"Una caracterización de superficies isoparamétricas en curvatura constante vía superficies mínimas"

Gabriel Ruiz Hernández

www.matem.unam.mx/gruiz

Instituto de Matemáticas, UNAM

11 de Mayo de 2018. IEMATH-GR, Granada

Gabriel Ruiz Hernández www.matem.unam.mx/gruiz Una caracterización de superficies isoparamétricas

Joint work with: Luis Hernández Lamoneda.

 We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.

通 と く ヨ と く ヨ と

1

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:

通 と く ヨ と く ヨ と

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.

< 回 > < 回 > < 回 > -

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.
- We prove that necessarily the initial surface is isoparametric.

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.
- We prove that necessarily the initial surface is isoparametric.
- It is also shown, that the curves are necessarily geodesics.

(日本) (日本) (日本)

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.
- We prove that necessarily the initial surface is isoparametric.
- It is also shown, that the curves are necessarily geodesics.
- On other hand, using the classification of isoparametric surfaces it is possible to prove that they have the above property along every geodesic.
 So, we have a characterization.

ヘロト ヘワト ヘビト ヘビト

Definition

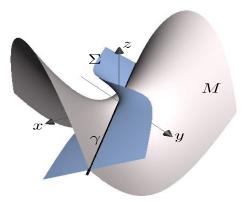
Let $M \subset \overline{M}^3$ be an oriented surface, isometrically immersed in a complete, oriented, three dimensional riemannian manifold and let $\gamma \subset M$ be a curve. Let ξ be the unitary vector field orthogonal to M compatible with the orientation. We define the surface

$$\Sigma := \Sigma_{\gamma} = \{ \exp_{\gamma(s)}(t\xi(s)) \in \overline{M}, t \in (-\epsilon, \epsilon) \},$$

where $\exp_{\gamma(s)} : T_{\gamma(s)}\overline{M} \longrightarrow \overline{M}$ denotes the exponential map of \overline{M} at $\gamma(s)$. We call it "the ruled normal surface (to *M*) along γ ". Observe that Σ is an embedded surface near γ . See figure 5.

ヘロト 人間 ト ヘヨト ヘヨト

Figure: Ruled surface Σ along a curve γ in M



ъ

э

Proposition

(Bonnet) Let M be an immersed surface in \mathbb{R}^3 . A curve $\gamma \subset M$ is line of curvature if and only if Σ_{γ} is flat.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Proposition

(Bonnet) Let M be an immersed surface in \mathbb{R}^3 . A curve $\gamma \subset M$ is line of curvature if and only if Σ_{γ} is flat.

Proposition

(Lamoneda-RH) Let $M \subset \overline{M}^3$, $\gamma \subset M$ and $\Sigma = \Sigma_{\gamma}$. The curve γ is a line of curvature of M if and only if, along γ , the curvature of Σ is equal to the sectional curvature of \overline{M} in the tangent planes of Σ .

→ E > < E >

Theorem

(R. López-RH)

Let M be a connected surface in Euclidean 3-space \mathbb{R}^3 . If there exist four geodesics through each point of M with the property that the ruled normal surface constructed along these geodesics is a surface with constant mean curvature, then M is a plane, a sphere or a right circular cylinder.

• *M* is a surface isometrically immersed in the ambient 3-manifold \overline{M} ;

ヘロト ヘワト ヘビト ヘビト

3

- *M* is a surface isometrically immersed in the ambient 3-manifold *M*;
- γ is a curve in M

・ 回 ト ・ ヨ ト ・ ヨ ト

3

- *M* is a surface isometrically immersed in the ambient 3-manifold *M*;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

- *M* is a surface isometrically immersed in the ambient 3-manifold \overline{M} ;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ
- *T* is the velocity vector of *γ*; *ξ* is the normal vector field to *M* in *M*; *W* is the normal to Σ along *γ*.

・ 同 ト ・ 臣 ト ・ 臣 ト …

- *M* is a surface isometrically immersed in the ambient 3-manifold \overline{M} ;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ
- *T* is the velocity vector of *γ*; *ξ* is the normal vector field to *M* in *M*; *W* is the normal to Σ along *γ*.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ

・聞き ・ヨト ・ヨト

- *M* is a surface isometrically immersed in the ambient 3-manifold \overline{M} ;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ
- *T* is the velocity vector of *γ*; *ξ* is the normal vector field to *M* in *M*; *W* is the normal to Σ along *γ*.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- Q is a 3-dimensional space form. That is, $Q = \mathbb{R}^3$, \mathbb{S}^3 or \mathbb{H}^3 .

