Hyperbolic domains in real Euclidean spaces

Franc Forstnerič

Univerza v Ljubljani

Institute of Mathematics, Physics and Mechanics

University of Granada
1 April 2022

Abstract

Let Ω be a domain in $\mathbb{R}^{n}, n \geq 3$. We introduce an intrinsic Kobayashi-type (Finsler) minimal pseudometric $g_{\Omega}: T \Omega=\Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$defined in terms of conformal harmonic discs. Such discs parameterize minimal surfaces in \mathbb{R}^{n}.

Its integrated form is the minimal pseudodistance $\rho_{\Omega}: \Omega \times \Omega \rightarrow \mathbb{R}_{+}$, also defined by chains of conformal harmonic discs.

On the unit ball $\mathbb{B}^{n}, g_{\mathbb{B}^{n}}$ coincides with the Cayley-Klein metric, one of the classical models of hyperbolic geometry.

I shall present several sufficient conditions for a domain $\Omega \subset \mathbb{R}^{n}$ to be (complete) hyperbolic, meaning that g_{Ω} is a (complete) metric; equivalently, ρ_{Ω} is a (complete) distance function.
F. F. \& David Kalaj, Hyperbolicity theory for conformal minimal surfaces in \mathbb{R}^{n}. https://arxiv.org/abs/2102.12403, February 2021

Barbara Drinovec Drnovšek and F. F., Hyperbolic domains in real Euclidean spaces. https://arxiv.org/abs/2109.06943, Sept 2021. To appear in Pure and Appl. Math. Quarterly.

The minimal pseudodistance

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ denote the unit disc, and let Ω be a domain in \mathbb{R}^{n}. Let $\mathrm{CH}(\mathbb{D}, \Omega)$ denote the space of conformal harmonic discs $f: \mathbb{D} \rightarrow \Omega$:

$$
f_{x} \cdot f_{y}=0, \quad\left|f_{x}\right|=\left|f_{y}\right| ; \quad z=x+i y \in \mathbb{D}
$$

Fix a pair of points $\mathbf{x}, \mathbf{y} \in \Omega$ and consider finite chains of discs $f_{i} \in \mathrm{CH}(\mathbb{D}, \Omega)$ and points $a_{i} \in \mathbb{D}(i=1, \ldots, k)$ such that

$$
f_{1}(0)=\mathbf{x}, \quad f_{i+1}(0)=f_{i}\left(a_{i}\right) \text { for } i=1, \ldots, k-1, \quad f_{k}\left(a_{k}\right)=\mathbf{y}
$$

To any such chain we associate the number

$$
\sum_{i=1}^{k} \frac{1}{2} \log \frac{1+\left|a_{i}\right|}{1-\left|a_{i}\right|} \geq 0
$$

The pseudodistance $\rho_{\Omega}: \Omega \times \Omega \rightarrow \mathbb{R}_{+}$is the infimum of the numbers obtained in this way. Clearly it satisfies the triangle inequality.

If $\Omega \subset \mathbb{C}^{n}$ and we use holomorphic discs, we get the Kobayashi pseudodistance $\mathcal{K}_{\Omega}\left(\mathrm{S}\right.$. Kobayashi, 1967). Hence, $\rho_{\Omega} \leq \mathcal{K}_{\Omega}$. These pseudodistances agree on domains in \mathbb{C}, but strict inequality holds if $n>1$.

The minimal pseudometric

Define a Finsler pseudometric $g_{\Omega}: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$on $(\mathbf{x}, \mathbf{v}) \in \Omega \times \mathbb{R}^{n}$ by

$$
g_{\Omega}(\mathbf{x}, \mathbf{v})=\inf \left\{1 / r>0: \exists f \in \mathrm{CH}(\mathbb{D}, \Omega), f(0)=\mathbf{x}, f_{x}(0)=r \mathbf{v}\right\}
$$

Clearly, g_{Ω} is upper-semicontinuous and absolutely homogeneous:

$$
g_{\Omega}(\mathbf{x}, t \mathbf{v})=|t| g_{\Omega}(\mathbf{x}, \mathbf{v}) \text { for } t \in \mathbb{R}
$$

If $\Omega \subset \mathbb{C}^{n}$ and using only holomorphic disc gives the Kobayashi pseudometric.

