A study of real hypersurfaces in terms of *-Ricci tensor

George Kaimakamis

(joint work with K. Panagiotidou)

Faculty of Mathematics and Engineering Sciences Hellenic Army Academy

Seminario de Geometria 2016 IEMath-Granada

Contents I

1 Real Hypersurfaces in Complex Space Forms

2 *-Ricci Tensor

3 *-Ricci Soliton

4 Sketch of Proof

5 Summary of Results-Further Work

1 Real Hypersurfaces in Complex Space Forms

2 *-Ricci Tensor

3 *-Ricci Soliton

4 Sketch of Proof

5 Summary of Results-Further Work

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$.

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to:

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0,

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0, complex Euclidean space \mathbb{C}^n , if c = 0,

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0, complex Euclidean space \mathbb{C}^n , if c = 0, complex hyperbolic space $\mathbb{C}H^n$, if c < 0.

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0, complex Euclidean space \mathbb{C}^n , if c = 0, complex hyperbolic space $\mathbb{C}H^n$, if c < 0.

 $M_n(c), c \neq 0 \longrightarrow$ Non-Flat Complex Space Form

Definition

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$.

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold.$

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold.$ Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X) = g(X,\xi), \ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), X, Y \in \mathfrak{X}(M)$$

Almost contact structure or (φ, ξ, η) - **structure** is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold$. Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X) = g(X,\xi), \ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), X, Y \in \mathfrak{X}(M)$$

Structure $(\varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ structure.$

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold$. Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X) = g(X,\xi), \ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), X, Y \in \mathfrak{X}(M)$$

Structure $(\varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ structure.$ $(M, \varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ manifold.$

Definition

A real hypersurface M in complex space form $M_n(c)$ is a submanifold of real codimension one.

Definition

A real hypersurface M in complex space form $M_n(c)$ is a submanifold of real codimension one.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$.

Definition

A real hypersurface M in complex space form $M_n(c)$ is a submanifold of real codimension one.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$. N: locally unit normal vector field on M.

Definition

A real hypersurface M in complex space form $M_n(c)$ is a submanifold of real codimension one.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$. N: locally unit normal vector field on M. Gauss and Weingarten equations

$$\overline{\nabla}_Y X = \nabla_Y X + g(AY, X)N,$$
$$\overline{\nabla}_X N = -AX,$$

where ∇ is the Levi-Civita connection of M, A is the shape operator of M and g the induced Riemannian metric on M.

Definition of the (φ,ξ,η,g) - structure on a real hypersurface

Structure vector field ξ : $\xi = -JN$

Definition of the (φ,ξ,η,g) - structure on a real hypersurface

Structure vector field $\xi : \xi = -JN$ Metric $g : g(\varphi X, Y) = G(JX, Y)$

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field $\xi : \xi = -JN$ Metric $g : g(\varphi X, Y) = G(JX, Y)$ 1-form $\eta : \eta(X) = g(X, \xi) = G(JX, N)$

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field $\xi : \xi = -JN$ Metric $g : g(\varphi X, Y) = G(JX, Y)$ 1-form $\eta : \eta(X) = g(X, \xi) = G(JX, N)$ Tensor field φ of type (1,1): $JX = \varphi(X) + \eta(X)N$

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field $\xi : \xi = -JN$ Metric $g : g(\varphi X, Y) = G(JX, Y)$ 1-form $\eta : \eta(X) = g(X, \xi) = G(JX, N)$ Tensor field φ of type (1,1): $JX = \varphi(X) + \eta(X)N$

$$\varphi^2 X = -X + \eta(X)\xi, \qquad \eta \circ \varphi = 0, \qquad \varphi \xi = 0, \qquad \eta(\xi) = 1,$$

$$g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), \ g(X,\varphi Y) = -g(\varphi X,Y),$$

$$\nabla_X \xi = \varphi A X, \qquad (\nabla_X \varphi) Y = \eta(Y) A X - g(A X, Y) \xi,$$

for any tangent vector field X, Y on M.

