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Introduction

Construction of new examples of minimal surfaces
in H2 × R is marked by two crucial facts:

1 There is not a holomorphic representation.

2 There is a lot of “room” at infinity.
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Introduction

There have been three main approaches to this
problem.

• The first is based on the method of Anderson
for the analogous problem in H3.

• The second approach generalizes the classical
method of Jenkins and Serrin for minimal
graphs in R3. This involves finding a minimal
graph over domains of H2 with prescribed
boundary data, possibly ±∞.

• The third approach is by an analytic gluing
construction, and this is the method we follow
here.
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Surfaces with infinite total curvature

It turns out to be far easier to obtain complete minimal surfaces of
finite topology in H2 × R with infinite total curvature

Examples

1 The simplest example is the slice H2 × {0}, but more
generally there exist minimal surfaces asymptotic to a vertical
graph {(θ, f (θ)) : θ ∈ S1} ⊂ ∂B2 × R for any f ∈ C1(S1).

2 One-parameter family of vertical catenoids discovered by
Nelli and Rosenberg.

3 A one-parameter family of Costa-Hoffman-Meeks type
surfaces, each asymptotic to three parallel horizontal copies
of H2. These have positive genus and were constructed by
Morabito also using a gluing method.
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Surfaces with finite total curvature

On the other hand, surfaces of finite total curvature have proved
more elusive.

Examples

1 The basic examples are the vertical plane γ × R, where γ is
a complete geodesic in H2,

2 Scherk minimal graphs over ideal polygon constructed by
Nelli and Rosenberg, and Collin and Rosenberg.

3 There is also a family of horizontal catenoids Kη, each
consisting of a catenoidal handle which is orthogonal to the
vertical direction, and asymptotic to two disjoint vertical
planes which are neither asymptotic nor too widely separated.
These examples were constructed recently by Pyo and
Morabito-Rodriguez (indepedently one of another).
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Horizontal catenoids Kη.

Figure: The boundary of the region Ωη.
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Horizontal catenoids Kη.

Figure: A horizontal catenoid Kη.
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Horizontal catenoids Kη.

Properties

1 The family of catenoids Kη exists only for 0 < η < η0.

As
η ↗ η0, the value u(Q) tends to +∞. In fact, recentering Kη

by translating down by −u(Q), there is a limiting surface
which is a graph over Ω′η0

with boundary values ±∞ disposed
alternately. It is planar of genus zero with one end. This
surface is qualitatively similar to the classical Scherk surface
of R3, and so we also call it Scherk surface.

2 Morabito-Rodŕıguez: the catenoids are shown to have total
curvature −4π.

3 Hauswirth-Nelli-Sa Earp-Toubiana: Kη are the unique
complete minimal surfaces with finite total curvature and two
ends.

4 Isom(Kη) ∼= Z2 × Z2 × Z2.
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2 Morabito-Rodŕıguez: the catenoids are shown to have total
curvature −4π.

3 Hauswirth-Nelli-Sa Earp-Toubiana: Kη are the unique
complete minimal surfaces with finite total curvature and two
ends.

4 Isom(Kη) ∼= Z2 × Z2 × Z2.

Francisco Mart́ın Gluing constructions in H2 × R



Horizontal catenoids Kη.

Properties

1 The family of catenoids Kη exists only for 0 < η < η0. As
η ↗ η0, the value u(Q) tends to +∞. In fact, recentering Kη

by translating down by −u(Q), there is a limiting surface
which is a graph over Ω′η0

with boundary values ±∞ disposed
alternately. It is planar of genus zero with one end. This
surface is qualitatively similar to the classical Scherk surface
of R3, and so we also call it Scherk surface.
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Main Results

Question

It has remained open whether there exist complete, properly
embedded minimal surfaces in H2 × R with finite total curvature
and positive genus.

Aim

Our purpose is to construct such surfaces, which we do by gluing
together certain configurations of horizontal catenoids. There is a
dichotomy in the types of configurations one may glue together.

• The horizontal catenoid components have “necksize”
bounded away from zero are simpler to handle; the minimal
surfaces obtained using only this type of component have a
very large number of ends relative to the genus.

• Alternatively, one may glue together horizontal catenoids with
very small necksizes, which allows one to obtain viable
configurations with relatively few ends for a given genus.

