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Abstract

Let Ω be a domain in Rn, n ≥ 3. We introduce an intrinsic Kobayashi-type
(Finsler) minimal pseudometric gΩ : TΩ = Ω×Rn → R+ defined in terms
of conformal harmonic discs. Such discs parameterize minimal surfaces in Rn.

Its integrated form is the minimal pseudodistance ρΩ : Ω×Ω→ R+, also
defined by chains of conformal harmonic discs.

On the unit ball Bn, gBn coincides with the Cayley–Klein metric, one of the
classical models of hyperbolic geometry.

I shall present several sufficient conditions for a domain Ω ⊂ Rn to be
(complete) hyperbolic, meaning that gΩ is a (complete) metric; equivalently,
ρΩ is a (complete) distance function.
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The minimal pseudodistance

Let D = {z ∈ C : |z | < 1} denote the unit disc, and let Ω be a domain in Rn.

Let CH(D, Ω) denote the space of conformal harmonic discs f : D→ Ω:

fx · fy = 0, |fx | = |fy |; z = x + iy ∈ D.

Fix a pair of points x, y ∈ Ω and consider finite chains of discs fi ∈ CH(D, Ω)
and points ai ∈ D (i = 1, . . . , k) such that

f1(0) = x, fi+1(0) = fi (ai ) for i = 1, . . . , k − 1, fk (ak ) = y.

To any such chain we associate the number

k

∑
i=1

1

2
log

1 + |ai |
1− |ai |

≥ 0.

The pseudodistance ρΩ : Ω×Ω→ R+ is the infimum of the numbers
obtained in this way. Clearly it satisfies the triangle inequality.

If Ω ⊂ Cn and we use holomorphic discs, we get the Kobayashi
pseudodistance KΩ (S. Kobayashi, 1967). Hence, ρΩ ≤ KΩ. These
pseudodistances agree on domains in C, but strict inequality holds if n > 1.



The minimal pseudometric

Define a Finsler pseudometric gΩ : Ω×Rn → R+ on (x, v) ∈ Ω×Rn by

gΩ(x, v) = inf
{

1/r > 0 : ∃f ∈ CH(D, Ω), f (0) = x, fx (0) = rv
}

.

Clearly, gΩ is upper-semicontinuous and absolutely homogeneous:

gΩ(x, tv) = |t| gΩ(x, v) for t ∈ R.

If Ω ⊂ Cn and using only holomorphic disc gives the Kobayashi pseudometric.

Theorem

The minimal pseudodistance ρΩ is obtained by integrating gΩ:

ρΩ(x, y) = inf
γ

∫ 1

0
gΩ(γ(t), γ̇(t)) dt, x, y ∈ Ω.

The infimum is over piecewise smooth paths γ : [0, 1]→ Ω with γ(0) = x and
γ(1) = y.

The elementary proof is similar to the one for the Kobayashi pseudometric.



Metric decreasing properties

A conformal surface M is hyperbolic if its universal covering space is the disc
D. Such a surface carries the Poincaré metric, PM , the unique Riemannian
metric such that any conformal covering map h : D→ M is an isometry from
(D,PD) onto (M,PM ). The Poincaré metric on D is

PD(z , ξ) =
|ξ|

1− |z |2 , z ∈ D, ξ ∈ C.

For every conformal harmonic map f : D→ Ω we have that

gΩ(f (z), dfz (ξ)) ≤ PD(z , ξ), z ∈ D, ξ ∈ C,

and gΩ is the largest pseudometric on Ω with this property.

For z = 0 this is immediate from the definition of gΩ. For other points, we
precompose f by φ ∈ Aut(D) interchanging z and 0.

The same holds for conformal harmonic maps (M,PM )→ (Ω, gΩ).

Any rigid map R : Rn → Rm (n ≤ m) with R(Ω) ⊂ Ω′ is metric-decreasing:

gΩ′ (R(x),R(v)) ≤ gΩ(x, v), x ∈ Ω, v ∈ Rn.



A Finsler pseudometric on the Grassmanian of 2-planes

In particular,
Ω ⊂ Ω′ =⇒ gΩ ≥ gΩ′ .

We also introduce a Finsler pseudometric on Ω×G2(R
n), where G2(R

n)
denotes the Grassmann manifold of 2-planes in Rn, by

MΩ(x, Λ) = inf
{

1/‖df0‖ : f ∈ CH(D, Ω), f (0) = x, df0(R
2) = Λ

}
.