Gauss equation:

$$\begin{split} R(X,Y)Z &= \frac{c}{4} [g(Y,Z)X - g(X,Z)Y + g(\varphi Y,Z)\varphi X \\ -g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z] + g(AY,Z)AX - g(AX,Z)AY \end{split}$$

Gauss equation:

$$\begin{split} R(X,Y)Z &= \frac{c}{4}[g(Y,Z)X - g(X,Z)Y + g(\varphi Y,Z)\varphi X \\ &- g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z] + g(AY,Z)AX - g(AX,Z)AY \\ \textbf{Codazzi equation:} \end{split}$$

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4}[\eta(X)\varphi Y - \eta(Y)\varphi X - 2g(\varphi X, Y)\xi],$$

where R denotes the Riemannian curvature tensor on M.

 $A\xi = \alpha\xi + \beta U,$

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

4

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

Definition

A real hypersurface is a **Hopf hypersurface**, if the structure vector field ξ is principal, i.e. $A\xi = \alpha \xi$.

If M is a Hopf hypersurface then α is constant

Complex Projective Space $\mathbb{C}P^n, n \geq 2$

Takagi (1973) [15], Cecil, Ryan (1982) [2]

- (A1) geodesic spheres of radius r, where $0 < r < \frac{\pi}{2}$,
- (A2) tubes of radius r over totally geodesic complex projective space $\mathbb{C}P^k$, where $0 < r < \frac{\pi}{2}$ and $1 \le k \le n-2$,
- (B) tubes of radius r over complex quadrics and $\mathbb{R}P^n$, where $0 < r < \frac{\pi}{4}$,
- (C) tubes of radius r over the Serge embedding of $\mathbb{C}P^1 \times \mathbb{C}P^{\frac{(n-1)}{2}}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 2\kappa + 3$, $\kappa \in \mathbb{N}^*$,
- (D) tubes of radius r over the Plucker embedding of the complex Grassmannian manifold $G_{2,5}$, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) tubes of radius r over the canonical embedding of the Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15.

Complex Hyperbolic Space $\mathbb{C}H^n, n \geq 2$

Montiel (1985) [11], Berndt (1989) [1]

- (A0) horospheres
- (A1,0) geodesic spheres of radius r > 0,
- (A1,1) tubes of radius r > 0 over totally geodesic complex hyperbolic hyperplanes $\mathbb{C}H^{n-1}$,
- (A2) tubes of radius r > 0 over totally geodesic submanifold $\mathbb{C}H^k$, $1 \le k \le n-2$,
- (B) tubes of radius r > 0 over totally real hyperbolic space $\mathbb{R}H^n$.

In case of $\mathbb{C}P^n, n \geq 2, \longrightarrow$ Maeda [10] and in case of $\mathbb{C}H^n$, $n \geq 2, \longrightarrow$ Montiel [11].

Theorem

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$. Then i) If W is a vector field which belongs to \mathbb{D} such that $AW = \lambda W$, then $(\lambda - \frac{\alpha}{2})A\varphi W = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi W$. ii) If the vector field W satisfies $AW = \lambda W$ and $A\varphi W = \nu\varphi W$ then $\lambda\nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$.

In case of $\mathbb{C}P^n, n \geq 2, \longrightarrow$ Maeda [10] and in case of $\mathbb{C}H^n$ $, n \geq 2, \longrightarrow$ Montiel [11].

Theorem

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$. Then i) If W is a vector field which belongs to \mathbb{D} such that $AW = \lambda W$, then $(\lambda - \frac{\alpha}{2})A\varphi W = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi W$. ii) If the vector field W satisfies $AW = \lambda W$ and $A\varphi W = \nu\varphi W$ then $\lambda \nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$.

In case of $\mathbb{C}P^n$, $n \ge 2$, \longrightarrow Okumura [13] and in case of $\mathbb{C}H^n$, $n \ge 2$ \longrightarrow Montiel-Romero [12].

In case of $\mathbb{C}P^n, n \geq 2, \longrightarrow$ Maeda [10] and in case of $\mathbb{C}H^n$, $n \geq 2, \longrightarrow$ Montiel [11].

Theorem

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$. Then i) If W is a vector field which belongs to \mathbb{D} such that $AW = \lambda W$, then $(\lambda - \frac{\alpha}{2})A\varphi W = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi W$. ii) If the vector field W satisfies $AW = \lambda W$ and $A\varphi W = \nu\varphi W$ then $\lambda \nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$.

