=\mathbb{D}$.

A hyperbolic conformal surface is one whose universal conformal covering is the disc. One introduces the Poincaré metric on such surface M by asking that the universal covering projection $h: \mathbb{D} \rightarrow M$ be a local isometry. The result is trivial unless M is of hyperbolic type, i.e., it admits bounded harmonic functions.

A pseudodistance on a domain in \mathbb{R}^{n}

There is a natural procedure to define a pseudodistance function $\rho=\rho_{D}$ on any domain $D \subset \mathbb{R}^{n}$ using conformal minimal discs $\mathbb{D} \rightarrow D$. It is motivated by Kobayashi's construction of his pseudometric on complex manifolds.

Fix a pair of points $\mathbf{x}, \mathbf{y} \in D$ and consider finite chains of conformal harmonic discs $f_{i}: \mathbb{D} \rightarrow D$ and points $a_{i} \in \mathbb{D}(i=1, \ldots, k)$ such that

$$
f_{1}(0)=\mathbf{x}, \quad f_{i+1}(0)=f_{i}\left(a_{i}\right) \text { for } i=1, \ldots, k-1, \quad f_{k}\left(a_{k}\right)=\mathbf{y}
$$

To any such chain we associate the number

$$
\sum_{i=1}^{k} \frac{1}{2} \log \frac{1+\left|a_{i}\right|}{1-\left|a_{i}\right|} \geq 0
$$

The i-th term in the sum is the Poincaré distance from 0 to a_{i} in \mathbb{D}.
The pseudodistance $\rho_{D}: D \times D \rightarrow \mathbb{R}_{+}$is the infimum of the numbers obtained in this way. Clearly it satisfies the triangle inequality.

If D is a domain in \mathbb{C}^{n} and we use only holomorphic discs, then the corresponding pseudodistance ρ is precisely the one of Kobayashi.

Distance-decreasing property

Lemma

(A) Conformal harmonic maps $M \rightarrow D$ from any hyperbolic conformal surface are distance-decreasing in the Poincaré distance function on M and the distance ρ_{D} on D.
(B) ρ_{D} is the largest pseudodistance function on D for which this holds.

Proof of (\mathbf{A}) For $M=\mathbb{D}$, this follows from the definition since every conformal harmonic map $f: \mathbb{D} \rightarrow D$ is a candidate for computing ρ_{D} and we are taking the infimum. For general M, the result follows by precomposing f by a universal conformal covering $h: \mathbb{D} \rightarrow M$.
Proof of (B) Suppose that τ is a pseudodistance on D such that every conformal harmonic map $\mathbb{D} \rightarrow D$ is distance-decreasing. Let $f_{i}: \mathbb{D} \rightarrow D$ and $a_{i} \in \mathbb{D}$ for $i=1, \ldots, k$ be a chain connecting the points $\mathbf{x}, \mathbf{y} \in D$. Then,

$$
\tau(\mathbf{x}, \mathbf{y}) \leq \sum_{i=1}^{k} \tau\left(f_{i}(0), f_{i}\left(a_{i}\right)\right) \leq \sum_{i=1}^{k} \frac{1}{2} \log \frac{1+\left|a_{i}\right|}{1-\left|a_{i}\right|}
$$

Taking the infimum over all such chains gives $\tau(\mathbf{x}, \mathbf{y}) \leq \rho_{D}(\mathbf{x}, \mathbf{y})$.

$\rho_{\mathbb{B}^{n}}=\operatorname{dist}_{\mathcal{C}}$

Theorem

On the ball \mathbb{B}^{n}, we have $\rho_{\mathbb{B}^{n}}=\operatorname{dist}_{\mathcal{C}}$.

Proof Fix a pair of distinct points $\mathbf{x}, \mathbf{y} \in \mathbb{B}^{n}$. Let \mathbf{p} be the point on the affine line L through x and y which is closest to the origin.

Let $\Lambda \subset \mathbb{R}^{n}$ be the affine 2-plane containing L and such that \mathbf{p} is orthogonal to Λ (such Λ is unique unless $\mathbf{p}=\mathbf{0}$). Then, $\Sigma:=\Lambda \cap \mathbb{B}^{n}$ is an affine disc, and the points \mathbf{x} and \mathbf{y} lie on the diameter $L \cap \mathbb{B}^{n}$ of Σ.
These diameters are geodesics (length minimizers) for the Cayley-Klein metric on \mathbb{B}^{n}, and $\operatorname{dist}_{\mathcal{C}}(\mathbf{x}, \mathbf{y})$ equals the Poincaré distance between \mathbf{x} and \mathbf{y} within the affine disc Σ.

By the previous lemma applied with $\tau=\operatorname{dist}_{\mathcal{C}}$, we have $\operatorname{dist}_{\mathcal{C} \mathcal{K}}(\mathbf{x}, \mathbf{y}) \leq \rho_{\mathbb{B}^{n}}(\mathbf{x}, \mathbf{y})$. Since the affine disc Σ is a candidate for computing $\rho_{\mathbb{B}^{n}}(\mathbf{x}, \mathbf{y})$, equality follows.

Hyperbolic domains

Definition (Hyperbolic domains in \mathbb{R}^{n})

A domain $D \subset \mathbb{R}^{n}(n \geq 3)$ is hyperbolic if the pseudodistance ρ_{D} is a distance function on D, and is complete hyperbolic if $\left(D, \rho_{D}\right)$ is a complete metric space (i.e., Cauchy sequences converge).

Example

(A) The ball $\mathbb{B}^{n} \subset \mathbb{R}^{n}(n \geq 3)$ is complete hyperbolic since the Cayley-Klein metric is complete.
(B) Every bounded domain $D \subset \mathbb{R}^{n}$ is hyperbolic since it is contained in a ball. However, it need not be complete hyperbolic.
(C) Every bounded strongly convex domain in \mathbb{R}^{n} is complete hyperbolic.
(D) The half-space $\mathbb{H}^{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$ is not hyperbolic since the pseudodistance $\rho_{\mathbb{H}^{n}}$ vanishes on planes $x_{n}=$ const.

Problems

Problem

(A) Is the complement of a catenoid in \mathbb{R}^{3} hyperbolic?
(B) Is every bounded strongly mean-convex domain in \mathbb{R}^{3} complete hyperbolic?
\sim Thank you for your attention \sim

Image Credit \& Copyright: Oliver Dragičević

