"Una caracterización de superficies isoparamétricas en curvatura constante vía superficies mínimas"

Gabriel Ruiz Hernández

www.matem.unam.mx/gruiz

Instituto de Matemáticas, UNAM

11 de Mayo de 2018. IEMATH-GR, Granada

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:

Introduction

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.

Introduction

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.
- We prove that necessarily the initial surface is isoparametric.

Introduction

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.
- We prove that necessarily the initial surface is isoparametric.
- It is also shown, that the curves are necessarily geodesics.

Introduction

Joint work with: Luis Hernández Lamoneda.

- We give a characterization of isoparametric surfaces in three dimensional space forms with the help of minimal surfaces.
- Let us consider a surface in a three dimensional space form with the following property:
- Through each point of the surface pass three curves such that the ruled orthogonal surface determined by each of them is minimal.
- We prove that necessarily the initial surface is isoparametric.
- It is also shown, that the curves are necessarily geodesics.
- On other hand, using the classification of isoparametric surfaces it is possible to prove that they have the above property along every geodesic. So, we have a characterization.

Normal ruled surface along a curve

Definition

Let $M \subset \bar{M}^{3}$ be an oriented surface, isometrically immersed in a complete, oriented, three dimensional riemannian manifold and let $\gamma \subset M$ be a curve. Let ξ be the unitary vector field orthogonal to M compatible with the orientation. We define the surface

$$
\Sigma:=\Sigma_{\gamma}=\left\{\exp _{\gamma(s)}(t \xi(s)) \in \bar{M}, t \in(-\epsilon, \epsilon)\right\}
$$

where $\exp _{\gamma(s)}: T_{\gamma(s)} \bar{M} \longrightarrow \bar{M}$ denotes the exponential map of \bar{M} at $\gamma(s)$. We call it "the ruled normal surface (to M) along γ ". Observe that Σ is an embedded surface near γ. See figure 5 .

Figure: Ruled surface Σ along a curve γ in M

A motivation by Bonnet

Proposition

(Bonnet)
Let M be an immersed surface in \mathbb{R}^{3}. A curve $\gamma \subset M$ is line of curvature if and only if Σ_{γ} is flat.

A motivation by Bonnet

Proposition

(Bonnet)
Let M be an immersed surface in \mathbb{R}^{3}. A curve $\gamma \subset M$ is line of curvature if and only if Σ_{γ} is flat.

Proposition

(Lamoneda-RH)
Let $M \subset \bar{M}^{3}, \gamma \subset M$ and $\Sigma=\Sigma_{\gamma}$. The curve γ is a line of curvature of M if and only if, along γ, the curvature of Σ is equal to the sectional curvature of \bar{M} in the tangent planes of Σ.

We want to improve and generalize the next result

Theorem

(R. López-RH)

Let M be a connected surface in Euclidean 3 -space \mathbb{R}^{3}. If there exist four geodesics through each point of M with the property that the ruled normal surface constructed along these geodesics is a surface with constant mean curvature, then M is a plane, a sphere or a right circular cylinder.

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ
- T is the velocity vector of $\gamma ; \xi$ is the normal vector field to M in $\bar{M} ; W$ is the normal to Σ along γ.

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ
- T is the velocity vector of $\gamma ; \xi$ is the normal vector field to M in $\bar{M} ; W$ is the normal to Σ along γ.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ
- T is the velocity vector of $\gamma ; \xi$ is the normal vector field to M in $\bar{M} ; W$ is the normal to Σ along γ.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- \mathcal{Q} is a 3 -dimensional space form. That is, $\mathcal{Q}=\mathbb{R}^{3}, \mathbb{S}^{3}$ or \mathbb{H}^{3}.

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ
- T is the velocity vector of $\gamma ; \xi$ is the normal vector field to M in $\bar{M} ; W$ is the normal to Σ along γ.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- \mathcal{Q} is a 3 -dimensional space form. That is, $\mathcal{Q}=\mathbb{R}^{3}, \mathbb{S}^{3}$ or \mathbb{H}^{3}.
- ∇ is Levi-Civita connection for $M ; \bar{\nabla}$ that of \bar{M} or $\mathcal{Q} ; D$ that of \mathbb{R}^{4} or $\mathbb{R}^{3,1}$.