- *M* is a surface isometrically immersed in the ambient 3-manifold *M*;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ
- T is the velocity vector of γ; ξ is the normal vector field to M in M; W is the normal to Σ along γ.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- Q is a 3-dimensional space form. That is, $Q = \mathbb{R}^3$, \mathbb{S}^3 or \mathbb{H}^3 .
- ∇ is Levi-Civita connection for *M*; [¬]∇ that of *M* or *Q*; *D* that of ℝ⁴ or ℝ^{3,1}.

- *M* is a surface isometrically immersed in the ambient 3-manifold \overline{M} ;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ
- *T* is the velocity vector of *γ*; *ξ* is the normal vector field to *M* in *M*; *W* is the normal to Σ along *γ*.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- Q is a 3-dimensional space form. That is, $Q = \mathbb{R}^3$, \mathbb{S}^3 or \mathbb{H}^3 .
- ∇ is Levi-Civita connection for *M*; v
 That of *M* or *Q*; *D* that of ℝ⁴ or ℝ^{3,1}.
- α_{A⊂B} is the second fundamental form of submanifold A inside of B. When no confusion arises, we will use the simpler α_A; likewise, H_{A⊂B} and H_A denote the mean curvature vector of submanifold A.

- *M* is a surface isometrically immersed in the ambient 3-manifold *M*;
- γ is a curve in M
- Σ is the ruled normal surface to *M* along γ
- *T* is the velocity vector of *γ*; *ξ* is the normal vector field to *M* in *M*; *W* is the normal to Σ along *γ*.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- Q is a 3-dimensional space form. That is, $Q = \mathbb{R}^3$, \mathbb{S}^3 or \mathbb{H}^3 .
- ∇ is Levi-Civita connection for *M*; [¬]∇ that of *M* or *Q*; *D* that of ℝ⁴ or ℝ^{3,1}.
- α_{A⊂B} is the second fundamental form of submanifold A inside of B. When no confusion arises, we will use the simpler α_A; likewise, H_{A⊂B} and H_A denote the mean curvature vector of submanifold A.
- S^M_ξ(X) = -∇̄_Xξ denotes the shape operator of the submanifold M with respect to the normal vector field ξ.

A result inspired by Bonnet

Figure: Pierre Ossian Bonnet

Lemma

(Lamoneda-RH) Let $M \subset \overline{M}^3$, $\gamma \subset M$ and Σ as before. Then γ is a geodesic of Mif and only if Σ has zero mean curvature along γ .

Gabriel Ruiz Hernández www.matem.unam.mx/gruiz Una caracterización de superficies isoparamétricas

Isoparametric surfaces

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

A E > A E >

Isoparametric surfaces

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Observation

The classification of isoparametric surfaces in three dimensional space forms is known: Cartan, Levi-Civita. Let M be an isoparametric surface

 in R³. Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Observation

The classification of isoparametric surfaces in three dimensional space forms is known: Cartan, Levi-Civita. Let M be an isoparametric surface

- in R³. Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.
- in ℍ³. Then M is either a totally geodesic hyperbolic 2-space, a totally umbilical surface, or an equidistant tube around a geodesic.

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Observation

The classification of isoparametric surfaces in three dimensional space forms is known: Cartan, Levi-Civita. Let M be an isoparametric surface

- in R³. Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.
- in ℍ³. Then M is either a totally geodesic hyperbolic 2-space, a totally umbilical surface, or an equidistant tube around a geodesic.
- in S³. Then M is either a totally geodesic 2-sphere, or a totally umbilical 2-sphere or Hopf tori over circles.

The umbilic surfaces in space forms are either

- totally geodesic surfaces in any of the three space forms, or
- spheres in euclidean \mathbb{R}^3 , or
- spheres in S³, or
- spheres, horospheres and equidistant surfaces to totally geodesic hyperbolic planes in ℍ³.

Properties of tubes around geodesics in space forms

In any ambient space form:

 An equidistant surface of an isoparametric surface is again isoparametric.

-∢ ≣ →

Properties of tubes around geodesics in space forms

In any ambient space form:

- An equidistant surface of an isoparametric surface is again isoparametric.
- An equidistant surface to a tube, around a geodesic, is again a tube around the same geodesic.

Properties of tubes around geodesics in space forms

In any ambient space form:

- An equidistant surface of an isoparametric surface is again isoparametric.
- An equidistant surface to a tube, around a geodesic, is again a tube around the same geodesic.
- If *γ* is a geodesic of a tube *M* then the corresponding curve *γ_ε* in a equidistant surface *M_ε* of the tube is a geodesic of *M_ε* too.

...

Let M be a tube around a geodesic of the ambient. Then

• *M* is an isoparametric surface.