Theorem

The minimal pseudodistance ρ_{Ω} is obtained by integrating g_{Ω} :

$$
\rho_{\Omega}(\mathbf{x}, \mathbf{y})=\inf _{\gamma} \int_{0}^{1} g_{\Omega}(\gamma(t), \dot{\gamma}(t)) d t, \quad \mathbf{x}, \mathbf{y} \in \Omega
$$

The infimum is over piecewise smooth paths $\gamma:[0,1] \rightarrow \Omega$ with $\gamma(0)=\mathbf{x}$ and $\gamma(1)=\mathbf{y}$.

The elementary proof is similar to the one for the Kobayashi pseudometric.

Metric decreasing properties

A conformal surface M is hyperbolic if its universal covering space is the disc \mathbb{D}. Such a surface carries the Poincaré metric, \mathcal{P}_{M}, the unique Riemannian metric such that any conformal covering map $h: \mathbb{D} \rightarrow M$ is an isometry from $\left(\mathbb{D}, \mathcal{P}_{\mathbb{D}}\right)$ onto $\left(M, \mathcal{P}_{M}\right)$. The Poincaré metric on \mathbb{D} is

$$
\mathcal{P}_{\mathbb{D}}(z, \xi)=\frac{|\xi|}{1-|z|^{2}}, \quad z \in \mathbb{D}, \xi \in \mathbb{C}
$$

For every conformal harmonic map $f: \mathbb{D} \rightarrow \Omega$ we have that

$$
g_{\Omega}\left(f(z), d f_{z}(\xi)\right) \leq \mathcal{P}_{\mathbb{D}}(z, \xi), \quad z \in \mathbb{D}, \quad \xi \in \mathbb{C}
$$

and g_{Ω} is the largest pseudometric on Ω with this property.
For $z=0$ this is immediate from the definition of g_{Ω}. For other points, we precompose f by $\phi \in \operatorname{Aut}(\mathbb{D})$ interchanging z and 0 .
The same holds for conformal harmonic maps $\left(M, \mathcal{P}_{M}\right) \rightarrow\left(\Omega, g_{\Omega}\right)$.
Any rigid map $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(n \leq m)$ with $R(\Omega) \subset \Omega^{\prime}$ is metric-decreasing:

$$
g_{\Omega^{\prime}}(R(\mathbf{x}), R(\mathbf{v})) \leq g_{\Omega}(\mathbf{x}, \mathbf{v}), \quad \mathbf{x} \in \Omega, \mathbf{v} \in \mathbb{R}^{n} .
$$

A Finsler pseudometric on the Grassmanian of 2-planes

In particular,

$$
\Omega \subset \Omega^{\prime} \Longrightarrow g_{\Omega} \geq g_{\Omega^{\prime}}
$$

We also introduce a Finsler pseudometric on $\Omega \times G_{2}\left(\mathbb{R}^{n}\right)$, where $G_{2}\left(\mathbb{R}^{n}\right)$ denotes the Grassmann manifold of 2-planes in \mathbb{R}^{n}, by

$$
\mathcal{M}_{\Omega}(\mathbf{x}, \Lambda)=\inf \left\{1 /\left\|d f_{0}\right\|: f \in \mathrm{CH}(\mathbb{D}, \Omega), f(0)=\mathbf{x}, d f_{0}\left(\mathbb{R}^{2}\right)=\Lambda\right\}
$$

Here, $\left\|d f_{0}\right\|$ denotes the operator norm of the differential $d f_{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}$.
It clearly follows that for any vector $\mathbf{v} \in \mathbb{R}^{n}$ we have

$$
g_{\Omega}(\mathbf{x}, \mathbf{v})=|\mathbf{v}| \cdot \inf \left\{\mathcal{M}_{\Omega}(\mathbf{x}, \Lambda): \Lambda \in \mathbb{G}_{2}\left(\mathbb{R}^{n}\right), \mathbf{v} \in \Lambda\right\} .
$$

Note that the 2-planes Λ containing a given vector $v \neq 0$ form an ($n-2$)-sphere. This is an important difference with respect to the Kobayashi metric - a vector $0 \neq \mathbf{v} \in \mathbb{C}^{n}$ determines a unique complex line Λ.