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ
- T is the velocity vector of $\gamma ; \xi$ is the normal vector field to M in $\bar{M} ; W$ is the normal to Σ along γ.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- \mathcal{Q} is a 3-dimensional space form. That is, $\mathcal{Q}=\mathbb{R}^{3}, \mathbb{S}^{3}$ or \mathbb{H}^{3}.
- ∇ is Levi-Civita connection for $M ; \bar{\nabla}$ that of \bar{M} or $\mathcal{Q} ; D$ that of \mathbb{R}^{4} or $\mathbb{R}^{3,1}$.
- $\alpha_{A \subset B}$ is the second fundamental form of submanifold A inside of B. When no confusion arises, we will use the simpler α_{A}; likewise, $H_{A \subset B}$ and H_{A} denote the mean curvature vector of submanifold A.

Notation

- M is a surface isometrically immersed in the ambient 3-manifold \bar{M};
- γ is a curve in M
- Σ is the ruled normal surface to M along γ
- T is the velocity vector of $\gamma ; \xi$ is the normal vector field to M in $\bar{M} ; W$ is the normal to Σ along γ.
- If γ is a geodesic, then $\{T, \xi, W\}$ is a Frenet frame for γ
- \mathcal{Q} is a 3-dimensional space form. That is, $\mathcal{Q}=\mathbb{R}^{3}, \mathbb{S}^{3}$ or \mathbb{H}^{3}.
- ∇ is Levi-Civita connection for $M ; \bar{\nabla}$ that of \bar{M} or $\mathcal{Q} ; D$ that of \mathbb{R}^{4} or $\mathbb{R}^{3,1}$.
- $\alpha_{A \subset B}$ is the second fundamental form of submanifold A inside of B. When no confusion arises, we will use the simpler α_{A}; likewise, $H_{A \subset B}$ and H_{A} denote the mean curvature vector of submanifold A.
- $S_{\xi}^{M}(X)=-\bar{\nabla}_{X} \xi$ denotes the shape operator of the submanifold M with respect to the normal vector field ξ.

A result inspired by Bonnet

Figure: Pierre Ossian Bonnet

Lemma
(Lamoneda-RH)
Let $M \subset \bar{M}^{3}, \gamma \subset M$ and Σ as before. Then γ is a geodesic of M if and only if Σ has zero mean curvature along γ.

Isoparametric surfaces

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Isoparametric surfaces

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Observation

The classification of isoparametric surfaces in three dimensional space forms is known: Cartan, Levi-Civita. Let M be an isoparametric surface

- in \mathbb{R}^{3}. Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.

Isoparametric surfaces

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Observation

The classification of isoparametric surfaces in three dimensional space forms is known: Cartan, Levi-Civita. Let M be an isoparametric surface

- in \mathbb{R}^{3}. Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.
- in \mathbb{H}^{3}. Then M is either a totally geodesic hyperbolic 2-space, a totally umbilical surface, or an equidistant tube around a geodesic.

Isoparametric surfaces

Definition

A surface in a three dimensional space form is called isoparametric if its principal curvatures are constant functions.

Observation

The classification of isoparametric surfaces in three dimensional space forms is known: Cartan, Levi-Civita. Let M be an isoparametric surface

- in \mathbb{R}^{3}. Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.
- in \mathbb{H}^{3}. Then M is either a totally geodesic hyperbolic 2-space, a totally umbilical surface, or an equidistant tube around a geodesic.
- in \mathbb{S}^{3}. Then M is either a totally geodesic 2-sphere, or a totally umbilical 2-sphere or Hopf tori over circles.

Superficies umbilicas

Observation

The umbilic surfaces in space forms are either

- totally geodesic surfaces in any of the three space forms, or
- spheres in euclidean \mathbb{R}^{3}, or
- spheres in \mathbb{S}^{3}, or
- spheres, horospheres and equidistant surfaces to totally geodesic hyperbolic planes in \mathbb{H}^{3}.

Tubes around geodesics in space forms

Observation

Properties of tubes around geodesics in space forms
In any ambient space form:

- An equidistant surface of an isoparametric surface is again isoparametric.

Tubes around geodesics in space forms

Observation

Properties of tubes around geodesics in space forms
In any ambient space form:

- An equidistant surface of an isoparametric surface is again isoparametric.
- An equidistant surface to a tube, around a geodesic, is again a tube around the same geodesic.

