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Ricci Solitons

Real Hypersurfaces in Complex Space Forms

Definition

Complex Space Form is a Kaehler manifold equipped with a
complex structure J , (J2 = −I), whose holomorphic sectional
curvature c is constant for all the J - invariant planes Π in
TPM , for all points P ∈ M .

Theorem

A simply connected, complete complex space form is
analytically isometric to:
complex projective space CPn, if c > 0,
complex Euclidean space Cn, if c = 0,
complex hyperbolic space CHn, if c < 0.

Mn(c), c 6= 0 −→ Non-Flat Complex Space Form
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Real Hypersurfaces in Complex Space Forms

Definition

Almost contact structure or (ϕ, ξ, η) - structure is a tensor
field ϕ of type (1,1), a vector field ξ and a 1-form η, which
satisfy the following relations

ϕ2X = −X + η(X)ξ, η(ξ) = 1,

for any vector field X ∈ X(M).

(M,ϕ, ξ, η) −→ Almost contact manifold.
Compatible Metric of an almost contact manifold is a
Riemannian metric such that

η(X) = g(X, ξ), g(ϕX,ϕY ) = g(X,Y )−η(X)η(Y ), X, Y ∈ X(M).

Structure (ϕ, ξ, η, g) −→ Almost contact metric structure.
(M,ϕ, ξ, η,g) −→ Almost contact metric manifold.
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Definition

A real hypersurface M in complex space form Mn(c) is a
submanifold of real codimension one.

J complex structure on Mn(c), G Riemannian metric of Mn(c)
and ∇ Levi-Civita connection of Mn(c).
N : locally unit normal vector field on M .
Gauss and Weingarten equations

∇YX = ∇YX + g(AY,X)N,

∇XN = −AX,

where ∇ is the Levi-Civita connection of M , A is the shape
operator of M and g the induced Riemannian metric on M .
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Definition of the (ϕ, ξ, η, g) - structure on a real
hypersurface

Structure vector field ξ : ξ = −JN

Metric g : g(ϕX, Y ) = G(JX, Y )
1-form η : η(X) = g(X, ξ) = G(JX,N)
Tensor field ϕ of type (1,1): JX = ϕ(X) + η(X)N

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ),

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,

for any tangent vector field X,Y on M .
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Real Hypersurfaces in Complex Space Forms

Gauss equation:

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY

Codazzi equation:

(∇XA)Y − (∇YA)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ],

where R denotes the Riemannian curvature tensor on M .
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Real Hypersurfaces in Complex Space Forms

The tangent space TPM : TPM = span{ξ} ⊕ D,
D = ker η = {X ε TPM : η(X) = 0} (holomorphic
distribution).

Aξ = αξ + βU,

where β = |ϕ∇ξξ| and U = − 1
βϕ∇ξξ ∈ D, provided that β 6= 0.

Definition

A real hypersurface is a Hopf hypersurface, if the structure
vector field ξ is principal, i.e. Aξ = αξ.

If M is a Hopf hypersurface then α is constant
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Real Hypersurfaces in Complex Space Forms

Complex Projective Space CP n, n ≥ 2

Takagi (1973) [15], Cecil, Ryan (1982) [2]

(A1) geodesic spheres of radius r, where 0 < r < π
2 ,

(A2) tubes of radius r over totally geodesic complex
projective space CP k, where 0 < r < π

2 and 1 ≤ k ≤ n− 2,

(B) tubes of radius r over complex quadrics and RPn,
where 0 < r < π

4 ,

(C) tubes of radius r over the Serge embedding of

CP 1 × CP
(n−1)

2 , where 0 < r < π
4 and n ≥ 2κ+ 3, κ ε N∗,

(D) tubes of radius r over the Plucker embedding of the
complex Grassmannian manifold G2,5, where 0 < r < π

4
and n = 9,

(E) tubes of radius r over the canonical embedding of the
Hermitian symmetric space SO(10)/U(5), where 0 < r < π

4
and n = 15.
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Real Hypersurfaces in Complex Space Forms

Complex Hyperbolic Space CHn, n ≥ 2

Montiel (1985) [11], Berndt (1989) [1]

(A0) horospheres

(A1,0) geodesic spheres of radius r > 0,

(A1,1) tubes of radius r > 0 over totally geodesic complex
hyperbolic hyperplanes CHn−1,

(A2) tubes of radius r > 0 over totally geodesic
submanifold CHk, 1 ≤ k ≤ n− 2,

(B) tubes of radius r > 0 over totally real hyperbolic space
RHn.
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Real Hypersurfaces in Complex Space Forms

In case of CPn,n ≥ 2,−→ Maeda [10] and in case of CHn

,n ≥ 2,−→ Montiel [11].