In case of $\mathbb{C}P^n$, $n \ge 2$, \longrightarrow Okumura [13] and in case of $\mathbb{C}H^n$, $n \ge 2$ \longrightarrow Montiel-Romero [12].

Theorem

Let M be a real hypersurface in $M_n(c)$, $n \ge 2$, then $\varphi A = A\varphi$ if and only if M is an open subset of real hypersurfaces of type (A).

2 *-Ricci Tensor

3 *-Ricci Soliton

4 Sketch of Proof

5 Summary of Results-Further Work

*-Ricci Tensor

Definition [Tachibana (1959) [14]]

The *-Ricci tensor of a Kaehler manifold N is given by

$$g(S^*X,Y) = \frac{1}{2}(trace\{J \circ R(X,JY)\}),$$

for any X, Y tangent vector fields to N.
*-Ricci Tensor

Definition [Tachibana (1959) [14]]

The *-Ricci tensor of a Kaehler manifold N is given by

$$g(S^*X,Y) = \frac{1}{2}(trace\{J \circ R(X,JY)\}),$$

for any X, Y tangent vector fields to N.

Definition [Hamada (2002) []]

The *-Ricci tensor of a real hypersurface M in a complex space form is given by

$$g(S^*X,Y) = \frac{1}{2}(trace\{\varphi \circ R(X,\varphi Y)\}),$$

for any X, Y tangent vector fields to M.

A real hypersurface is called ***-Einstein** when the *-Ricci tensor satisfies the following

$$g(S^*X,Y) = \frac{\rho^*}{2(n-1)g(X,Y)}, \text{for } X \in \mathbb{D} \text{ and } \rho^* \text{ is constant.}$$

A real hypersurface is called ***-Einstein** when the *-Ricci tensor satisfies the following

$$g(S^*X,Y) = \frac{\rho^*}{2(n-1)g(X,Y)}, \text{ for } X \in \mathbb{D} \text{ and } \rho^* \text{ is constant.}$$

Ivey and Ryan (2011) [6]:

$$S^*X = -\left[\frac{cn}{2}\varphi^2 X + (\varphi A)^2 X\right], \text{ for } X \in TM.$$

A real hypersurface is called ***-Einstein** when the *-Ricci tensor satisfies the following

$$g(S^*X,Y) = \frac{\rho^*}{2(n-1)g(X,Y)}, \text{for } X \in \mathbb{D} \text{ and } \rho^* \text{ is constant.}$$

Ivey and Ryan (2011) [6]:

$$S^*X = -\left[\frac{cn}{2}\varphi^2 X + (\varphi A)^2 X\right], \text{ for } X \in TM.$$

The *-Einstein Hopf hypersurfaces in $M_n(c)$, where $n \ge 2$ are precisely

- the Hopf hypersurfaces whose Hopf principal curvature α vanishes and,
- the open connected subsets of homogeneous Hopf hypersurfaces of types (A_0) , (A_1) and (B).

A real hypersurface is called ***-Einstein** when the *-Ricci tensor satisfies the following

$$g(S^*X,Y) = \frac{\rho^*}{2(n-1)g(X,Y)}, \text{for } X \in \mathbb{D} \text{ and } \rho^* \text{ is constant.}$$

Ivey and Ryan (2011) [6]:

$$S^*X = -\left[\frac{cn}{2}\varphi^2 X + (\varphi A)^2 X\right], \text{ for } X \in TM.$$

The *-Einstein Hopf hypersurfaces in $M_n(c)$, where $n \ge 2$ are precisely

- the Hopf hypersurfaces whose Hopf principal curvature α vanishes and,
- the open connected subsets of homogeneous Hopf hypersurfaces of types (A_0) , (A_1) and (B).

Parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) of a real hypersurface is **parallel**, if $\nabla_X P = 0$, for any X ϵ TM.

Parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) of a real hypersurface is **parallel**, if $\nabla_X P = 0$, for any X ϵ TM.

$$(\nabla_X S^*)Y = 0 \Rightarrow \nabla_X (S^*Y) = S^* (\nabla_X Y), X, Y \in TM.$$

Parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) of a real hypersurface is **parallel**, if $\nabla_X P = 0$, for any X ϵ TM.

$$(\nabla_X S^*)Y = 0 \Rightarrow \nabla_X (S^*Y) = S^*(\nabla_X Y), X, Y \in TM.$$

Theorem [-, Panagiotidou, Taiw. J. Math. (2014)]

There do not exist real hypersurfaces in $\mathbb{C}P^2$ whose *-Ricci tensor is parallel. In $\mathbb{C}H^2$ only the geodesic hypersphere has parallel *-Ricci tensor with $\operatorname{coth}(r) = 2$.