Tubes around geodesics in space forms

Observation

Properties of tubes around geodesics in space forms In any ambient space form:

- An equidistant surface of an isoparametric surface is again isoparametric.
- An equidistant surface to a tube, around a geodesic, is again a tube around the same geodesic.
- If γ is a geodesic of a tube M then the corresponding curve γ_{ϵ} in a equidistant surface M_{ϵ} of the tube is a geodesic of M_{ϵ} too.

Observation

Let M be a tube around a geodesic of the ambient. Then

- M is an isoparametric surface.

Observation

Let M be a tube around a geodesic of the ambient. Then

- M is an isoparametric surface.
- A line of curvature of M is a geodesic of M. That is the reason why the tubes, like M, around geodesics of the ambient are flat.

Observation

Let M be a tube around a geodesic of the ambient. Then

- M is an isoparametric surface.
- A line of curvature of M is a geodesic of M. That is the reason why the tubes, like M, around geodesics of the ambient are flat.
- A geodesic of M is a helix of the ambient and makes a constant angle with any line of curvature of M. In this case we are considering geodesics of M that are not lines of curvature.

Ruled minimal surfaces

Definition

A ruled minimal surface Σ in a three dimensional Riemannian manifold is a minimal surface which has a foliation by geodesics of the ambient.

Ruled minimal surfaces in space forms

Observation

Parametrization by Lawson, Do Carmo-Dajczer The classification of ruled minimal surfaces is well known in the case when the ambient is a space form:

- In Euclidean space, Σ is (an open part of) a plane or a helicoid.

Ruled minimal surfaces in space forms

Observation

Parametrization by Lawson, Do Carmo-Dajczer The classification of ruled minimal surfaces is well known in the case when the ambient is a space form:

- In Euclidean space, Σ is (an open part of) a plane or a helicoid.
- (H. B. Lawson) In \mathbb{S}^{3}, Σ is (an open part of) a surface parametrized by

$$
\Psi(x, y)=(\cos (a x) \cos (y), \sin (a x) \cos (y), \cos (x) \sin (y), \sin (x) \sin (y))
$$

for some $a>0$.

Ruled minimal surfaces in space forms

Observation

Parametrization by Lawson, Do Carmo-Dajczer The classification of ruled minimal surfaces is well known in the case when the ambient is a space form:

- In Euclidean space, Σ is (an open part of) a plane or a helicoid.
- (H. B. Lawson) In \mathbb{S}^{3}, Σ is (an open part of) a surface parametrized by

$$
\Psi(x, y)=(\cos (a x) \cos (y), \sin (a x) \cos (y), \cos (x) \sin (y), \sin (x) \sin (y))
$$

for some $a>0$.

- (Do Carmo, Dajczer) $\ln \mathbb{H}^{3}, \Sigma$ is (an open part of) a surface parametrized by $\Psi(x, y)=$ $(\cosh (a x) \cosh (y), \sinh (a x) \cosh (y), \cos (x) \sinh (y), \sin (x) \sinh (y))$.

Figure: Obrigado Manfredo Do Carmo!

Figure: A tube M in \mathbb{H}^{3} with three orthogonal minimal surfaces along geodesics $\gamma_{1}, \gamma_{2}, \gamma_{3}$

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_{1}(1)=(4 \cos (\ln (4)), 4 \sin (\ln (4)), 4)=\gamma_{2}(\ln (4))$ given by

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_{1}(1)=(4 \cos (\ln (4)), 4 \sin (\ln (4)), 4)=\gamma_{2}(\ln (4))$ given by
- $\gamma_{1}(s)=(4 \cos (\ln (4)) s, 4 \sin (\ln (4)) s, 4 s), s \in(0,1.6)$

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_{1}(1)=(4 \cos (\ln (4)), 4 \sin (\ln (4)), 4)=\gamma_{2}(\ln (4))$ given by
- $\gamma_{1}(s)=(4 \cos (\ln (4)) s, 4 \sin (\ln (4)) s, 4 s), s \in(0,1.6)$
- $\gamma_{2}(s)=e^{s}(\cos (s), \sin (s), 1), s \in(-10,1.8)$

