Minimal surfaces in finite volume hyperbolic 3-manifolds N^{3} and in $M^{2} \times \mathbb{S}^{1}, M^{2}$ a complete hyperbolic surface of finite area

Harold Rosenberg

Joint work with P. Collin and L. Hauswirth

Notation

N denotes a complete, non compact, hyperbolic 3-manifold of finite volume

Notation

N denotes a complete, non compact, hyperbolic 3-manifold of finite volume
M denotes a complete hyperbolic surface of finite area; also non compact

Notation

N denotes a complete, non compact, hyperbolic 3 -manifold of finite volume
M denotes a complete hyperbolic surface of finite area; also non compact
$M \times \mathbb{S}^{1}$ the product metric space

Notation

N denotes a complete, non compact, hyperbolic 3 -manifold of finite volume
M denotes a complete hyperbolic surface of finite area; also non compact
$M \times \mathbb{S}^{1}$ the product metric space
We will discuss properly immersed minimal surfaces in such N and $M \times \mathbb{S}^{1}$

Ends of N

Ends E of N can be parametrized by

$$
\left\{(x, y, t) \in \mathbb{R}^{3} ; y \geq y_{0}>0\right\} / \Gamma
$$

Metric in $N: g=\frac{d x^{2}+d y^{2}+d t^{2}}{y^{2}}$
$\Gamma=$ group generated by two linearly independent translations of the $(x, ., t)$ plane.

$$
E=\cup_{y \leq y_{0}} \mathbb{T}(y)
$$

$\mathbb{T}(y)=$ CMC- 1 tori quotient of the horosphere by Γ.
This end E of N is called a hyperbolic cusp end.

Ends of $M \times \mathbb{S}^{1}$

Ends E^{*} of $M \times \mathbb{S}^{1}$ can be parametrized by

$$
\left\{(x, y, t) \in \mathbb{R}^{3} ; y \geq y_{0}>0\right\} / \Gamma
$$

Metric in $M \times \mathbb{S}^{1}: g=\frac{d x^{2}+d y^{2}}{y^{2}}+d t^{2}$
$\Gamma=$ group generated by two linearly independent translations of the $(x, ., t)$ plane of the form

$$
\begin{gathered}
(x, y, t) \rightarrow(x, y, t+h) \text { and }(x, y, t) \rightarrow(x+\lambda, y, t) \\
E^{*}=\cup_{y \leq y_{0}} \mathbb{T}(y)
\end{gathered}
$$

$\mathbb{T}(y)=$ CMC- $1 / 2$ tori quotient of the horosphere by Γ.

Remarks

If L is a line at infinity $\{y=0\}$, and $P=L \times\left[y_{0}, \infty\right)$ then P is a totally geodesic (cusp) end in E and P is a minimal surface in E^{*}.
P is totally geodesic in E^{*} only when L is horizontal or vertical.
P is vertical at infinity (as $y \rightarrow \infty$) in E^{*}.

FINITE TOTAL CURVATURE THEOREM (Collin,Hauswirth, -)

A finite topology properly immersed orientable minimal surface Σ in N, or in $M \times \mathbb{S}^{1}$, has finite total curvature equal to $2 \pi \chi(\Sigma)$.

Moreover, the ends of Σ are asymptotic to standard ends: In N there is one standard end (a cusp), and in $M \times \mathbb{S}^{1}$ there are three standard ends
(1) A horizontal end= (a cusp end of $M) \times\{$ point $\}$,
(2) A vertical end=(a geodesic ray of $M) \times \mathbb{S}^{1}$,
(3) A helicoidal end with axis at infinity.

RIGIDITY THEOREM (Mazet, -)

Let X be a complete Riemannian 3-manifold with sectional curvature $K_{X} \leq-1$. Let T be a constant mean curvature one torus embedded in X. Then T separates X and its mean convex side is isometric to a hyperbolic cusp E.

