BERNSTEIN PROBLEMS IN HIGHER CODIMENSION

Hojoo Lee (Universidad de Granada)

Abstract. The recent decades admit intensive research devoted to the study of minimal submanifolds in higher codimension, in particular, special Lagrangians. Lawson and Osserman [7] studied non-existence, non-uniqueness and irregularity of solutions of the minimal surface system. Unlike Bernstein's Theorem in \mathbb{R}^{3}, for general higher codimension $n \geq 2$, there exist plenty of entire 2-dimensional minimal non-planar graphs in \mathbb{R}^{n+2}. For Bernstein type results in higher codimension, we refer to $[1,3,5,6,9,10,12,13,14,15,16]$.

In this talk, we survey various Bernstein type theorems in higher codimension. In particular, we meet a geometric proof of the characterization of entire special Lagrangian graphs in \mathbb{R}^{4}. An important property of special Lagrangian submanifolds is the interesting fact that they are volume minimizing in their homology classes.

Theorem 0.1 (Bernstein type problem for entire special Lagrangian graphs [1, 16]). When a minimal surface in Euclidean space \mathbb{R}^{4} becomes an entire gradient graph $\left(x, y, f_{x}, f_{y}\right)$ for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the potential function f should be harmonic or quadratic. Or equivalently, given any constant $\theta \in \mathbb{R}$, the entire solutions of special Lagrangian equation

$$
\cos \theta\left(f_{x x}+f_{y y}\right)+\sin \theta\left(1-f_{x x} f_{y y}+f_{x y}^{2}\right)=0
$$

are harmonic or quadratic.
We show that it can be reduced to the following classical result.
Theorem 0.2 (Jörgens' Theorem [4]). The only entire solutions of the unimodular Hessian equation $f_{x x} f_{y y}-f_{x y}{ }^{2}=1$ are quadratic polynomial functions.

We provide a minimal-surface proof of Jörgens' Theorem. The Harvey-Lawson Theorem [2] shows that the entire gradient graph Σ given by $\left(x, y, f_{x}, f_{y}\right)$ becomes a minimal surface in \mathbb{R}^{4}. We then employ the extended Osserman's Lemma [8] to show that its generalized Gauss map $[11] \mathcal{G}: \Sigma \rightarrow \mathcal{Q}_{2} \subset \mathbb{C P}^{3}$ is constant. Here, the variety $\mathcal{Q}_{2}=\left\{[\zeta]=\left[\zeta_{1}: \cdots: \zeta_{4}\right] \in \mathbb{C P}^{3}: \zeta_{1}{ }^{2}+\cdots+\zeta_{4}{ }^{2}=0\right\}$ is a model for the Grassmannian manifold $\mathcal{G}_{2,2}$ of oriented planes in \mathbb{R}^{4}.

REFERENCES

[1] L. Fu, An analogue of Bernstein's theorem, Houston J. Math. 24 (1998), 415-419.
[2] R. Harvey and H. Lawson, Jr. Calibrated Geometries, Acta Math. 148 (1982), 47-157.
[3] Th. Hasanis, A. Savas-Halilaj, and Th. Vlachos, Minimal graphs in \mathbb{R}^{4} with bounded Jacobians, Proc. Amer. Math. Soc. 137 (2009), 3463-3471.
[4] K. Jörgens, Uber Die Losungen der Differentialgleichung $r t-s^{2}=1$, Math. Ann. 127 (1954), 130-134.
[5] J. Jost and Y. L. Xin, Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations, 9 (1999), no. 4, 277-296.
[6] S. Kawai, A theorem of Bernstein type for minimal surfaces in \mathbb{R}^{4}, Tohoku Math. J. (2) 36 (1984),377-384.
[7] H. B. Lawson and R. Osserman, Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system, Acta Math. 139 (1977), no. 1-2, 1-17.
[8] H. Lee, Minimal surface system, maximal surface system, and special Lagrangian equations, preprint, to appear in Trans. Amer. Math. Soc.
[9] C. Mese, The Bernstein problem for complete Lagrangian stationary surfaces, Proc. Amer. Math. Soc. 129 (2001), no. 2, 573-580.
[10] L. Ni, A Bernstein type theorem for minimal volume preserving maps, Proc. Amer. Math. Soc. 130 (2002), 1207-1210.
[11] R. Osserman, A survey of minimal surfaces, Second edition, Dover Publications, Inc., New York, 1986, 23-26.
[12] R. Schoen, The role of harmonic mappings in rigidity and deformation problems, Complex Geometry (Osaka 1990), Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993, 179-200.
[13] L. Simon, A Hölder estimate for quasiconformal maps between surfaces in Euclidean space, Acta Math. 139 (1977), 19-51.
[14] M.-P. Tsui and M.-T. Wang, A Bernstein type result for special Lagrangian submanifolds, Math. Res. Lett. 9 (2002), no. 4, 529-535.
[15] M.-T. Wang, On graphic Bernstein type results in higher codimension, Trans. Amer. Math. Soc. 355 (2003), no. 1, 265-271.
[16] Y. Yuan, A Bernstein problem for special Lagrangian equation. Invent. Math. 150 (2002), no. 1, 117-125.