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_{1}(1)=(4 \cos (\ln (4)), 4 \sin (\ln (4)), 4)=\gamma_{2}(\ln (4))$ given by
- $\gamma_{1}(s)=(4 \cos (\ln (4)) s, 4 \sin (\ln (4)) s, 4 s), s \in(0,1.6)$
- $\gamma_{2}(s)=e^{s}(\cos (s), \sin (s), 1), s \in(-10,1.8)$
- $\gamma_{3}(s)=(4 \sin (s), 4 \cos (s), 4), s \in(0,10)$

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_{1}(1)=(4 \cos (\ln (4)), 4 \sin (\ln (4)), 4)=\gamma_{2}(\ln (4))$ given by
- $\gamma_{1}(s)=(4 \cos (\ln (4)) s, 4 \sin (\ln (4)) s, 4 s), s \in(0,1.6)$
- $\gamma_{2}(s)=e^{s}(\cos (s), \sin (s), 1), s \in(-10,1.8)$
- $\gamma_{3}(s)=(4 \sin (s), 4 \cos (s), 4), s \in(0,10)$
- The geodesics γ_{1}, γ_{3} are lines of curvature of the M.

Isoparametric surface in \mathbb{H}^{3}

Example

A tube around a vertical geodesic

- \mathbb{H}^{3} : the half space model.
- The cone $M=\left\{z^{2}=x^{2}+y^{2}\right\}$ with $z>0$ is a tube around the vertical geodesic given by the positive z axis.
- We consider the three geodesics M through the point $\gamma_{1}(1)=(4 \cos (\ln (4)), 4 \sin (\ln (4)), 4)=\gamma_{2}(\ln (4))$ given by
- $\gamma_{1}(s)=(4 \cos (\ln (4)) s, 4 \sin (\ln (4)) s, 4 s), s \in(0,1.6)$
- $\gamma_{2}(s)=e^{s}(\cos (s), \sin (s), 1), s \in(-10,1.8)$
- $\gamma_{3}(s)=(4 \sin (s), 4 \cos (s), 4), s \in(0,10)$
- The geodesics γ_{1}, γ_{3} are lines of curvature of the M.
- The geodesic γ_{2} is a helix in \mathbb{H}^{3}.

$\Sigma_{\gamma_{1}}, \Sigma_{\gamma_{2}}, \Sigma_{\gamma_{3}}$

Example

- Three geodesics $\gamma_{1}, \gamma_{2}, \gamma_{3}$.
- Three ruled surfaces $\Sigma_{\gamma_{1}}, \Sigma_{\gamma_{2}}, \Sigma_{\gamma_{3}}$.
- $\Sigma_{\gamma_{1}}=\{(4 \cos (\ln (4)) s(t+1), 4 \sin (\ln (4)) s(t+1), 4 s(1-t)), s \in$ $(0,1.6), t \in(-0.3,0.3)\}$,
- $\Sigma_{\gamma_{2}}=\left\{\left(e^{s} \cos (s)(t+1), e^{s} \sin (s)(t+1), e^{s}(1-t)\right) \mid s \in(-10,1.8), t \in\right.$ $(-0.3,0.3)\}$,
- $\Sigma_{\gamma_{3}}=\{(4 \sin (s)(t+1), 4 \cos (s)(t+1), 4(1-t)), s \in(0,10), t \in$ (-0.3, 0.3) $\}$.
- The surface Σ_{1} is part of a vertical plane.
- The surface Σ_{2} is only a minimal surface.
- Σ_{3} is part of a half sphere orthogonal to the plane xy.

El espacio ambiente es una forma espacial

Let us assume now that $\bar{M}^{3}=\mathcal{Q}$ is a space form, i.e. $\mathcal{Q}=\mathbb{R}^{3}, \mathbb{S}^{3}$ or \mathbb{H}^{3}.
We are going to use the standard embeddings of \mathbb{S}^{3} in \mathbb{R}^{4} and of \mathbb{H}^{3} in $\mathbb{R}^{3,1}$:
$\mathbb{S}^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\} \subset \mathbb{R}^{4}$ and
$\mathbb{H}^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}-w^{2}=-1, w>0\right\} \subset \mathbb{R}^{3,1}$.
We also denote by D the Levi-Civita connection on \mathbb{R}^{4} (or $\mathbb{R}^{3,1}$) and we let \langle,$\rangle denote either Euclidean or Lorentzian inner$ product in \mathbb{R}^{4} (or $\mathbb{R}^{3,1}$).