The Cayley-Klein metric on the ball \mathbb{B}^{n} of \mathbb{R}^{n} for $n \geq 3$

Theorem (F.-Kalaj 2021)

The minimal metric $g_{\mathbb{B}^{n}}$ on the unit ball \mathbb{B}^{n} equals the Cayley-Klein metric:

$$
g_{\mathbb{B}^{n}}(\mathbf{x}, \mathbf{v})^{2}=\frac{\left(1-|\mathbf{x}|^{2}\right)|\mathbf{v}|^{2}+|\mathbf{x} \cdot \mathbf{v}|^{2}}{\left(1-|\mathbf{x}|^{2}\right)^{2}}=\frac{|\mathbf{v}|^{2}}{1-|\mathbf{x}|^{2}}+\frac{|\mathbf{x} \cdot \mathbf{v}|^{2}}{\left(1-|\mathbf{x}|^{2}\right)^{2}}
$$

We also have that

$$
g_{\mathbb{B}^{n}}(\mathbf{x}, \mathbf{v})=\frac{\sqrt{1-|\mathbf{x}|^{2} \sin ^{2} \phi}}{1-|\mathbf{x}|^{2}}|\mathbf{v}|, \quad \mathbf{x} \in \mathbb{B}^{n}, \mathbf{v} \in \mathbb{R}^{n}
$$

where $\phi \in[0, \pi / 2]$ is the angle between the vector \mathbf{v} and the line $\mathbb{R} \mathbf{x} \subset \mathbb{R}^{n}$, and

$$
\mathcal{M}_{\mathbb{B}^{n}}(\mathbf{x}, \Lambda)=\frac{\sqrt{1-|\mathbf{x}|^{2} \sin ^{2} \theta}}{1-|\mathbf{x}|^{2}}|\mathbf{v}|, \quad \mathbf{x} \in \mathbb{B}^{n}, \Lambda \in \mathbb{G}_{2}\left(\mathbb{R}^{n}\right)
$$

where $\theta \in[0, \pi / 2]$ is the angle between the plane Λ and the line $\mathbb{R} \times \mathbb{R}^{n}$.

Historical remarks

The Beltrami-Cayley-Klein model of hyperbolic geometry was introduced and studied by Arthur Cayley (1859), Eugenio Beltrami (1868), and Felix Klein (1871-73).

The underlying space is the unit ball, geodesics are straight line segments with endpoints on the boundary sphere, and the distance between points on a geodesic is given by the cross ratio.

This metric is the restriction of the Kobayashi metric (or, up to a scalar multiple, of the Bergman metric) on the complex ball $\mathbb{B}_{\mathrm{C}}^{n} \subset \mathbb{C}^{n}$ to points in $\mathbb{B}^{n}=\mathbb{B}_{\mathrm{C}}^{n} \cap \mathbb{R}^{n}$ and vectors in \mathbb{R}^{n}.

It is a special case of the metric on convex domains in \mathbb{R}^{n} which was introduced and studied by David Hilbert in 1885.

Definition

A domain $\Omega \subset \mathbb{R}^{n}$ for $n \geq 3$ is hyperbolic if ρ_{Ω} is a distance function, and is complete hyperbolic if $\left(\Omega, \rho_{\Omega}\right)$ is a complete metric space.

Example

(A) The ball $\mathbb{B}^{n} \subset \mathbb{R}^{n}, n \geq 3$, is complete hyperbolic.
(B) Every bounded domain $\Omega \subset \mathbb{R}^{n}$ is hyperbolic since it is contained in a ball. However, it need not be complete hyperbolic. For example, if $b \Omega$ is smooth and contains a strongly concave boundary point $\mathbf{p} \in b \Omega$, there is a conformal linear disc $\Sigma \subset \Omega \cup\{\mathbf{p}\}$ containing \mathbf{p}. Then, \mathbf{p} is at finite ρ_{Ω}-distance from Ω.
(C) The half-space $\mathbb{H}^{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}>0\right\}$ is not hyperbolic since the pseudodistance $\rho_{\mathbb{H}^{n}}$ vanishes on planes $x_{1}=$ const. However, we will show that the minimal distance to the hyperplane $b \mathbb{H}=\left\{x_{1}=0\right\}$ is infinite.