Francisco Mart́ın Gluing constructions in H2 × R



Main Results

Question

It has remained open whether there exist complete, properly
embedded minimal surfaces in H2 × R with finite total curvature
and positive genus.

Aim

Our purpose is to construct such surfaces, which we do by gluing
together certain configurations of horizontal catenoids.

There is a
dichotomy in the types of configurations one may glue together.

• The horizontal catenoid components have “necksize”
bounded away from zero are simpler to handle; the minimal
surfaces obtained using only this type of component have a
very large number of ends relative to the genus.

• Alternatively, one may glue together horizontal catenoids with
very small necksizes, which allows one to obtain viable
configurations with relatively few ends for a given genus.

Francisco Mart́ın Gluing constructions in H2 × R



Main Results

Question

It has remained open whether there exist complete, properly
embedded minimal surfaces in H2 × R with finite total curvature
and positive genus.

Aim

Our purpose is to construct such surfaces, which we do by gluing
together certain configurations of horizontal catenoids. There is a
dichotomy in the types of configurations one may glue together.

• The horizontal catenoid components have “necksize”
bounded away from zero are simpler to handle; the minimal
surfaces obtained using only this type of component have a
very large number of ends relative to the genus.

• Alternatively, one may glue together horizontal catenoids with
very small necksizes, which allows one to obtain viable
configurations with relatively few ends for a given genus.

Francisco Mart́ın Gluing constructions in H2 × R



Main Results

Question

It has remained open whether there exist complete, properly
embedded minimal surfaces in H2 × R with finite total curvature
and positive genus.

Aim

Our purpose is to construct such surfaces, which we do by gluing
together certain configurations of horizontal catenoids. There is a
dichotomy in the types of configurations one may glue together.

• The horizontal catenoid components have “necksize”
bounded away from zero are simpler to handle;

the minimal
surfaces obtained using only this type of component have a
very large number of ends relative to the genus.

• Alternatively, one may glue together horizontal catenoids with
very small necksizes, which allows one to obtain viable
configurations with relatively few ends for a given genus.

Francisco Mart́ın Gluing constructions in H2 × R



Main Results

Question

It has remained open whether there exist complete, properly
embedded minimal surfaces in H2 × R with finite total curvature
and positive genus.

Aim

Our purpose is to construct such surfaces, which we do by gluing
together certain configurations of horizontal catenoids. There is a
dichotomy in the types of configurations one may glue together.

• The horizontal catenoid components have “necksize”
bounded away from zero are simpler to handle; the minimal
surfaces obtained using only this type of component have a
very large number of ends relative to the genus.

• Alternatively, one may glue together horizontal catenoids with
very small necksizes, which allows one to obtain viable
configurations with relatively few ends for a given genus.

Francisco Mart́ın Gluing constructions in H2 × R



Main Results

Question

It has remained open whether there exist complete, properly
embedded minimal surfaces in H2 × R with finite total curvature
and positive genus.

Aim

Our purpose is to construct such surfaces, which we do by gluing
together certain configurations of horizontal catenoids. There is a
dichotomy in the types of configurations one may glue together.

• The horizontal catenoid components have “necksize”
bounded away from zero are simpler to handle; the minimal
surfaces obtained using only this type of component have a
very large number of ends relative to the genus.

• Alternatively, one may glue together horizontal catenoids with
very small necksizes, which allows one to obtain viable
configurations with relatively few ends for a given genus.

Francisco Mart́ın Gluing constructions in H2 × R



Main Results

Theorem A (—, Mazzeo, Rodŕıguez)

For each g ≥ 0, there is a k0 = k0(g) such that if k ≥ k0, then
there exists a properly embedded minimal surface with finite total
curvature in H2 × R, with genus g and k ends, each asymptotic
to a vertical plane.

Our results show that the existence theory for these properly
embedded minimal surfaces of finite total curvature in H2 ×R is in
some ways opposite to that in R3.

Theorem (Meeks, Pérez, Ros)

There is an upper bound, depending only on the genus, for the
number of ends of a properly embedded minimal surface of finite
topology in R3.
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Main Results

The proof involves gluing together component minimal surfaces
which are nondegenerate in the sense that they have no decaying
Jacobi fields.