-*-Ricci Tensor

Semi-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$, where R is the Riemannian curvature and acts as derivation on P.

Semi-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$, where R is the Riemannian curvature and acts as derivation on P.

$$R(X,Y)S^*Z = S^*[R(X,Y)Z] \ X, Y, Z \in TM$$

Semi-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$, where R is the Riemannian curvature and acts as derivation on P.

$$R(X,Y)S^*Z = S^*[R(X,Y)Z] \ X, Y, Z \in TM$$

Theorem [-, Panagiotidou, (submitted)

There do not exist real hypersurfaces in $\mathbb{C}P^2$ with semi-parallel *-Ricci tensor. In $\mathbb{C}H^2$ only the geodesic hypersphere has parallel *-Ricci tensor with $\operatorname{coth}(r) = 2$.

Pseudo-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \land Y) \cdot P\}$, where $(X \land Y)Z = g(Y,Z)X - g(X,Z)Y$.

Pseudo-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \land Y) \cdot P\}$, where $(X \land Y)Z = g(Y,Z)X - g(X,Z)Y$.

 $R(X,Y)S^*Z - S^*[R(X,Y)Z] = L\{g(Y,S^*Z)X - g(X,S^*Z)Y - S^*[g(Y,Z)X - g(X,Z)Y]\}.$

Pseudo-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \land Y) \cdot P\}$, where $(X \land Y)Z = g(Y,Z)X - g(X,Z)Y$.

$$R(X,Y)S^*Z - S^*[R(X,Y)Z] = L\{g(Y,S^*Z)X - g(X,S^*Z)Y - S^*[g(Y,Z)X - g(X,Z)Y]\}.$$

Theorem [-, Panagiotidou, (submitted)]

Every real hypersurface M in $M_2(c)$ with pseudo-parallel *-Ricci tensor is a Hopf hypersurface. Furthemore, M is locally congruent to either a real hypersurface of type (A) or to a Hopf hypersurface satisfying relation $A\xi = 0$, with L constant.

ξ -parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is ξ -parallel, if $\nabla_{\xi} P = 0$.

ξ -parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is ξ -parallel, if $\nabla_{\xi} P = 0$.

 $(\nabla_{\xi}S^*)X = 0 \Rightarrow \nabla_{\xi}(S^*X) = S^*(\nabla_{\xi}X), \text{ for any } X \in TM.$

ξ -parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is ξ -parallel, if $\nabla_{\xi} P = 0$.

$(\nabla_{\xi}S^*)X = 0 \Rightarrow \nabla_{\xi}(S^*X) = S^*(\nabla_{\xi}X), \text{ for any } X \in TM.$

Theorem [-, Panagiotidou, (submitted)]

Every real hypersurface M in $M_2(c)$ with ξ -parallel *-Ricci tensor is a Hopf hypersurface. Moreover, M is locally congruent to i) a real hypersurface of type (A) or ii) to a real hypersurface of type (B) or iii) to a Hopf hypersurface whose principal curvatures corresponding to the holomorphic distribution are non-constant and the derivative of them in the direction of ξ is equal to zero

Types of Parallelness of *-Ricci tensor

$\boxed{ \textbf{Condition of } S^* } $	$\mathbb{C}P^2$	$\mathbb{C}H^2$
Parallel	No	~
Semi - parallel	No	~
Pseudo - parallel	~	~
ξ - parallel	~	~

1 Real Hypersurfaces in Complex Space Forms

2 *-Ricci Tensor

3 *-Ricci Soliton

4 Sketch of Proof

5 Summary of Results-Further Work

Previous Work

Definition

A Riemannian metric g of a Riemannian manifold is called **Einstein** if the Ricci tensor satisfies the relation $S = \rho g$, for some constant ρ .

Previous Work

Definition

A Riemannian metric g of a Riemannian manifold is called **Einstein** if the Ricci tensor satisfies the relation $S = \rho g$, for some constant ρ .