・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

Let M be a tube around a geodesic of the ambient. Then

- *M* is an isoparametric surface.
- A line of curvature of *M* is a geodesic of *M*. That is the reason why the tubes, like *M*, around geodesics of the ambient are flat.

-∃=->

Let M be a tube around a geodesic of the ambient. Then

- *M* is an isoparametric surface.
- A line of curvature of *M* is a geodesic of *M*. That is the reason why the tubes, like *M*, around geodesics of the ambient are flat.
- A geodesic of *M* is a helix of the ambient and makes a constant angle with any line of curvature of *M*. In this case we are considering geodesics of *M* that are not lines of curvature.

Definition

A *ruled* minimal surface Σ in a three dimensional Riemannian manifold is a minimal surface which has a foliation by geodesics of the ambient.

個 と く ヨ と く ヨ と …

1

Parametrization by Lawson, Do Carmo-Dajczer The classification of ruled minimal surfaces is well known in the case when the ambient is a space form:

 In Euclidean space, Σ is (an open part of) a plane or a helicoid.

Parametrization by Lawson, Do Carmo-Dajczer The classification of ruled minimal surfaces is well known in the case when the ambient is a space form:

- In Euclidean space, Σ is (an open part of) a plane or a helicoid.
- (H. B. Lawson) In \mathbb{S}^3 , Σ is (an open part of) a surface parametrized by

 $\Psi(x, y) = (\cos(ax)\cos(y), \sin(ax)\cos(y), \cos(x)\sin(y), \sin(x)\sin(y))$

```
for some a > 0.
```

Observation

Parametrization by Lawson, Do Carmo-Dajczer The classification of ruled minimal surfaces is well known in the case when the ambient is a space form:

- In Euclidean space, Σ is (an open part of) a plane or a helicoid.
- (H. B. Lawson) In \mathbb{S}^3 , Σ is (an open part of) a surface parametrized by

 $\Psi(x, y) = (\cos(ax)\cos(y), \sin(ax)\cos(y), \cos(x)\sin(y), \sin(x)\sin(y))$

for some a > 0.

 (Do Carmo, Dajczer) In ℍ³, Σ is (an open part of) a surface parametrized by Ψ(x, y) =

 $(\cosh(ax)\cosh(y),\sinh(ax)\cosh(y),\cos(x)\sinh(y),\sin(x)\sinh(y)).$

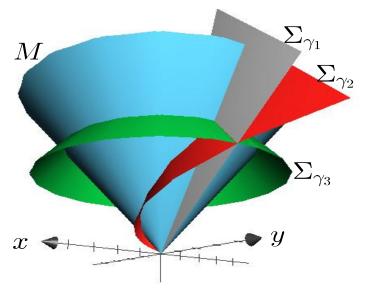
Figure: Obrigado Manfredo Do Carmo!

Gabriel Ruiz Hernández www.matem.unam.mx/gruiz Una caracterización de superficies isoparamétricas

< ∃→

ъ

Figure: A tube *M* in \mathbb{H}^3 with three orthogonal minimal surfaces along geodesics $\gamma_1, \gamma_2, \gamma_3$



Una caracterización de superficies isoparamétricas

Isoparametric surface in \mathbb{H}^3

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

ъ

Example

A tube around a vertical geodesic

- \mathbb{H}^3 : the half space model.
- The cone M = {z² = x² + y²} with z > 0 is a tube around the vertical geodesic given by the positive z axis.

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

- The cone $M = \{z^2 = x^2 + y^2\}$ with z > 0 is a tube around the vertical geodesic given by the positive *z* axis.
- We consider the three geodesics M through the point $\gamma_1(1) = (4 \cos(\ln(4)), 4 \sin(\ln(4)), 4) = \gamma_2(\ln(4))$ given by

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

- The cone $M = \{z^2 = x^2 + y^2\}$ with z > 0 is a tube around the vertical geodesic given by the positive *z* axis.
- We consider the three geodesics M through the point $\gamma_1(1) = (4 \cos(\ln(4)), 4 \sin(\ln(4)), 4) = \gamma_2(\ln(4))$ given by
- $\gamma_1(s) = (4\cos(\ln(4))s, 4\sin(\ln(4))s, 4s), s \in (0, 1.6)$

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

- The cone $M = \{z^2 = x^2 + y^2\}$ with z > 0 is a tube around the vertical geodesic given by the positive *z* axis.
- We consider the three geodesics M through the point $\gamma_1(1) = (4 \cos(\ln(4)), 4 \sin(\ln(4)), 4) = \gamma_2(\ln(4))$ given by
- $\gamma_1(s) = (4\cos(\ln(4))s, 4\sin(\ln(4))s, 4s), s \in (0, 1.6)$
- $\gamma_2(s) = e^s(\cos(s), \sin(s), 1), s \in (-10, 1.8)$