Remark

Every minimal surface in H2 × R with each end asymptotic to a
vertical plane is degenerate since vertical translation (i.e. in the R
direction) always generates such a Jacobi field.

Because of this we shall work within the class of surfaces which are
symmetric with respect to a fixed horizontal plane H2 × {0} and
then it suffices to work with surfaces which are horizontally
nondegenerate in the sense that they possess no decaying Jacobi
fields which are even with respect to the reflection across this
horizontal plane. The surfaces obtained in Theorem A are all even
with respect to the vertical reflection, and all are horizontally
nondegenerate as well.
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Main Results

This leads to the problem of showing that there are component
minimal surfaces which satisfy this condition,

and our second main
result guarantees that many such surfaces exist.

Theorem B (—, Mazzeo, Rodŕıguez)

Each horizontal catenoid Kη is horizontally nondegenerate.

Theorem C (—, Mazzeo, Rodŕıguez)

Let Mk denote the space of all complete, properly embedded
minimal surfaces with finite total curvature in H2 × R with each
end asymptotic to an entire vertical plane. If Σ ∈Mk is
horizontally nondegenerate, then the component of this moduli
space containing Σ is a real analytic space of dimension 2k , and
Σ is a smooth point in this moduli space. In any case, even
without this nondegeneracy assumption, Mk is a real analytic
space of virtual dimension 2k .
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Geodesic networks

An admissible geodesic network F consists of a finite set of
(complete) geodesic lines Γ = {γα}α∈A and geodesic segments
T = {ταβ}(α,β)∈A′ connecting various pairs of elements in Γ.

Figure: The geodesic network F .
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Geodesic networks

We now make various assumptions on these data and set notation:

i) If α 6= β, then dist (γα, γβ) := ηαβ ∈ (0, η0), where η0 is the
maximal separation between vertical planes which support a
horizontal catenoid.

ii) The segment ταβ realizes the distance ηαβ between γα and
γβ, and hence is perpendicular to both these geodesic lines.

iii) Set pα(β) = ταβ ∩ γα and pβ(α) = ταβ ∩ γβ, and then define

Dα = min
(αβ),(α,β′)∈A′

{dist(pα(β), pα(β′))}, and D = min
α

Dα.

This number D is called the minimal neck separation of the
configuration F .

iv) We also write η := sup ηαβ, and call it the maximal neck
parameter.
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Geodesic networks

We define the approximately minimal surface ΣF as

ΣF =
⊔

(αβ)∈A′
K 0
αβ.

We now complete the perturbation analysis to show how to pass
from the nearly minimal surfaces ΣF to actual minimal surfaces
in H2 × R when F is a geodesic network with minimal neck
separation D sufficiently large, and with a uniform lower bound
ηαβ ≥ c > 0 on the neck parameters.
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Perturbation of ΣF to a minimal surface

Fixing F , let Σ = ΣF and let ν be the unit normal on Σ with
respect to a fixed orientation. For any u ∈ C2,µ(Σ), consider the
normal graph over Σ with graph function u,

Σ(u) = {expq(u(q)ν(q)), q ∈ Σ}.

Assuming that all ηαβ ≥ c > 0, then there exists C = C (c) > 0
such that if ||u||2,µ < C , then Σ(u) is embedded.

Question

When Σ(u) is minimal ?
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Perturbation of ΣF to a minimal surface

The surface Σ(u) is minimal if and only if u satisfies a certain
quasilinear elliptic partial differential equation, N (u) = 0, which
calculates the mean curvature of Σ(u).

We do not need to know much about N except the following. If
we write N (u) = N (0) + DN|0 + Q(u), then

i) N (0) = HΣ;

ii) the linearization at u = 0 is the Jacobi operator of Σ,

DN|0 = LΣ = ∆Σ + |AΣ|2 + Ric(ν, ν);

iii) if ε is sufficiently small and ||u||2,µ < ε, then

||N (u)||0,µ ≤ Cε and ||Q(u)||0,µ ≤ Cε2.
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Strategy

N (u) = 0 ⇔ LΣu = −HΣ − Q(u).