Definition

A Riemannian metric g of a Riemannin manifold is called **Ricci soliton** if there exist a smooth vector field V such that the following relation is satisfied

$$\frac{1}{2}\mathcal{L}_V g + Ric - \lambda g = 0,$$

where λ is a constant. Furthermore, V is called **potential** vector field.

Theorem

There do not exist Einstein real hypersurfaces in non-flat complex space forms.

Theorem

There do not exist Einstein real hypersurfaces in non-flat complex space forms.

Definition [Cho, Kimura (2009) [1]]

An η -**Ricci soliton** on a real hypersurface in non-flat complex space form is a pair (η, g) which satisfies the following relation

$$\frac{1}{2}\mathcal{L}_{\xi}g + Ric - \lambda g - \mu\eta \otimes \eta = 0,$$

where λ , μ are constant and Ric(X, Y) = g(SX, Y) and η is the 1-form on M.

Theorem

There do not exist Einstein real hypersurfaces in non-flat complex space forms.

Definition [Cho, Kimura (2009) [1]]

An η -**Ricci soliton** on a real hypersurface in non-flat complex space form is a pair (η, g) which satisfies the following relation

$$\frac{1}{2}\mathcal{L}_{\xi}g + Ric - \lambda g - \mu\eta \otimes \eta = 0,$$

where λ , μ are constant and Ric(X, Y) = g(SX, Y) and η is the 1-form on M.

Theorem [Cho, Kimura (2009) [3]]

Let M be a real hypersurface in a non-flat complex space form $M_n(c)$. If M admits an η -Ricci soliton, them M is a Hopf hypersurface and is locally congruent to a real hypersurface of type (A).

Theorem [Cho, Kimura (2009) [3]]

Let M be a real hypersurface in a non-flat complex space form $M_n(c)$. If M admits an η -Ricci soliton, them M is a Hopf hypersurface and is locally congruent to a real hypersurface of type (A).

Corollary

A real hypersurface in a non-flat complex space form does not admit a Ricci soliton with potential vector field ξ .

Theorem [Cho, Kimura (2009) [3]]

Let M be a real hypersurface in a non-flat complex space form $M_n(c)$. If M admits an η -Ricci soliton, them M is a Hopf hypersurface and is locally congruent to a real hypersurface of type (A).

Corollary

A real hypersurface in a non-flat complex space form does not admit a Ricci soliton with potential vector field ξ .

Theorem [Cho, Kimura (2011) [4]]

A compact Hopf hypersurface in a non-flat complex space form does not admit a Ricci soliton

*-Ricci soliton

Definition

A Riemannian metric g on a real hypersurface M is called *-Ricci solition if

$$\frac{1}{2}\mathcal{L}_V g + Ric^* - \lambda g = 0,$$

where $Ric^* = g(S^*X, Y)$ where S^* is the *-Ricci tensor on M and λ is constant.

*-Ricci soliton

Definition

A Riemannian metric g on a real hypersurface M is called *-Ricci solition if

$$\frac{1}{2}\mathcal{L}_V g + Ric^* - \lambda g = 0,$$

where $Ric^* = g(S^*X, Y)$ where S^* is the *-Ricci tensor on M and λ is constant.

Theorem [-, Panagiotidou, J. Phys. and Geom. (2014)]

There do not exist real hypersurfaces in $\mathbb{C}P^n$, $n \geq 2$ admitting a *-Ricci soliton with potential vector field being the structure vector field ξ .

Theorem [- , Panagiotidou, J. Phys. and Geom. (2014)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 2$ admitting a *-Ricci soliton with potential vector field being the structure vector field ξ . Then M is loccally congruent to a geodesic hypersphere with $2n = \operatorname{coth}^2(r)$.

1 Real Hypersurfaces in Complex Space Forms

2 *-Ricci Tensor

3 *-Ricci Soliton

4 Sketch of Proof

5 Summary of Results-Further Work

$\mathbf{1}^{st}$ Step

Proposition

Every real hypersurface in $M_n(c)$, $n \ge 2$, admitting a *-Ricci soliton with potential vector field ξ is a Hopf hypersurface.

Proposition

Every real hypersurface in $M_n(c)$, $n \ge 2$, admitting a *-Ricci soliton with potential vector field ξ is a Hopf hypersurface.