Theorem

Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then
i) If W is a vector field which belongs to D such that
AW = λW , then (λ− α

2 )AϕW = (λα2 + c
4)ϕW .

ii) If the vector field W satisfies AW = λW and AϕW = νϕW
then λν = α

2 (λ+ ν) + c
4 .

In case of CPn, n ≥ 2,−→ Okumura [13] and in case of CHn,
n ≥ 2 −→ Montiel-Romero [12].

Theorem

Let M be a real hypersurface in Mn(c), n ≥ 2, then ϕA = Aϕ if
and only if M is an open subset of real hypersurfaces of type
(A).
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*-Ricci Tensor

Definition [Tachibana (1959) [14]]

The *-Ricci tensor of a Kaehler manifold N is given by

g(S∗X,Y ) =
1

2
(trace{J ◦R(X, JY )}),

for any X, Y tangent vector fields to N .

Definition [Hamada (2002) [5]]

The *-Ricci tensor of a real hypersurface M in a complex
space form is given by

g(S∗X,Y ) =
1

2
(trace{ϕ ◦R(X,ϕY )}),

for any X, Y tangent vector fields to M .
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*-Ricci Tensor

Definition [Hamada (2002) [5]]

A real hypersurface is called *-Einstein when the *-Ricci
tensor satisfies the following

g(S∗X,Y ) =
ρ∗

2(n− 1)g(X,Y )
, for X ε D and ρ∗ is constant.

Ivey and Ryan (2011) [6]:

S∗X = −[
cn

2
ϕ2X + (ϕA)2X], for X ∈ TM.

The *-Einstein Hopf hypersurfaces in Mn(c), where n ≥ 2 are
precisely

the Hopf hypersurfaces whose Hopf principal curvature α
vanishes and,

the open connected subsets of homogeneous Hopf
hypersurfaces of types (A0), (A1) and (B).
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Parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) of a real hypersurface is parallel,
if ∇XP = 0, for any X ε TM .

(∇XS∗)Y = 0⇒ ∇X(S∗Y ) = S∗(∇XY ), X, Y ε TM.

Theorem [ - , Panagiotidou, Taiw. J. Math. (2014) ]

There do not exist real hypersurfaces in CP 2 whose *-Ricci
tensor is parallel. In CH2 only the geodesic hypersphere has
parallel *-Ricci tensor with coth(r) = 2.
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*-Ricci Tensor

Semi-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is semi-parallel, if R · P = 0,
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R(X,Y )S∗Z = S∗[R(X,Y )Z] X, Y , Z ∈ TM
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Definition
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a function L such that R · P = L{(X ∧ Y ) · P},where
(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y .

R(X,Y )S∗Z − S∗[R(X,Y )Z] = L{g(Y, S∗Z)X − g(X,S∗Z)Y

−S∗[g(Y,Z)X − g(X,Z)Y ]}.

Theorem [ - , Panagiotidou, (submitted)]

Every real hypersurface M in M2(c) with pseudo-parallel
∗-Ricci tensor is a Hopf hypersurface. Furthemore, M is locally
congruent to either a real hypersurface of type (A) or to a Hopf
hypersurface satisfying relation Aξ = 0, with L constant.
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ξ-parallel *-Ricci tensor

Definition

A tensor field P of type (1,s) is ξ-parallel, if ∇ξP = 0.

(∇ξS∗)X = 0⇒ ∇ξ(S∗X) = S∗(∇ξX), for any X ∈ TM .