The strategy is now a standard one: we shall define certain
weighted Hölder spaces X and Y , and first prove that LΣ : X → Y
is Fredholm. A more careful analysis shows that, at least when the
minimal neck separation D is sufficiently large, this map is
invertible and moreover its inverse GΣ : Y → X has norm which is
uniformly bounded by a constant depending only on the lower
bounds D for the minimal neck separation and c for the maximal
neck parameter. Given these facts, we then rewrite N (u) = 0 as

u = −GΣ(HΣ + Q(u)),

and solve this equation by a standard contraction mapping
argument.
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Spectrum of the Jacobi operator of Kη

Recall that for any minimal surface Σ, its Jacobi operator (for the
minimal surface equation) is the elliptic operator

LΣ := ∆Σ + |AΣ|2 + Ric (N,N);

If Σ = Kη we just write Lη.
We now study the L2 spectrum of the Jacobi operator Lη. By the
general considerations

spec(−Lη) = {λj(η)}Nj=1 ∪ [1,∞).

This ray consists of absolutely continuous spectrum, while the
discrete spectrum all lies in (−∞, 1); note that, even counted
according to multiplicity, the number of eigenvalues may depend
on η.
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Spectrum of the Jacobi operator of Kη

Theorem

For each η ∈ (0, η0), the only one of the eigenvalues of −Lη which
is negative is λ0(η), and only λ1(η) = 0. All the remaining
eigenvalues are strictly positive. The ground-state eigenfunction
φ0 = φ0(η) is even with respect to all three reflections, Rt , Rs and
Ro ; the eigenfunction φ1, which is the unique L2 Jacobi field, is
generated by vertical translations and is odd with respect to Rt but
even with respect to Rs and Ro . In particular, if we restrict −Lη to
functions which are even with respect to Rt , then Lη is
nondegenerate.
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Spectrum of the Jacobi operator of Kη

Proof:
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Spectrum of the Jacobi operator of Kη

Proof:
We can decompose the spectrum of −Lη into the parts which are
either even or odd with respect to each of the isometric reflections
Rt , Rs and Ro . Indeed, for each such reflection, there is an
even/odd decomposition

L2(Kη) = L2(Kη)j−ev ⊕ L2(Kη)j−odd, j = t, s, o.

The reduction of −Lη to the odd part of any one of these
decompositions corresponds to this operator acting on functions on
the appropriate half K j ,+

η of Kη with Dirichlet boundary conditions.
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Spectrum of the Jacobi operator of Kη

Claim

The restriction of −Lη to L2(Kη)j−odd with j = s, o is strictly
positive, and is nonnegative if j = t, with one-dimensional
nullspace spanned by the Jacobi field Φt generated by vertical
translations.

To prove this, note first that since Φt ∈ L2(Kη)t−odd and Φt is
strictly positive on K t,+

η , it must be the ground state eigenfunction
for this reduction and is thus necessarily simple, with all the other
eigenvalues strictly positive.
On the other hand, we have proved above that Φs and Φo are
strictly positive solutions of this operator on the appropriate halves
of Kη, vanishing on the boundary, but of course do not lie in L2.
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Spectrum of the Jacobi operator of Kη

Lemma (Murata, Sullivan)

Consider the operator −L = −∆ + V on a Riemannian manifold
M, where V is smooth and bounded. Assume either that M is
complete, or else, if it has boundary, then we consider −L with
Dirichlet boundary conditions at ∂M. Suppose that there exists an
L2 solution u0 of Lu0 = 0 such that u0 > 0, at least away from
∂M. If v is any other solution of Lv = 0 with v > 0 in M and
v = 0 on ∂M, then v = cu0 for some constant c .

This Lemma implies that it is impossible for −Lη to have lowest
eigenvalue equal to 0 on either of the subspaces L2(Kη)j−odd,
j = s, o, since if this were the case, then we could use the
corresponding eigenfunction as u0 in this Lemma and let v = Φj to
get a contradiction since Φj /∈ L2.
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Spectrum of the Jacobi operator of Kη

We shall justify later that when η is very close to its maximal value
η0, the lowest eigenvalue of −Lη on L2(Kη)j−odd is strictly positive.