Here, ‖df0‖ denotes the operator norm of the differential df0 : R2 → Rn.

It clearly follows that for any vector v ∈ Rn we have

gΩ(x, v) = |v| · inf
{
MΩ(x, Λ) : Λ ∈ G2(R

n), v ∈ Λ}.

Note that the 2-planes Λ containing a given vector v 6= 0 form an
(n− 2)-sphere. This is an important difference with respect to the Kobayashi
metric — a vector 0 6= v ∈ Cn determines a unique complex line Λ.



The Cayley–Klein metric on the ball Bn of Rn for n ≥ 3

Theorem (F.–Kalaj 2021)

The minimal metric gBn on the unit ball Bn equals the Cayley–Klein metric:

gBn (x, v)2 =
(1− |x|2)|v|2 + |x · v|2

(1− |x|2)2
=

|v|2
1− |x|2 +

|x · v|2
(1− |x|2)2

.

We also have that

gBn (x, v) =

√
1− |x|2 sin2 φ

1− |x|2 |v|, x ∈ Bn, v ∈ Rn,

where φ ∈ [0, π/2] is the angle between the vector v and the line Rx ⊂ Rn,
and

MBn (x, Λ) =

√
1− |x|2 sin2 θ

1− |x|2 |v|, x ∈ Bn, Λ ∈ G2(R
n),

where θ ∈ [0, π/2] is the angle between the plane Λ and the line Rx ⊂ Rn.



Historical remarks

The Beltrami–Cayley–Klein model of hyperbolic geometry was introduced
and studied by Arthur Cayley (1859), Eugenio Beltrami (1868), and Felix
Klein (1871–73).

The underlying space is the unit ball, geodesics are straight line segments with
endpoints on the boundary sphere, and the distance between points on a
geodesic is given by the cross ratio.

This metric is the restriction of the Kobayashi metric (or, up to a scalar
multiple, of the Bergman metric) on the complex ball Bn

C ⊂ Cn to points in
Bn = Bn

C ∩Rn and vectors in Rn.

It is a special case of the metric on convex domains in Rn which was
introduced and studied by David Hilbert in 1885.



Hyperbolic domains

Definition

A domain Ω ⊂ Rn for n ≥ 3 is hyperbolic if ρΩ is a distance function, and is
complete hyperbolic if (Ω, ρΩ) is a complete metric space.

Example

(A) The ball Bn ⊂ Rn, n ≥ 3, is complete hyperbolic.

(B) Every bounded domain Ω ⊂ Rn is hyperbolic since it is contained in a ball.
However, it need not be complete hyperbolic. For example, if bΩ is smooth
and contains a strongly concave boundary point p ∈ bΩ, there is a conformal
linear disc Σ ⊂ Ω ∪ {p} containing p. Then, p is at finite ρΩ-distance from Ω.

(C) The half-space Hn = {x = (x1, . . . , xn) ∈ Rn : x1 > 0} is not hyperbolic
since the pseudodistance ρHn vanishes on planes x1 = const. However, we will
show that the minimal distance to the hyperplane bH = {x1 = 0} is infinite.



Basic properties of hyperbolic domains

Theorem

The following conditions are equivalent for a domain Ω ⊂ Rn, n ≥ 3.

(i) The family CH(D, Ω) of conformal harmonic discs D→ Ω is pointwise
equicontinuous for some metric ρ on Ω inducing its natural topology.

(ii) Every point p ∈ Ω has a neighbourhood U ⊂ Ω and c > 0 such that

gΩ(x, u) ≥ c |u|, x ∈ U, u ∈ Rn.

(iii) Ω is hyperbolic.

(iv) The minimal distance ρΩ induces the standard topology of Ω.

A domain Ω ⊂ Rn is called taut if CH(D, Ω) is a normal family.

Theorem

The following hold for any domain Ω in Rn, n ≥ 3:

complete hyperbolic =⇒ taut =⇒ hyperbolic



Hyperbolicity of convex domains

Theorem

The following are equivalent for a convex domain Ω ⊂ Rn, n ≥ 3.

(i) Ω is complete hyperbolic.

(ii) Ω is hyperbolic.

(iii) Ω does not contain any 2-dimensional affine subspaces.

(iv) Ω is contained in the intersection of n− 1 halfspaces determined by
linearly independent linear functionals.