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

- The cone M = {z² = x² + y²} with z > 0 is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_1(1) = (4\cos(\ln(4)), 4\sin(\ln(4)), 4) = \gamma_2(\ln(4))$ given by
- $\gamma_1(s) = (4\cos(\ln(4))s, 4\sin(\ln(4))s, 4s), s \in (0, 1.6)$
- $\gamma_2(s) = e^s(\cos(s), \sin(s), 1), s \in (-10, 1.8)$
- $\gamma_3(s) = (4\sin(s), 4\cos(s), 4), s \in (0, 10)$

・ 同 ト ・ 三 ト ・ 三 ト

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

- The cone $M = \{z^2 = x^2 + y^2\}$ with z > 0 is a tube around the vertical geodesic given by the positive *z* axis.
- We consider the three geodesics M through the point $\gamma_1(1) = (4\cos(\ln(4)), 4\sin(\ln(4)), 4) = \gamma_2(\ln(4))$ given by
- $\gamma_1(s) = (4\cos(\ln(4))s, 4\sin(\ln(4))s, 4s), s \in (0, 1.6)$
- $\gamma_2(s) = e^s(\cos(s), \sin(s), 1), s \in (-10, 1.8)$
- $\gamma_3(s) = (4\sin(s), 4\cos(s), 4), s \in (0, 10)$
- The geodesics γ_1, γ_3 are lines of curvature of the M.

イロト イ理ト イヨト イヨト

Example

A tube around a vertical geodesic

• \mathbb{H}^3 : the half space model.

- The cone M = {z² = x² + y²} with z > 0 is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_1(1) = (4\cos(\ln(4)), 4\sin(\ln(4)), 4) = \gamma_2(\ln(4))$ given by
- $\gamma_1(s) = (4\cos(\ln(4))s, 4\sin(\ln(4))s, 4s), s \in (0, 1.6)$
- $\gamma_2(s) = e^s(\cos(s), \sin(s), 1), s \in (-10, 1.8)$
- $\gamma_3(s) = (4\sin(s), 4\cos(s), 4), s \in (0, 10)$
- The geodesics γ_1, γ_3 are lines of curvature of the M.
- The geodesic γ_2 is a helix in \mathbb{H}^3 .

イロト イ理ト イヨト イヨト

 $\Sigma_{\gamma_1}, \Sigma_{\gamma_2}, \Sigma_{\gamma_3}$

Example

. . .

- Three geodesics $\gamma_1, \gamma_2, \gamma_3$.
- Three ruled surfaces $\Sigma_{\gamma_1}, \Sigma_{\gamma_2}, \Sigma_{\gamma_3}$.
- $\Sigma_{\gamma_1} = \{(4\cos(\ln(4))s(t+1), 4\sin(\ln(4))s(t+1), 4s(1-t)), s \in (0, 1.6), t \in (-0.3, 0.3)\},\$
- $\Sigma_{\gamma_2} = \{(e^s \cos(s)(t+1), e^s \sin(s)(t+1), e^s(1-t)) | s \in (-10, 1.8), t \in (-0.3, 0.3)\},$
- $\Sigma_{\gamma_3} = \{(4\sin(s)(t+1), 4\cos(s)(t+1), 4(1-t)), s \in (0, 10), t \in (-0.3, 0.3)\}.$
- The surface Σ_1 is part of a vertical plane.
- The surface Σ_2 is only a minimal surface.
- Σ₃ is part of a half sphere orthogonal to the plane xy.

《曰》《御》《臣》《臣》 [臣]

Let us assume now that $\overline{M}^3 = \mathcal{Q}$ is a space form, i.e. $\mathcal{Q} = \mathbb{R}^3$. \mathbb{S}^3 or \mathbb{H}^3 .

We are going to use the standard embeddings of \mathbb{S}^3 in \mathbb{R}^4 and of \mathbb{H}^3 in $\mathbb{R}^{3,1}$:

$$\begin{split} \mathbb{S}^3 &= \{(x,y,z,w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1\} \subset \mathbb{R}^4 \text{ and } \\ \mathbb{H}^3 &= \{(x,y,z,w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 - w^2 = -1, w > 0\} \subset \mathbb{R}^{3,1}. \\ \text{We also denote by } D \text{ the Levi-Civita connection on } \mathbb{R}^4 \text{ (or } \mathbb{R}^{3,1}) \\ \text{and we let } \langle, \rangle \text{ denote either Euclidean or Lorentzian inner } \\ \text{product in } \mathbb{R}^4 \text{ (or } \mathbb{R}^{3,1}). \end{split}$$