Let M be a real hypersurface admitting a *-Ricci soliton.

Proposition

Every real hypersurface in $M_n(c)$, $n \ge 2$, admitting a *-Ricci soliton with potential vector field ξ is a Hopf hypersurface.

Let M be a real hypersurface admitting a *-Ricci soliton. We consider \mathcal{N} be the open subset of M such that

 $\mathcal{N} = \{ P \ \in \ M : \beta \neq 0, \text{in a neighborhood of } P \}.$

Proposition

Every real hypersurface in $M_n(c)$, $n \ge 2$, admitting a *-Ricci soliton with potential vector field ξ is a Hopf hypersurface.

Let M be a real hypersurface admitting a *-Ricci soliton. We consider \mathcal{N} be the open subset of M such that

 $\mathcal{N} = \{ P \in M : \beta \neq 0, \text{in a neighborhood of } P \}.$

Using the formula $S^* = -\left[\frac{cn}{2}\varphi^2 + (\varphi A)^2\right]$ and $\mathcal{L}_{\xi}g = g(\nabla_X\xi, Y) + g(\nabla_Y\xi, X)$ we obtain $g(\varphi AX, Y) + g(\varphi AY, X) + ncg(X, Y) - nc\eta(X)\eta(Y)$ $+2g(\varphi AX, A\varphi Y) - 2\lambda g(X, Y) = 0.$

Proposition

Every real hypersurface in $M_n(c)$, $n \ge 2$, admitting a *-Ricci soliton with potential vector field ξ is a Hopf hypersurface.

Let M be a real hypersurface admitting a *-Ricci soliton. We consider \mathcal{N} be the open subset of M such that

 $\mathcal{N} = \{ P \in M : \beta \neq 0, \text{in a neighborhood of } P \}.$

Using the formula $S^* = -\left[\frac{cn}{2}\varphi^2 + (\varphi A)^2\right]$ and $\mathcal{L}_{\xi}g = g(\nabla_X\xi, Y) + g(\nabla_Y\xi, X)$ we obtain $g(\varphi AX, Y) + g(\varphi AY, X) + ncg(X, Y) - nc\eta(X)\eta(Y)$ $+2g(\varphi AX, A\varphi Y) - 2\lambda g(X, Y) = 0.$

For certain combination of $\xi, U, \varphi U$ we lead to the conclusion that \mathcal{N} is empty.

Hopf Hypersurface $\longrightarrow A\xi = \alpha \xi \longrightarrow \alpha = \text{constant.}$

2^{nd} Step

Hopf Hypersurface $\longrightarrow A\xi = \alpha \xi \longrightarrow \alpha = \text{constant.}$ We consider a point $P \in M$ and we choose principal vector field $Z \in \text{ker}(\eta)$ at P such that $AZ = \lambda Z$. Then

$$(\lambda - \frac{\alpha}{2})A\varphi Z = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi Z,$$

2^{nd} Step

Hopf Hypersurface $\longrightarrow A\xi = \alpha \xi \longrightarrow \alpha = \text{constant.}$ We consider a point $P \in M$ and we choose principal vector field $Z \in \text{ker}(\eta)$ at P such that $AZ = \lambda Z$. Then

$$(\lambda - \frac{\alpha}{2})A\varphi Z = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi Z,$$

Case I: $\alpha^2 + c \neq 0$.

In this case only the geodesic hypersphere in $\mathcal{C}H^n$, $n \geq 2$, admits a *-Ricci soliton with potential vector field ξ .

2^{nd} Step

Hopf Hypersurface $\longrightarrow A\xi = \alpha \xi \longrightarrow \alpha = \text{constant.}$ We consider a point $P \in M$ and we choose principal vector field $Z \in \text{ker}(\eta)$ at P such that $AZ = \lambda Z$. Then

$$(\lambda - \frac{\alpha}{2})A\varphi Z = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi Z,$$

Case I: $\alpha^2 + c \neq 0$. In this case only the geodesic hypersphere in $CH^n, n \geq 2$, admits a *-Ricci soliton with potential vector field ξ . **Case II:** $\alpha^2 + c = 0$

$$\lambda \neq \frac{\alpha}{2} \lambda = \frac{\alpha}{2} \Rightarrow Horosphere$$

- **1** Real Hypersurfaces in Complex Space Forms
- 2 *-Ricci Tensor
- 3 *-Ricci Soliton
- 4 Sketch of Proof
- 5 Summary of Results-Further Work

Condition of S^*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	V	?
Semi - parallel	No	V	?
Pseudo - parallel	V	V	?
ξ - parallel	V	~	?