Basic properties of hyperbolic domains

Theorem

The following conditions are equivalent for a domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$.
(1) The family $\mathrm{CH}(\mathbb{D}, \Omega)$ of conformal harmonic discs $\mathbb{D} \rightarrow \Omega$ is pointwise equicontinuous for some metric ρ on Ω inducing its natural topology.
(1) Every point $\mathbf{p} \in \Omega$ has a neighbourhood $U \subset \Omega$ and $c>0$ such that

$$
g_{\Omega}(\mathbf{x}, \mathbf{u}) \geq c|\mathbf{u}|, \quad \mathbf{x} \in U, \mathbf{u} \in \mathbb{R}^{n}
$$

(9) Ω is hyperbolic.
(0) The minimal distance ρ_{Ω} induces the standard topology of Ω.

$$
\text { A domain } \Omega \subset \mathbb{R}^{n} \text { is called taut if } \mathrm{CH}(\mathbb{D}, \Omega) \text { is a normal family. }
$$

Theorem

The following hold for any domain Ω in $\mathbb{R}^{n}, n \geq 3$:

$$
\text { complete hyperbolic } \Longrightarrow \text { taut } \Longrightarrow \text { hyperbolic }
$$

Hyperbolicity of convex domains

Theorem

The following are equivalent for a convex domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$.
(1) Ω is complete hyperbolic.
(1) Ω is hyperbolic.
(1. Ω does not contain any 2-dimensional affine subspaces.
(0. Ω is contained in the intersection of $n-1$ halfspaces determined by linearly independent linear functionals.

For comparison: A convex domain in \mathbb{C}^{n} is Kobayashi hyperbolic if and only if it does not contain any affine complex line (Barth (1980), Harris (1979)).
The main implication is $(i v) \Rightarrow(i)$. We first show that the minimal distance to an affine hyperplane is infinite. This follows from the Schwarz lemma for positive harmonic functions $f: \mathbb{D} \rightarrow(0,+\infty):|\nabla f(0)| \leq 2 f(0)$. For $\mathbb{H}^{n}=\left\{x_{1}>0\right\}$ this gives

$$
g_{\mathbb{H}^{n}}\left(\left(x_{1}, \ldots, x_{n}\right),\left(v_{1}, \ldots, v_{n}\right)\right) \geq \frac{\left|v_{1}\right|}{2 x_{1}} .
$$

For any path $\gamma(t)=\left(\gamma_{1}(t), \ldots\right) \in \mathbb{H}^{n}, t \in[0,1)$, it follows that

$$
\int_{0}^{1} g_{\mathbb{H}^{n}}(\gamma(t), \dot{\gamma}(t)) d t \geq \int_{0}^{1} \frac{\left|\dot{\gamma}_{1}(t)\right|}{2 \gamma_{1}(t)} d t
$$

If $\gamma(t) \rightarrow 0$ or $\gamma(t) \rightarrow+\infty$ as $t \rightarrow 1$ then the integral is $+\infty$,

Hyperbolicity of convex domains, 2

Hence, a convex domain is locally complete hyperbolic at every boundary point.
Assume that Ω satisfies condition (iv). Up to a translation and rotation, there are linearly independent unit vectors $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n-1} \in \mathbb{R}^{n-1} \times\{0\}$ such that

$$
\Omega \subset \bigcap_{i=1}^{n-1} \mathbb{H}_{i} \quad \text { where } \mathbb{H}_{i}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \cdot \mathbf{y}_{i}>0\right\} \quad \text { for } \quad i=1, \ldots, n-1
$$

Let $\mathbf{x}(t)=\left(\mathbf{x}^{\prime}(t), x_{n}(t)\right) \in \Omega(t \in[0,1))$ be a divergent path. Set

$$
x_{i}(t):=\mathbf{x}(t) \cdot \mathbf{y}_{i}=\mathbf{x}^{\prime}(t) \cdot \mathbf{y}_{i}>0 \text { for } i=1, \ldots, n-1, t \in[0,1)
$$

If $\mathbf{x}(t)$ clusters at some point $\mathbf{p} \in b \Omega$ as $t \rightarrow 1$, then $\mathbf{x}(t)$ has infinite g_{Ω}-length. Likewise, if one of the functions $x_{i}(t)$ for $i=1, \ldots, n-1$ clusters at $+\infty$, then the path $\mathbf{x}(t)$ has infinite minimal length in \mathbb{H}_{i}, and hence also in $\Omega \subset \mathbb{H}_{i}$.

It remains to consider the case when the functions $x_{i}(t)$ are bounded,

$$
\begin{equation*}
0<\mathbf{x}(t) \cdot \mathbf{y}_{i} \leq c_{1} \text { for } i=1, \ldots, n-1, t \in[0,1) \tag{1}
\end{equation*}
$$

and the path $\mathbf{x}(t) \in \Omega$ does not cluster anywhere on $b \Omega$. In this case, the last component $x_{n}(t) \in \mathbb{R}$ of $\mathbf{x}(t)$ clusters at $\pm \infty$ as $t \rightarrow 1$, and hence $\int_{0}^{1}\left|\dot{x}_{n}(t)\right| d t=+\infty$. To see that the path $\mathbf{x}(t)$ has infinite g_{Ω}-length, it suffices to show that

$$
g_{\Omega}(\mathbf{x}(t), \dot{\mathbf{x}}(t)) \geq c_{2}\left|\dot{x}_{n}(t)\right|,
$$

where $c_{2}>0$ only depends on $c_{1}>0$ and the vectors $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n-1}$.