For comparison: A convex domain in Cn is Kobayashi hyperbolic if and only if it does
not contain any affine complex line (Barth (1980), Harris (1979)).

The main implication is (iv ) ⇒ (i). We first show that the minimal distance to an
affine hyperplane is infinite. This follows from the Schwarz lemma for positive
harmonic functions f : D→ (0,+∞) : |∇f (0)| ≤ 2f (0). For Hn = {x1 > 0} this gives

gHn ((x1, . . . , xn), (v1, . . . , vn)) ≥
|v1|
2x1

.

For any path γ(t) = (γ1(t), . . .) ∈Hn, t ∈ [0, 1), it follows that∫ 1

0
gHn (γ(t), γ̇(t)) dt ≥

∫ 1

0

|γ̇1(t)|
2γ1(t)

dt.

If γ(t)→ 0 or γ(t)→ +∞ as t → 1 then the integral is +∞.



Hyperbolicity of convex domains, 2

Hence, a convex domain is locally complete hyperbolic at every boundary point.

Assume that Ω satisfies condition (iv). Up to a translation and rotation, there are
linearly independent unit vectors y1, . . . , yn−1 ∈ Rn−1 × {0} such that

Ω ⊂
n−1⋂
i=1

Hi where Hi = {x ∈ Rn : x · yi > 0} for i = 1, . . . , n− 1.

Let x(t) = (x′(t), xn(t)) ∈ Ω (t ∈ [0, 1)) be a divergent path. Set

xi (t) := x(t) · yi = x′(t) · yi > 0 for i = 1, . . . , n− 1, t ∈ [0, 1).

If x(t) clusters at some point p ∈ bΩ as t → 1, then x(t) has infinite gΩ-length.
Likewise, if one of the functions xi (t) for i = 1, . . . , n− 1 clusters at +∞, then the
path x(t) has infinite minimal length in Hi , and hence also in Ω ⊂Hi .

It remains to consider the case when the functions xi (t) are bounded,

0 < x(t) · yi ≤ c1 for i = 1, . . . , n− 1, t ∈ [0, 1) (1)

and the path x(t) ∈ Ω does not cluster anywhere on bΩ. In this case, the last

component xn(t) ∈ R of x(t) clusters at ±∞ as t → 1, and hence
∫ 1

0 |ẋn(t)|dt = +∞.

To see that the path x(t) has infinite gΩ-length, it suffices to show that

gΩ(x(t), ẋ(t)) ≥ c2|ẋn(t)|,
where c2 > 0 only depends on c1 > 0 and the vectors y1, . . . , yn−1.



Hyperbolicity of convex domains, 3

Fix a point x ∈ Ω satisfying (1) and a unit vector v = (v′, vn) ∈ Rn, and consider a
conformal harmonic map f = (f1, f2, . . . , fn) : D→ Ω such that f (0) = x and
fx (0) = rv for some r > 0. Then, fy (0) = rw = r (w′,wn) where (v, w) is an
orthonormal frame:

0 = v ·w = v′ ·w′ + vnwn, |v| = |w| = 1.

From this and the Cauchy–Schwarz inequality it follows that

v2
n (1− |w′|2) = v2

nw
2
n = |v′ ·w′|2 ≤ |v′|2|w′|2 = (1− v2

n )|w′|2,

and hence
|vn | ≤ |w′| ≤ c3 max

i=1,...,n−1
|w · yi |

where c3 > 0 depends on the vectors y1, . . . , yn−1 ∈ Rn−1 × {0}. Therefore,

r |vn | ≤ c3 max
i=1,...,n−1

r |w · yi | ≤ 2c3 max
i=1,...,n−1

x · yi ,

where the second estimate follows from the Schwarz lemma applied to the conformal
harmonic disc z 7→ f̃ (z) = f (iz) in each of the half-spaces Hi . (Note that f̃ (0) = x
and f̃x (0) = fy (0) = rw.) Together with the assumption (1) this gives

gΩ(x, v) ≥ 1

r
≥ |vn |

2c3 maxi=1,...,n−1 x · yi
≥ |vn |

2c1c3
= c2|vn |,

Applying this with x = x(t) and v = ẋ(t) yields gΩ(x(t), ẋ(t)) ≥ c2|ẋn(t)|, proving
that Ω is complete hyperbolic.



Minimal plurisubharmonic functions . . .