Condition of S^*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	V	?
Semi - parallel	No	V	?
Pseudo - parallel	V	v	?
ξ - parallel	V	~	?

Condition of S*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	V	?
Semi - parallel	No	V	?
Pseudo - parallel	V	V	?
ξ - parallel	~	V	?

$ Condition of S^* $	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	V	?
Pseudo - parallel	V	V	?
ξ - parallel	V	~	?

Condition of S^*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	V	?
Pseudo - parallel	V	V	?
ξ - parallel	~	V	?

$\fbox{ Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	V	?
Pseudo - parallel	V	v	?
ξ - parallel	V	V	?

Condition of S^*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	V	?
Pseudo - parallel	V	~	?
ξ - parallel	V	V	?

Condition of S^*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	V	V	?
ξ - parallel	V	V	?

$\fbox{Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	V	?
ξ - parallel	~	V	?

$\fbox{Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	V	?
ξ - parallel	V	V	?

$\fbox{Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	V	V	?

$\fbox{Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	V	V	?

$\fbox{ Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	V	V	?

$\fbox{Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	V	V	?

Condition of S^*	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	~	V	?

$\fbox{ Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	~	~	?

$\fbox{Condition of } S^*$	$\mathbb{C}P^2$	$\mathbb{C}H^2$	$M_n(c), n \ge 3$
Parallel	No	~	?
Semi - parallel	No	~	?
Pseudo - parallel	~	~	?
ξ - parallel	~	~	?

-Summary of Results-Further Work

Ideas for further work

Ideas for further work

■ Is there a Ricci flow which corresponds to *-Ricci soliton?

Ideas for further work

- Is there a Ricci flow which corresponds to *-Ricci soliton?
- Are there real hypersurfaces in $M_n(c)$ admitting a *-Ricci soliton whose potential vector field V belongs to the holomorphic distribution?

References I

- Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. 395, 132-141 (1989).
- Cecil, T.E., Ryan, P.J: Focal sets and real hypersurfaces in complex projective space. Trans. Amer. Math. Soc. 269, 481-499 (1982).
- Cho, J.T., Kimura, M.:*Ricci solitons and real hypersurfaces in a complex space form.* Tohoku Math. J. **61**, 205-212 (2009).
- Cho, J.T., Kimura, M.: Ricci solitons of compact real hypersurfaces in Kahler manifolds. Math. Nachr. 284, 1385-1393 (2011).

References II

- Hamada, T.: Real hypersurfaces of complex space forms in terms of Ricci *-tensor. Tokyo J. Math. 25, 473-483 (2002).
- Ivey, T., Ryan, P. J.: The *-Ricci tensor for hypersurfaces in ℂPⁿ and ℂHⁿ. Tokyo J. Math. 34, 445-471 (2011).
- Kaimakamis, G., Panagiotidou,K.: *-Ricci solitons of real hypersurfaces in non-flat complex space forms. J. Geom. and Phus. 86, 408-413 (2014).
- Kaimakamis, G., Panagiotidou,K.: Parallel *-Ricci tensor of real hypersurfaces in CP² and CH². Taiwan. J. Math. 18, 1991-1998 (2014).

References III

- Kaimakamis, G., Panagiotidou,K.: Conditions of parallelism of *-Ricci tensor of real hypersurfaces in CP² and CH². Submitted.
- Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan **28**,529-540, (1976).
- Montiel, S.: *Real hypersurfaces of a complex hyperbolic space.* J. Math. Soc. Japan **35**, 515-535, (1985).
- Montiel, S. and Romero, A.: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata **20**, 245-261, (1986).

References IV

- Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212, 355-364, (1975).
- Tachibana, S.: On almost-analytic vectors in almost Kählerian manifolds. Tohoku Math J. 11, 247-265 (1959).
- Takagi, R: Real hypersurfaces in a complex prjective space with constant principal curvatures. J. Math. Soc, Japan 27, 43-53 (1975).

THANK YOU