Hyperbolicity of convex domains, 3

Fix a point $\mathbf{x} \in \Omega$ satisfying (1) and a unit vector $\mathbf{v}=\left(\mathbf{v}^{\prime}, v_{n}\right) \in \mathbb{R}^{n}$, and consider a conformal harmonic map $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right): \mathbb{D} \rightarrow \Omega$ such that $f(0)=\mathbf{x}$ and $f_{x}(0)=r \mathbf{v}$ for some $r>0$. Then, $f_{y}(0)=r \mathbf{w}=r\left(\mathbf{w}^{\prime}, w_{n}\right)$ where (\mathbf{v}, \mathbf{w}) is an orthonormal frame:

$$
0=\mathbf{v} \cdot \mathbf{w}=\mathbf{v}^{\prime} \cdot \mathbf{w}^{\prime}+v_{n} w_{n}, \quad|\mathbf{v}|=|\mathbf{w}|=1 .
$$

From this and the Cauchy-Schwarz inequality it follows that

$$
v_{n}^{2}\left(1-\left|\mathbf{w}^{\prime}\right|^{2}\right)=v_{n}^{2} w_{n}^{2}=\left|\mathbf{v}^{\prime} \cdot \mathbf{w}^{\prime}\right|^{2} \leq\left|\mathbf{v}^{\prime}\right|^{2}\left|\mathbf{w}^{\prime}\right|^{2}=\left(1-v_{n}^{2}\right)\left|\mathbf{w}^{\prime}\right|^{2}
$$

and hence

$$
\left|v_{n}\right| \leq\left|\mathbf{w}^{\prime}\right| \leq c_{3} \max _{i=1, \ldots, n-1}\left|\mathbf{w} \cdot \mathbf{y}_{i}\right|
$$

where $c_{3}>0$ depends on the vectors $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n-1} \in \mathbb{R}^{n-1} \times\{0\}$. Therefore,

$$
r\left|v_{n}\right| \leq c_{3} \max _{i=1, \ldots, n-1} r\left|\mathbf{w} \cdot \mathbf{y}_{i}\right| \leq 2 c_{3} \max _{i=1, \ldots, n-1} \mathbf{x} \cdot \mathbf{y}_{i},
$$

where the second estimate follows from the Schwarz lemma applied to the conformal harmonic disc $z \mapsto \tilde{f}(z)=f(\mathrm{iz})$ in each of the half-spaces \mathbb{H}_{i}. (Note that $\tilde{f}(0)=\mathrm{x}$ and $\tilde{f}_{x}(0)=f_{y}(0)=r \mathbf{w}$.) Together with the assumption (1) this gives

$$
g_{\Omega}(\mathbf{x}, \mathbf{v}) \geq \frac{1}{r} \geq \frac{\left|v_{n}\right|}{2 c_{3} \max _{i=1, \ldots, n-1} \mathbf{x} \cdot \mathbf{y}_{i}} \geq \frac{\left|v_{n}\right|}{2 c_{1} c_{3}}=c_{2}\left|v_{n}\right|,
$$

Applying this with $\mathbf{x}=\mathbf{x}(t)$ and $\mathbf{v}=\dot{\mathbf{x}}(t)$ yields $g_{\Omega}(\mathbf{x}(t), \dot{\mathbf{x}}(t)) \geq c_{2}\left|\dot{x}_{n}(t)\right|$, proving that Ω is complete hyperbolic.

Minimal plurisubharmonic functions

Let Ω be a domain in \mathbb{R}^{n}. An upper-semicontinuous function $u: \Omega \rightarrow[-\infty,+\infty)$ is said to be minimal plurisubharmonic, MPSH, if for every affine 2-plane $L \subset \mathbb{R}^{n}$ the restriction $u: L \cap \Omega \rightarrow[-\infty,+\infty)$ is subharmonic (in conformal affine coordinates on L).