Let Ω be a domain in Rn. An upper-semicontinuous function
u : Ω→ [−∞,+∞) is said to be minimal plurisubharmonic, MPSH, if for
every affine 2-plane L ⊂ Rn the restriction u : L∩Ω→ [−∞,+∞) is
subharmonic (in conformal affine coordinates on L).

A function u ∈ C 2(Ω) is MPSH if and only if

∆(u|x+Λ)(x) = trΛHessu(x) ≥ 0 for every (x, Λ) ∈ Ω×G2(R
n),

and this holds if and only if

(∗) λ1(x) + λ2(x) ≥ 0 for all x ∈ Ω,

where λ1(x), λ2(x) denote the smallest eigenvalues of Hessu(x).

We say that u ∈ C 2(Ω) is strongly minimal plurisubharmonic if strong
inequality holds in (*).

This class of functions was studied by Harvey and Lawson in a series of papers. Their
use in the theory of minimal surfaces is summarized in my monograph with Alarcón
and López (Minimal surfaces from a complex analytic viewpoint, Springer, 2021).



. . . and their relevance to minimal surfaces

Proposition

An upper-semicontinuous function u : Ω→ [−∞,+∞) is MPSH if and only if
for each conformal harmonic map f : M → Ω from a conformal surface the
function u ◦ f : M → R is subharmonic. If u ∈ C 2(Ω) is strongly MPSH and f
is an immersion, then u ◦ f is strongly subharmonic on M.

For functions u ∈ C 2(Ω) this follows from the following formula, which holds
for every conformal harmonic map f : D→ Ω:

∆(u ◦ f )(z) = trdfz (R2)Hessu(f (z)) · ‖dfz‖2, z ∈ D.

Lemma

Let x be the Euclidean coordinate on Rn, n ≥ 3.

(a) The function log |x| is MPSH on Rn.

(b) If u is MPSH on Ω ⊂ Rn then for any p ∈ Ω the function
x 7→ |x− p|2eu(x) and its logarithm are MPSH on Ω.



Minimally convex domains

A domain Ω ⊂ Rn, n ≥ 3, with smooth boundary is minimally convex if
admits a defining function ρ such that

(∗) trΛHessρ(p) ≥ 0 for every p ∈ bΩ and 2-plane Λ ⊂ TpbΩ.

The domain Ω is strongly minimally convex if strict inequality holds.

Condition (*) says that bΩ has nonnegative (resp. positive) mean sectional
curvature on every tangent 2-plane. This holds if and only if the principal
normal curvatures ν1 ≤ ν2 ≤ · · · ≤ νn−1 of bΩ at p ∈ bΩ satisfy

ν1 + ν2 ≥ 0 (resp. ν1 + ν2 > 0).

A domain in R3 bounded by a minimal surface is minimally convex.

Alarcón, Drinovec Drnovšek, F., López 2019: Every bordered Riemann
surface admits many proper conformal harmonic immersions into an arbitrary
minimally convex domain.

F. 2022: A bounded (strongly) minimally convex domain Ω ⊂ Rn admits a
defining function u which is (strongly) MPSH on Ω = {u ≤ 0}.



Strongly minimally convex domains are complete hyperbolic

Theorem

Every bounded strongly minimally convex domain is complete hyperbolic.

This is an analogue of Graham’s theorem (1975) that bounded strongly
pseudoconvex domains in Cn are complete Kobayashi hyperbolic.

Conversely: if ν1 + ν2 < 0 at some point p ∈ bΩ then p is at finite minimal
distance from the interior. In this case there exists an embedded conformal
harmonic disc f : D→ Ω ∪ {p} with f (0) = p and f (D∗) ⊂ Ω.

Corollary

If M is an embedded surface in R3 such that the minimal distance to any point
p ∈ M is infinite, then M is a minimal surface.

Problem

Is the minimal distance to an embedded minimal surface M ⊂ R3 infinite?



A pseudometric defined by MPSH functions

Our proof uses the existence of a strongly minimally plurisubharmonic defining
function and an analogue of the Sibony metric in this category.

We define the pseudometric FΩ : Ω×G2(R
n)→ R+ by

FΩ(x, Λ) =
1

2
sup
u

√
trΛHessu(x), x ∈ Ω, Λ ∈ G2(R

n),

where the supremum is over all MPSH functions u : Ω→ [0, 1] such that u is
of class C 2 near x, u(x) = 0, and log u is MPSH on Ω.

The Sibony metric is defined in the same way, using log-plurisubharmonic
functions on domains in Cn and complex lines Λ ⊂ Cn.