Using the continuity of the ground state eigenvalue as η decreases
combined with the argument above, we see that this lowest
eigenvalue can never be negative on any one of these odd
subspaces, and the only odd L2 Jacobi field is Φt . This proves the
claim.
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Spectrum of the Jacobi operator of Kη

We have finally reduced to studying the spectrum of −Lη on
L2(Kη)ev, i.e. the subspace which is even with respect to all three
reflections (we call this “totally even”). Because of the existence
of an L2 solution of Lηu = 0 which changes signs, namely u = Φt ,
we know that the bottom of the spectrum of −Lη is strictly
negative, and we have proved above that the corresponding
eigenfunction must live in the totally even subspace. (This is also
obvious because of the simplicity of this eigenspace and the fact
that the corresponding eigenfunction is everywhere positive.) Thus
λ0(η) < 0 as claimed.
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Spectrum of the Jacobi operator of Kη

Now suppose that the next eigenvalue λ1(η) lies in the interval
(λ0(η), 0], and if λ1(η) = 0, assume that there exists a
corresponding eigenfunction which is totally even. Since this is the
second eigenvalue, we know that the corresponding eigenfunction
φ1(η) has exactly two nodal domains. However, it is
straightforward to see using the symmetries of Kη that if φ is any
function on Kη which is totally even and changes sign, then it
cannot have exactly two nodal domains. Indeed, if that were the
case, then the nodal line {φ = 0} would have to either be a
connected simple closed curve or else two arcs, and these would
then necessarily be the fixed point set of one of the three
reflections. This is clearly incompatible with φ being totally even.
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Spectrum of the Jacobi operator of Kη

We are almost finished. It remains finally to prove that the lowest
eigenvalue of −Lη on any one of the odd subspaces is nonnegative
when η is sufficiently large.
As a first step, we first prove that λ0(η)↗ 0 as η ↗ η0. Recall
that in this limit, Kη converges (once we translate vertically by an
appropriate distance) to the limiting Scherk surface Kη0 . Moreover,
Kη0 is strictly stable because the Jacobi field Φt generated by
vertical translation is strictly positive on it.
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Spectrum of the Jacobi operator of Kη

Now suppose that λ0(η) ≤ −c < 0. When η is sufficiently close to
η0, we can construct a cutoff φ̃0(η) of the corresponding
eigenfunction φ0(η) which is supported in the region t > 0 (we are
still assuming that Kη is centered around t = 0); this function lies
in L2 and regarding it as a function on Kη0 , it is straightforward to
show that ∫

Kη0
(−Lη0 φ̃0)φ̃0∫
Kη0
|φ̃0|2

≤ −c/2 < 0.

This contradicts the strict stability of Kη0 , and hence proves that
λ0(η)↗ 0.
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Spectrum of the Jacobi operator of Kη
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Spectrum of the Jacobi operator of Kη

Now suppose that there is some sequence η` ↗ η0 and a
corresponding sequence of eigenvalues λ` ∈ (λ0(η`), 0) and
eigenfunctions φ` ∈ L2(Kη)j−odd, j = s, o. We know that λ` ↗ 0.
Suppose that the maximum of |φ`| is attained at some point
p` ∈ Kη` . Normalize by setting φ̂` = φ`/ sup |φ`| and take the limit

as `→∞. Depending on the limiting location of p`, we obtain a
bounded solution of the limiting equation on the pointed
Gromov-Hausdorff limit of the sequence (Kη` , p

`). There are, up to
isometries, only two possible such limits: either the limiting Scherk
surface Kη0 or else a vertical plane P = γ × R.
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Spectrum of the Jacobi operator of Kη

In the latter case, the limiting function φ̂ satisfies LP φ̂ = 0.
However, LP = ∆P − 1 and there are no bounded solutions of this
equation, so this case cannot occur. Therefore, we have obtained a
function φ̂ on Kη0 which is a solution of the Jacobi equation there
and which is bounded. We now invoke

Theorem (Manzano, Pérez, Rodŕıguez)

Let (Mn, ds2) be a Riemannian parabolic manifold. Consider an
operator L = ∆ + V , where V ∈ C∞(M). Let u, v ∈ C∞(M) such
that u is bounded, v > 0 and uvLu ≥ u2Lv on M. Then, u/v is
constant.

This proves that φ̂ must equal the unique positive L2 Jacobi field
on Kη0 , but this is impossible because of the oddness of φ` with
respect to either Rs or Ro .
This completes the proof of the theorem.
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