TWO GENERALIZATIONS OF CALABI'S CORRESPONDENCE

Mojo Lee (Universidad de Granada)

Abstract. Calabi [3] and Shiffman [10] observed that there exists a natural correspondence between minimal graphs in Euclidean space \mathbb{R}^{3} and maximal graphs in Lorentz-Minkowski space $\mathbb{L}^{3}=\mathbb{R}_{1}^{2}$ with signature $(+,+,-)$. See also [2, 8, 9]. Our main aim is to introduce two generalizations [6] of Calabi's correspondence.

More generally, we discover the first twin correspondence [5, 6] between CMC- H graphs in Riemannian Bianchi-Cartan-Vranceanu space $\mathbb{E}^{3}(\kappa, \tau)$ and spacelike CMCτ graphs in Lorentzian Bianchi-Cartan-Vranceanu space $\mathbb{L}^{3}(\kappa, H)$. The following commutative diagram illustrates the twin correspondence and Daniel's sister correspondence [4] simultaneously:

minimal graphs	spacelike $C M C \tau$-graphs
in $\mathbb{E}^{3}(\kappa, \tau)$	in $\mathbb{L}^{3}(\kappa, 0)$

When both mean curvature and bundle curvature vanish, the twin correspondence becomes Albujer-Alías duality [1] between graphs with zero mean curvature in Remannian product space $\mathbb{E}^{3}(\kappa, 0)=\mathcal{M}_{\kappa} \times \mathbb{R}$ and spacelike graphs with zero mean curvature in Lorentzian product space $\mathbb{L}^{3}(\kappa, 0)=\mathcal{M}_{\kappa} \times \mathbb{R}_{1}$. The first twin correspondance yields a Calabi-Chern type theorem that there exists no entire spacelike graph of zero mean curvature in Lorentzian Heisenberg group.

We construct the second twin correspondence [6, 7] between 2-dimensional minimaI graphs in Euclidean space \mathbb{R}^{n+2} and 2-dimensional maximal graphs in pseudoEuclidean space \mathbb{R}_{n}^{n+2}. The second twin correspondence induces an explicit duality for 2-variables symplectic Monge-Ampére equations (special Lagrangian equations in \mathbb{R}^{4} and split special Lagrangian equations in \mathbb{R}_{2}^{4}) with prescribed Lagrangian angees.

References

[1] A. L. Albujer, L. J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys. 59 (2009), 620-631.
[2] H. Araújo, M. L. Leite, How many maximal surfaces do correspond to one minimal surface?, Math. Proc. Camb. Phil. Soc. 146 (2009), 165-175.
[3] E. Calabi, Examples of Bernstein problems for some non-linear equations, Proc. Sympos. Pure Math. 15 (1970), Amer. Math. Soc., Providence, RI, 223-230.
[4] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv. 82 (2007), No. 1, 87-131.
[5] H. Lee, Extension of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata, 151 (2011), 373-386.
[6] H. Lee, Extensions of Calabi's correspondence between minimal surfaces and maximal surfaces, http:// arxiv.org/abs/1103.5180v2
[7] H. Lee, Minimal surface systems, maximal surface systems and special Lagrangian equations, preprint.
[8] F. J. López, R. López, R. Souam, Maximal surfaces of Riemann type in Lorentz-Minkowski space L^{3}, Michigan Math. J. 47 (2000), No. 3, 469-497.
[9] L. Mazet, M. Traizet, A quasi-periodic minimal surface, Comment. Math. Helv. 83 (2008), No. 3, 573-601.
[10] M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes, Ann. of Math. 63 (1956), 77-90.