The main point is that FΩ gives a lower bound for the minimal pseudometric:

Proposition

For any domain Ω ⊂ Rn, n ≥ 3, we have that FΩ ≤MΩ.



Proof of the proposition

Fix (x, Λ) ∈ Ω×G2(R
n). Let f ∈ CH(D, Ω) be such that f (0) = x and

df0(R
2) = Λ. Let u : Ω→ [0, 1] be as in the definition of FΩ.

The function v := u ◦ f : D→ [0, 1] is then subharmonic, of class C 2 near the
origin, v(0) = 0, and log v = log u ◦ f : D→ [−∞, 0) is also subharmonic.

By Sibony (1981) we have that

∆v(0) ≤ 4.

(The unique extremal function with ∆v(0) = 4 is v(x + iy) = x2 + y2.) Hence,

trΛHessu(x) · ‖df0‖2 = ∆v(0) ≤ 4.

Equivalently,
1

2

√
trΛHessu(x) ≤

1

‖df0‖
.

The supremum of the left hand side over all admissible functions u equals
FΩ(x, Λ), while the infimum of the right hand side over all conformal harmonic
discs f as above equals MΩ(x, Λ). Hence, FΩ ≤MΩ.



Sketch of proof of the theorem on complete hyperbolicity

We use the above proposition with MPSH function of the form

Ψ(y) = θ
(
r−2|y− x|2

)
eλu(y), y ∈ Ω,

where θ : [0, ∞)→ [0, 1] is a smooth increasing function such that

θ(t) = t for 0 ≤ t ≤ 1

2
, θ(t) = 1 for t ≥ 1,

u is a strongly MPSH defining functions for Ω, x ∈ Ω, and r > 0 and λ > 0
are suitably chosen constants. In this way, we show that

gΩ(x, v) ≥ C
|v|√

dist(x, bΩ)
, x ∈ Ω, v ∈ Rn.

To show completeness of gΩ we need a stronger estimate

gΩ(x, v) ≥ C
|v|

dist(x, bΩ)
(2)

for vectors v which are normal to bΩ at the closest point p ∈ bΩ to x.



Sketch of proof, 2

We follow Ivashkovich and Rosay (2004). The existence of a local negative
strongly MPSH peak function, and also of the MPSH anti-peak functions
z 7→ log |x− p| at points p ∈ bΩ, implies that for some c > 0 we have

|∇f (z)| ≤ c
√
|u(f (0))| ≈

√
dist(f (0), bΩ), |z | ≤ 1

2
(3)

for every f ∈ CH(D, Ω) whose centre f (0) is close enough to bΩ. (This
amounts to a localization argument, showing that most of the disc is mapped
by f close to f (0), and then applying the Schwarz lemma for bounded
harmonic functions.) This gives

|∆(u ◦ f )(z)| = |trdfz (R2)Hessu(f (z))| · ‖dfz‖2

≤ c1|∇f (z)|2 ≤ C1|u(f (0))|, |z | ≤ 1

2

for some constant c1 > 0 and C1 = c2c1 > 0. We claim that this gives

|∇(u ◦ f )(0)| ≤ C2|u(f (0))|, f ∈ CH(D, Ω), (4)

which implies (2) and hence establishes complete hyperbolicity of Ω. (Note
that u ◦ f is essentially the normal component of f .)



Proof of (4)

By rescaling we may assume that (3) holds for all z ∈ D.
Set v = u ◦ f : D→ (−∞, 0), so we have that

|∆v(z)| ≤ C1|v(0)|, z ∈ D.

We extend ∆v to C by setting it equal to 0 on C \D. The function

g(z) = v(z)−
( 1

2π
log | · | ∗ ∆v

)
(z)− C1|v(0)|, z ∈ D

is then harmonic on D. Note that∣∣∣∣ 1

2π
log | · | ∗ ∆v

∣∣∣∣ ≤ C1|v(0)|.

Hence, g ≤ v < 0 on D and |g(0)| < (2C1 + 1)|v(0)|. Schwarz lemma for
negative harmonic functions gives |∇g(0)| ≤ 2|g(0)|, and hence

|∇v(0)| ≤ |∇g(0)|+ sup
D

|∆v | ≤ 2|g(0)|+ C1|v(0)| ≤ (5C1 + 2)|v(0)|.

This is the estimate (3) with C = 5C1 + 2.
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