Theorem [ - , Panagiotidou, (submitted)]

Every real hypersurface M in M2(c) with ξ-parallel ∗-Ricci
tensor is a Hopf hypersurface. Moreover, M is locally congruent
to i) a real hypersurface of type (A) or ii) to a real hypersurface
of type (B) or iii) to a Hopf hypersurface whose principal
curvatures corresponding to the holomorphic distribution are
non-constant and the derivative of them in the direction of ξ is
equal to zero
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Types of Parallelness of *-Ricci tensor

Condition of S∗ CP 2 CH2

Parallel No 4

Semi - parallel No 4

Pseudo - parallel 4 4

ξ - parallel 4 4
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Previous Work

Definition

A Riemannian metric g of a Riemannian manifold is called
Einstein if the Ricci tensor satisfies the relation S = ρg, for
some constant ρ.

Definition

A Riemannian metric g of a Riemannin manifold is called
Ricci soliton if there exist a smooth vector field V such that
the following relation is satisfied

1

2
LV g +Ric− λg = 0,

where λ is a constant. Furthermore, V is called potential
vector field.
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Theorem

There do not exist Einstein real hypersurfaces in non-flat
complex space forms.

Definition [Cho, Kimura (2009) [3]]

An η-Ricci soliton on a real hypersurface in non-flat complex
space form is a pair (η,g) which satisfies the following relation

1

2
Lξg +Ric− λg − µη ⊗ η = 0,

where λ, µ are constant and Ric(X,Y ) = g(SX, Y ) and η is the
1-form on M.
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Theorem [Cho, Kimura (2009) [3]]

Let M be a real hypersurface in a non-flat complex space form
Mn(c). If M admits an η-Ricci soliton, them M is a Hopf
hypersurface and is locally congruent to a real hypersurface of
type (A).

Corollary

A real hypersurface in a non-flat complex space form does not
admit a Ricci soliton with potential vector field ξ.

Theorem [Cho, Kimura (2011) [4]]

A compact Hopf hypersurface in a non-flat complex space form
does not admit a Ricci soliton
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*-Ricci soliton

Definition

A Riemannian metric g on a real hypersurface M is called
∗-Ricci solition if

1

2
LV g +Ric∗ − λg = 0,

where Ric∗ = g(S∗X,Y ) where S∗ is the ∗-Ricci tensor on M
and λ is constant.

Theorem [ - , Panagiotidou, J. Phys. and Geom.
(2014)]

There do not exist real hypersurfaces in CPn, n ≥ 2 admitting
a ∗-Ricci soliton with potential vector field being the structure
vector field ξ.
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Theorem [ - , Panagiotidou, J. Phys. and Geom.
(2014)]

Let M be a real hypersurface in CPn, n ≥ 2 admitting a ∗-Ricci
soliton with potential vector field being the structure vector
field ξ. Then M is loccaly congruent to a geodesic hypersphere
with 2n = coth2(r).
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Sketch of Proof

1st Step

Proposition

Every real hypersurface in Mn(c), n ≥ 2, admitting a *-Ricci
soliton with potential vector field ξ is a Hopf hypersurface.

Let M be a real hypersurface admitting a *-Ricci soliton.
We consider N be the open subset of M such that

N = {P ∈ M : β 6= 0, in a neighborhood of P}.

Using the formula S∗ = −[ cn2 ϕ
2 + (ϕA)2] and

Lξg = g(∇Xξ, Y ) + g(∇Y ξ,X) we obtain

g(ϕAX, Y ) + g(ϕAY,X) + ncg(X,Y )− ncη(X)η(Y )

+2g(ϕAX,AϕY )− 2λg(X,Y ) = 0.

For certain combination of ξ, U, ϕU we lead to the conclusion
that N is empty.
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Sketch of Proof

2nd Step

Hopf Hypersurface −→ Aξ = αξ −→ α=constant.

We consider a point P ∈ M and we choose principal vector field
Z ∈ ker(η) at P such that AZ = λZ. Then

(λ− α

2
)AϕZ = (

λα

2
+
c

4
)ϕZ,

Case I: α2 + c 6= 0.
In this case only the geodesic hypersphere in CHn, n ≥ 2,
admits a *-Ricci soliton with potential vector field ξ.
Case II: α2 + c = 0

λ 6= α
2

λ = α
2 ⇒ Horosphere
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Semi - parallel No 4 ?

Pseudo - parallel 4 4 ?

ξ - parallel 4 4 ?
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Is there a Ricci flow which corresponds to ∗-Ricci soliton?

Are there real hypersurfaces in Mn(c) admitting a *-Ricci
soliton whose potential vector field V belongs to the
holomorphic distribution?
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