A function $u \in \mathscr{C}^{2}(\Omega)$ is MPSH if and only if

$$
\Delta\left(\left.u\right|_{\mathbf{x}+\Lambda}\right)(\mathbf{x})=\operatorname{tr}_{\Lambda} \operatorname{Hess}_{u}(\mathbf{x}) \geq 0 \text { for every }(\mathbf{x}, \Lambda) \in \Omega \times \mathbb{G}_{2}\left(\mathbb{R}^{n}\right)
$$

and this holds if and only if

$$
(*) \quad \lambda_{1}(\mathbf{x})+\lambda_{2}(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in \Omega
$$

where $\lambda_{1}(\mathbf{x}), \lambda_{2}(\mathbf{x})$ denote the smallest eigenvalues of $\operatorname{Hess}_{u}(\mathbf{x})$.
We say that $u \in \mathscr{C}^{2}(\Omega)$ is strongly minimal plurisubharmonic if strong inequality holds in $\left(^{*}\right.$).

This class of functions was studied by Harvey and Lawson in a series of papers. Their use in the theory of minimal surfaces is summarized in my monograph with Alarcón and López (Minimal surfaces from a complex analytic viewpoint, Springer, 2021).

... and their relevance to minimal surfaces

Proposition

An upper-semicontinuous function $u: \Omega \rightarrow[-\infty,+\infty)$ is MPSH if and only if for each conformal harmonic map $f: M \rightarrow \Omega$ from a conformal surface the function $u \circ f: M \rightarrow \mathbb{R}$ is subharmonic. If $u \in \mathscr{C}^{2}(\Omega)$ is strongly MPSH and f is an immersion, then $u \circ f$ is strongly subharmonic on M.

For functions $u \in \mathscr{C}^{2}(\Omega)$ this follows from the following formula, which holds for every conformal harmonic map $f: \mathbb{D} \rightarrow \Omega$:

$$
\Delta(u \circ f)(z)=\operatorname{tr}_{d f_{z}\left(\mathbb{R}^{2}\right)} \operatorname{Hess}_{u}(f(z)) \cdot\left\|d f_{z}\right\|^{2}, \quad z \in \mathbb{D}
$$

Lemma

Let \mathbf{x} be the Euclidean coordinate on $\mathbb{R}^{n}, n \geq 3$.
(a) The function $\log |\mathbf{x}|$ is MPSH on \mathbb{R}^{n}.
(D) If u is MPSH on $\Omega \subset \mathbb{R}^{n}$ then for any $\mathbf{p} \in \Omega$ the function $\mathbf{x} \mapsto|\mathbf{x}-\mathbf{p}|^{2} \mathrm{e}^{u(\mathbf{x})}$ and its logarithm are MPSH on Ω.

Minimally convex domains

A domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$, with smooth boundary is minimally convex if admits a defining function ρ such that

$$
\text { (*) } \operatorname{tr}_{\Lambda} \operatorname{Hess}_{\rho}(\mathbf{p}) \geq 0 \text { for every } \mathbf{p} \in b \Omega \text { and 2-plane } \Lambda \subset T_{\mathbf{p}} b \Omega \text {. }
$$

The domain Ω is strongly minimally convex if strict inequality holds.
Condition (*) says that $b \Omega$ has nonnegative (resp. positive) mean sectional curvature on every tangent 2-plane. This holds if and only if the principal normal curvatures $v_{1} \leq v_{2} \leq \cdots \leq v_{n-1}$ of $b \Omega$ at $\mathbf{p} \in b \Omega$ satisfy

$$
v_{1}+v_{2} \geq 0 \quad\left(\text { resp. } v_{1}+v_{2}>0\right) .
$$

A domain in \mathbb{R}^{3} bounded by a minimal surface is minimally convex.
Alarcón, Drinovec Drnovšek, F., López 2019: Every bordered Riemann surface admits many proper conformal harmonic immersions into an arbitrary minimally convex domain.
F. 2022: A bounded (strongly) minimally convex domain $\Omega \subset \mathbb{R}^{n}$ admits a defining function u which is (strongly) MPSH on $\bar{\Omega}=\{u \leq 0\}$.

Strongly minimally convex domains are complete hyperbolic

Theorem

Every bounded strongly minimally convex domain is complete hyperbolic.

This is an analogue of Graham's theorem (1975) that bounded strongly pseudoconvex domains in \mathbb{C}^{n} are complete Kobayashi hyperbolic.