→ Ξ → < Ξ →</p>

Extrinsic parametrization of the surface Σ

As before, assume we have a surface $M \subset Q$, γ a curve in Mand Σ the ruled normal surface to M along γ . Parametrize Σ using the embedding of Q in \mathbb{R}^4 (resp. $\mathbb{R}^{3,1}$) as follows

$$\phi(\mathbf{s},t) = f(t)\gamma(\mathbf{s}) + g(t)\xi(\mathbf{s}),$$

where

$$S^3 \quad \mathbb{H}^3$$

$$f(t) = \cos t \quad \cosh t \quad .$$

$$g(t) = \sin t \quad \sinh t$$

In the case of $Q = \mathbb{R}^3$, we set $\phi(s, t) = \gamma(s) + t\xi(s)$.

Recall that, along γ , we have a unit vector field W orthogonal to Σ . Extend W to a vector field Y (tangent to Q) orthogonal to Σ everywhere.

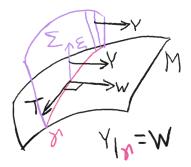
Lemma

Let $M \subset Q$ be an oriented surface isometrically immersed in the space form Q and let ξ be an unitary orthogonal vector field to M. Let $\gamma \subset M$ and Σ be as in Definition 1. Extend W to a unit vector field Y normal to Σ at every point. Let ϕ be the parametrization of Σ inside \mathbb{R}^3 , \mathbb{R}^4 or $\mathbb{R}^{3,1}$ defined above. Then Σ is a minimal surface if and only if $\langle Y, \phi_{ss} \rangle = 0$.

個人 くほん くほん しほ

The mimimality condition

Figure: Y is normal along Σ



< ∃→

э

Definition

A curve in a three dimensional Riemannian manifold is called a *helix* if its curvature and torsion are non zero constant functions.

Proposition

If Σ is a minimal surface in Q (i.e. $H_{\Sigma \subset Q} = 0$), then γ is either

- a helix in Q (i.e. κ and τ are non-zero constants); or,
- a planar (i.e. $\tau = 0$) line of curvature of M, .

イロト イポト イヨト イヨト 三日

Corollary

If Σ is a minimal surface in ${\cal Q}$ and the torsion of γ vanishes then Σ is totally geodesic.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Lemma

Let $M \subset \overline{M}^3$ be an oriented surface isometrically immersed in a three dimensional riemannian manifold and let ξ be a unitary orthogonal vector field to M. Let $\gamma \subset M$ be a geodesic in M with unit tangent vector T. If γ is a helix in \overline{M}^3 then along γ we have that $(\nabla_T S_{\xi}^M)(T) = 0$.

Definition

A surface in a three dimensional manifold is called parallel if its shape operator is parallel: $\nabla_X S_{\xi}^M = 0$, for every direction $X \in T_p M$.

Corollary

Let $M \subset Q$ be an oriented surface isometrically immersed in a three dimensional space form and let ξ be a unitary orthogonal vector field to M. Let us assume that at some point $p \in M$ two geodesics go through, which, moreover, are helices in Q. Then, at p, the shape operator is parallel.

くロト (過) (目) (日)

Proposition

A surface in a three dimensional space form is parallel if and only if either

- it is isoparametric, the lines of curvature are geodesics and, therefore, it is flat; or,
- it is umbilic.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Characterization of isoparametric surfaces in space forms

Theorem

(Lamoneda-RH)

Let M be a complete surface immersed in a three dimensional space form Q. Let us assume that through every point $p \in M$, there are three different curves whose ruled normal surface is minimal. Then M is an isoparametric surface.

Example

- If one only assumes that through each point of M one has 2 geodesics whose normal surface is minimal, then the above result is false.
- The easiest example, perhaps, is to take as M the product of any curve α in the xy-plane cross the z-axis. Through each point of M you have two geodesics (the vertical axis and a parallel to α) for which the normal surfaces are planes.

- L. Hernández Lamoneda, G. Ruiz-Hernández.
 "A characterization of isoparametric surfaces in space forms via minimal surfaces"
 Bull. Braz. Math. Soc. 2018
- ② R. López, G. Ruiz-Hernández.
 "A characterization of isoparametric surfaces in ℝ³ via normal surfaces"
 Results Math. 67, 87-94 (2015).

個 とくき とくきと

Gracias por la atención!

Gabriel Ruiz Hernández www.matem.unam.mx/gruiz Una caracterización de superficies isoparamétricas

프 🖌 🛪 프 🕨