TWO GENERALIZATIONS OF CALABI'S CORRESPONDENCE

Hojoo Lee (Universidad de Granada)

ABSTRACT. Calabi [3] and Shiffman [10] observed that there exists a natural correspondence between minimal graphs in Euclidean space \mathbb{R}^3 and maximal graphs in Lorentz–Minkowski space $\mathbb{L}^3 = \mathbb{R}^2_1$ with signature (+, +, -). See also [2, 8, 9]. Our main aim is to introduce two generalizations [6] of Calabi's correspondence.

More generally, we discover the first **twin correspondence** [5, 6] between CMC-*H* graphs in Riemannian Bianchi–Cartan–Vranceanu space $\mathbb{E}^3(\kappa, \tau)$ and spacelike CMC- τ graphs in Lorentzian Bianchi–Cartan–Vranceanu space $\mathbb{L}^3(\kappa, H)$. The following commutative diagram illustrates the twin correspondence and Daniel's sister correspondence [4] simultaneously:

minimal graphs		spacelike CMC $ au$ -graphs
in $\mathbb{E}^3(\kappa, au)$		in $\mathbb{L}^3(\kappa,0)$
	\bigcirc	
CMC τ -graphs		maximal graphs
in $\mathbb{E}^3(\kappa - 4\tau^2, 0)$		in $\mathbb{L}^3(\kappa - 4\tau^2, \tau)$

When both mean curvature and bundle curvature vanish, the twin correspondence becomes Albujer-Alías duality [1] between graphs with zero mean curvature in Riemannian product space $\mathbb{E}^3(\kappa, 0) = \mathcal{M}_{\kappa} \times \mathbb{R}$ and spacelike graphs with zero mean curvature in Lorentzian product space $\mathbb{L}^3(\kappa, 0) = \mathcal{M}_{\kappa} \times \mathbb{R}_1$. The first twin correspondence yields a Calabi–Chern type theorem that there exists no entire spacelike graph of zero mean curvature in Lorentzian Heisenberg group.

We construct the second **twin correspondence** [6, 7] between 2-dimensional minimal graphs in Euclidean space \mathbb{R}^{n+2} and 2-dimensional maximal graphs in pseudo-Euclidean space \mathbb{R}^{n+2}_n . The second twin correspondence induces an explicit duality for 2-variables symplectic Monge-Ampére equations (special Lagrangian equations in \mathbb{R}^4 and split special Lagrangian equations in \mathbb{R}^4_2) with prescribed Lagrangian angles.

References

- A. L. Albujer, L. J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys. 59 (2009), 620–631.
- [2] H. Araújo, M. L. Leite, How many maximal surfaces do correspond to one minimal surface?, Math. Proc. Camb. Phil. Soc. 146 (2009), 165–175.
- [3] E. Calabi, Examples of Bernstein problems for some non-linear equations, Proc. Sympos. Pure Math. 15 (1970), Amer. Math. Soc., Providence, RI, 223–230.
- [4] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment. Math. Helv. 82 (2007), No. 1, 87–131.
- [5] H. Lee, Extension of the duality between minimal surfaces and maximal surfaces, Geom. Dedicata, 151 (2011), 373–386.
- [6] H. Lee, Extensions of Calabi's correspondence between minimal surfaces and maximal surfaces, http:// arxiv.org/abs/1103.5180v2
- [7] H. Lee, Minimal surface systems, maximal surface systems and special Lagrangian equations, preprint.
- [8] F. J. López, R. López, R. Souam, Maximal surfaces of Riemann type in Lorentz–Minkowski space L³, Michigan Math. J. 47 (2000), No. 3, 469–497.
- [9] L. Mazet, M. Traizet, A quasi-periodic minimal surface, Comment. Math. Helv. 83 (2008), No. 3, 573-601.
- [10] M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes, Ann. of Math. 63 (1956), 77–90.