Extrinsic parametrization of the surface Σ

As before, assume we have a surface $M \subset \mathcal{Q}, \gamma$ a curve in M and Σ the ruled normal surface to M along γ. Parametrize Σ using the embedding of \mathcal{Q} in \mathbb{R}^{4} (resp. $\mathbb{R}^{3,1}$) as follows

$$
\phi(s, t)=f(t) \gamma(s)+g(t) \xi(s)
$$

where

$$
\begin{array}{ccc}
& S^{3} & \mathbb{H}^{3} \\
f(t)= & \cos t & \cosh t \\
g(t)= & \sin t & \sinh t
\end{array}
$$

In the case of $\mathcal{Q}=\mathbb{R}^{3}$, we set $\phi(s, t)=\gamma(s)+t \xi(s)$.
Recall that, along γ, we have a unit vector field W orthogonal to Σ. Extend W to a vector field Y (tangent to \mathcal{Q}) orthogonal to Σ everywhere.

Lemma

Let $M \subset \mathcal{Q}$ be an oriented surface isometrically immersed in the space form \mathcal{Q} and let ξ be an unitary orthogonal vector field to M. Let $\gamma \subset M$ and Σ be as in Definition 1. Extend W to a unit vector field Y normal to Σ at every point. Let ϕ be the parametrization of Σ inside R^{3}, \mathbb{R}^{4} or $\mathbb{R}^{3,1}$ defined above. Then Σ is a minimal surface if and only if $\left\langle Y, \phi_{s s}\right\rangle=0$.

The mimimality condition

Figure: Y is normal along Σ

Definition

A curve in a three dimensional Riemannian manifold is called a helix if its curvature and torsion are non zero constant functions.

Proposition

If Σ is a minimal surface in \mathcal{Q} (i.e. $H_{\Sigma \subset \mathcal{Q}}=0$), then γ is either

- a helix in \mathcal{Q} (i.e. κ and τ are non-zero constants); or,
- a planar (i.e. $\tau=0$) line of curvature of M,

Corollary

If Σ is a minimal surface in \mathcal{Q} and the torsion of γ vanishes then Σ is totally geodesic.

Lemma

Let $M \subset \bar{M}^{3}$ be an oriented surface isometrically immersed in a three dimensional riemannian manifold and let ξ be a unitary orthogonal vector field to M. Let $\gamma \subset M$ be a geodesic in M with unit tangent vector T. If γ is a helix in \bar{M}^{3} then along γ we have that $\left(\nabla_{T} S_{\xi}^{M}\right)(T)=0$.

Definition

A surface in a three dimensional manifold is called parallel if its shape operator is parallel: $\nabla_{X} S_{\xi}^{M}=0$, for every direction $X \in T_{p} M$.

Corollary

Let $M \subset \mathcal{Q}$ be an oriented surface isometrically immersed in a three dimensional space form and let ξ be a unitary orthogonal vector field to M. Let us assume that at some point $p \in M$ two geodesics go through, which, moreover, are helices in \mathcal{Q}. Then, at p, the shape operator is parallel.

Proposition

A surface in a three dimensional space form is parallel if and only if either

- it is isoparametric, the lines of curvature are geodesics and, therefore, it is flat; or,
- it is umbilic.

Characterization of isoparametric surfaces in space forms

Theorem

(Lamoneda-RH)
Let M be a complete surface immersed in a three dimensional space form \mathcal{Q}. Let us assume that through every point $p \in M$, there are three different curves whose ruled normal surface is minimal. Then M is an isoparametric surface.

For two geodesics is false

Example

- If one only assumes that through each point of M one has 2 geodesics whose normal surface is minimal, then the above result is false.
- The easiest example, perhaps, is to take as M the product of any curve α in the xy-plane cross the z-axis. Through each point of M you have two geodesics (the vertical axis and a parallel to α) for which the normal surfaces are planes.

Bibliografía

(1) L. Hernández Lamoneda, G. Ruiz-Hernández.
"A characterization of isoparametric surfaces in space forms via minimal surfaces"
Bull. Braz. Math. Soc. 2018
(2) R. López, G. Ruiz-Hernández.
"A characterization of isoparametric surfaces in \mathbb{R}^{3} via normal surfaces"
Results Math. 67, 87-94 (2015).

Gracias por la atención!