Conversely: if $v_{1}+v_{2}<0$ at some point $\mathbf{p} \in b \Omega$ then \mathbf{p} is at finite minimal distance from the interior. In this case there exists an embedded conformal harmonic disc $f: \mathbb{D} \rightarrow \Omega \cup\{\mathbf{p}\}$ with $f(0)=\mathbf{p}$ and $f\left(\mathbb{D}^{*}\right) \subset \Omega$.

Corollary

If M is an embedded surface in \mathbb{R}^{3} such that the minimal distance to any point $\mathbf{p} \in M$ is infinite, then M is a minimal surface.

Problem

Is the minimal distance to an embedded minimal surface $M \subset \mathbb{R}^{3}$ infinite?

A pseudometric defined by MPSH functions

Our proof uses the existence of a strongly minimally plurisubharmonic defining function and an analogue of the Sibony metric in this category.

We define the pseudometric $\mathcal{F}_{\Omega}: \Omega \times \mathbb{G}_{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}_{+}$by

$$
\mathcal{F}_{\Omega}(\mathbf{x}, \Lambda)=\frac{1}{2} \sup _{u} \sqrt{\operatorname{tr}_{\Lambda} \operatorname{Hess}_{u}(\mathbf{x})}, \quad \mathbf{x} \in \Omega, \Lambda \in \mathbb{G}_{2}\left(\mathbb{R}^{n}\right)
$$

where the supremum is over all MPSH functions $u: \Omega \rightarrow[0,1]$ such that u is of class \mathscr{C}^{2} near $\mathbf{x}, u(\mathbf{x})=0$, and $\log u$ is MPSH on Ω.

The Sibony metric is defined in the same way, using log-plurisubharmonic functions on domains in \mathbb{C}^{n} and complex lines $\Lambda \subset \mathbb{C}^{n}$.

The main point is that \mathcal{F}_{Ω} gives a lower bound for the minimal pseudometric:

Proposition

For any domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$, we have that $\mathcal{F}_{\Omega} \leq \mathcal{M}_{\Omega}$.

Proof of the proposition

Fix $(\mathbf{x}, \Lambda) \in \Omega \times \mathbb{G}_{2}\left(\mathbb{R}^{n}\right)$. Let $f \in \mathrm{CH}(\mathbb{D}, \Omega)$ be such that $f(0)=\mathbf{x}$ and $d f_{0}\left(\mathbb{R}^{2}\right)=\Lambda$. Let $u: \Omega \rightarrow[0,1]$ be as in the definition of \mathcal{F}_{Ω}.
The function $v:=u \circ f: \mathbb{D} \rightarrow[0,1]$ is then subharmonic, of class \mathscr{C}^{2} near the origin, $v(0)=0$, and $\log v=\log u \circ f: \mathbb{D} \rightarrow[-\infty, 0)$ is also subharmonic.
By Sibony (1981) we have that

$$
\Delta v(0) \leq 4 .
$$

(The unique extremal function with $\Delta v(0)=4$ is $v(x+i y)=x^{2}+y^{2}$.) Hence,

$$
\operatorname{tr}_{\Lambda} \operatorname{Hess}_{u}(\mathbf{x}) \cdot\left\|d f_{0}\right\|^{2}=\Delta v(0) \leq 4
$$

Equivalently,

$$
\frac{1}{2} \sqrt{\operatorname{tr}_{\Lambda} \operatorname{Hess}_{u}(\mathbf{x})} \leq \frac{1}{\left\|d f_{0}\right\|}
$$

The supremum of the left hand side over all admissible functions u equals $\mathcal{F}_{\Omega}(\mathbf{x}, \Lambda)$, while the infimum of the right hand side over all conformal harmonic discs f as above equals $\mathcal{M}_{\Omega}(\mathbf{x}, \Lambda)$. Hence, $\mathcal{F}_{\Omega} \leq \mathcal{M}_{\Omega}$.

Sketch of proof of the theorem on complete hyperbolicity

We use the above proposition with MPSH function of the form

$$
\Psi(\mathbf{y})=\theta\left(r^{-2}|\mathbf{y}-\mathbf{x}|^{2}\right) \mathrm{e}^{\lambda u(\mathbf{y})}, \quad \mathbf{y} \in \Omega
$$

where $\theta:[0, \infty) \rightarrow[0,1]$ is a smooth increasing function such that

$$
\theta(t)=t \quad \text { for } 0 \leq t \leq \frac{1}{2}, \quad \theta(t)=1 \text { for } t \geq 1
$$

u is a strongly MPSH defining functions for $\Omega, \mathbf{x} \in \Omega$, and $r>0$ and $\lambda>0$ are suitably chosen constants. In this way, we show that

$$
g_{\Omega}(\mathbf{x}, \mathbf{v}) \geq C \frac{|\mathbf{v}|}{\sqrt{\operatorname{dist}(\mathbf{x}, b \Omega)}}, \quad \mathbf{x} \in \Omega, \mathbf{v} \in \mathbb{R}^{n}
$$

To show completeness of g_{Ω} we need a stronger estimate

$$
\begin{equation*}
g_{\Omega}(\mathbf{x}, \mathbf{v}) \geq C \frac{|\mathbf{v}|}{\operatorname{dist}(\mathbf{x}, b \Omega)} \tag{2}
\end{equation*}
$$

for vectors \mathbf{v} which are normal to $b \Omega$ at the closest point $\mathbf{p} \in b \Omega$ to \mathbf{x}.

Sketch of proof, 2

We follow Ivashkovich and Rosay (2004). The existence of a local negative strongly MPSH peak function, and also of the MPSH anti-peak functions $\mathbf{z} \mapsto \log |\mathbf{x}-\mathbf{p}|$ at points $\mathbf{p} \in b \Omega$, implies that for some $c>0$ we have

$$
\begin{equation*}
|\nabla f(z)| \leq c \sqrt{|u(f(0))|} \approx \sqrt{\operatorname{dist}(f(0), b \Omega)}, \quad|z| \leq \frac{1}{2} \tag{3}
\end{equation*}
$$

for every $f \in \mathrm{CH}(\mathbb{D}, \Omega)$ whose centre $f(0)$ is close enough to $b \Omega$. (This amounts to a localization argument, showing that most of the disc is mapped by f close to $f(0)$, and then applying the Schwarz lemma for bounded harmonic functions.) This gives

$$
\begin{aligned}
|\Delta(u \circ f)(z)| & =\left|\operatorname{tr}_{d f_{z}\left(\mathbb{R}^{2}\right)} \operatorname{Hess}_{u}(f(z))\right| \cdot\left\|d f_{z}\right\|^{2} \\
& \leq c_{1}|\nabla f(z)|^{2} \leq C_{1}|u(f(0))|, \quad|z| \leq \frac{1}{2}
\end{aligned}
$$

for some constant $c_{1}>0$ and $C_{1}=c^{2} c_{1}>0$. We claim that this gives

$$
\begin{equation*}
|\nabla(u \circ f)(0)| \leq C_{2}|u(f(0))|, \quad f \in \mathrm{CH}(\mathbb{D}, \Omega) \tag{4}
\end{equation*}
$$

which implies (2) and hence establishes complete hyperbolicity of Ω. (Note that $u \circ f$ is essentially the normal component of f.)

Proof of (4)

By rescaling we may assume that (3) holds for all $z \in \mathbb{D}$.
Set $v=u \circ f: \mathbb{D} \rightarrow(-\infty, 0)$, so we have that

$$
|\Delta v(z)| \leq C_{1}|v(0)|, \quad z \in \mathbb{D}
$$

We extend Δv to \mathbb{C} by setting it equal to 0 on $\mathbb{C} \backslash \overline{\mathbb{D}}$. The function

$$
g(z)=v(z)-\left(\frac{1}{2 \pi} \log |\cdot| * \Delta v\right)(z)-C_{1}|v(0)|, \quad z \in \mathbb{D}
$$

is then harmonic on \mathbb{D}. Note that

$$
\left|\frac{1}{2 \pi} \log \right| \cdot|* \Delta v| \leq C_{1}|v(0)|
$$

Hence, $g \leq v<0$ on \mathbb{D} and $|g(0)|<\left(2 C_{1}+1\right)|v(0)|$. Schwarz lemma for negative harmonic functions gives $|\nabla g(0)| \leq 2|g(0)|$, and hence

$$
|\nabla v(0)| \leq|\nabla g(0)|+\sup _{\mathbb{D}}|\Delta v| \leq 2|g(0)|+C_{1}|v(0)| \leq\left(5 C_{1}+2\right)|v(0)|
$$

This is the estimate (3) with $C=5 C_{1}+2$.
\sim Thank you for your attention \sim

The castle of Ljubljana and the mountains of Kamnik Image Credit \& Copyright: Oliver Dragičević