Mazet and I proved more, inspired by an (unpublished) result of Calabi.

If \mathbb{S}^{2} is given a metric of curvature between 0 and 1 and γ is a simple closed geodesic of \mathbb{S}^{2}, then the length of γ is at least 2π.

Calabi proved that when the length is 2π (on a complete surface M with curvature between 0 and 1) then M is isometric to the unit sphere or to $\mathbb{S}^{1} \times \mathbb{R}$.

RIGIDITY THEOREM (Mazet, -)

We proved that if M is a complete 3-manifold of sectional curvature between 0 and 1 and Σ is a minimal embedded 2-sphere in M, then the area of Σ is at least 4π.

If the area equals 4π then M is isometric to the unit 3sphere or to a quotient of $\mathbb{S}^{2} \times \mathbb{R}$ by the group of isometries

$$
(p, t) \rightarrow\left(\alpha(p), t+t_{0}\right)
$$

α an isometry of $\mathbb{S}^{2}, t_{0} \neq 0$.

Some Introductary Remarks

The existence of closed orientable incompressible surfaces in a 3-manifold is a great help in understanding the manifold.

Haken used incompressible surfaces in closed irreducible 3 -manifolds (now called Haken manifolds) to determine knot and link invariants.

Some Introductary Remarks

The existence of closed orientable incompressible surfaces in a 3-manifold is a great help in understanding the manifold.

Haken used incompressible surfaces in closed irreducible 3 -manifolds (now called Haken manifolds) to determine knot and link invariants.

It was thought that all irreducible 3-manifolds were Haken manifolds, (with the exception of some Seifert fibrations), until Thurston discovered many hyperbolic link complements, which (after performing Dehn surgery) contained no incompressible surfaces.

Some Introductary Remarks

This encouraged considerable research on totally geodesic surfaces in hyperbolic manifolds. Here are some (of many) theorems on totally geodesic submainifolds.

John Milson : He constructed infinitely many closed hyperbolic n-manifolds, $n \geq 3$, that have embedded totally geodesic hypersurfaces.

Some Introductary Remarks

This encouraged considerable research on totally geodesic surfaces in hyperbolic manifolds. Here are some (of many) theorems on totally geodesic submainifolds.

John Milson : He constructed infinitely many closed hyperbolic n-manifolds, $n \geq 3$, that have embedded totally geodesic hypersurfaces.

Alan Reid : There are infinitely many hyperbolic knot complements that contain no closed totally geodesic surfaces and do contain non compact such surfaces.

Some Introductary Remarks

This encouraged considerable research on totally geodesic surfaces in hyperbolic manifolds. Here are some (of many) theorems on totally geodesic submainifolds.

John Milson : He constructed infinitely many closed hyperbolic n-manifolds, $n \geq 3$, that have embedded totally geodesic hypersurfaces.

Alan Reid : There are infinitely many hyperbolic knot complements that contain no closed totally geodesic surfaces and do contain non compact such surfaces.

Gordon, Litherhand : The complement of the figure eight contains many closed totally geodesic surfaces. There is no embedded example.

Some Introductary Remarks

The reason there is no embedded such surface, is that a closed embedded essential surface (incompressible and not boundary parallel) in N, implies any cyclic branched cover is Haken. For the figure eight knot the double branch cover is a Lens Space, which has finite fundamental group.

Some Introductary Remarks

The reason there is no embedded such surface, is that a closed embedded essential surface (incompressible and not boundary parallel) in N, implies any cyclic branched cover is Haken. For the figure eight knot the double branch cover is a Lens Space, which has finite fundamental group.
C. Adams : An incompressible proper embedding of a 3-punctured sphere in N is isotopic to a proper totally geodesic embedding of the 3-punctured sphere.

Some Introductary Remarks

The reason there is no embedded such surface, is that a closed embedded essential surface (incompressible and not boundary parallel) in N, implies any cyclic branched cover is Haken. For the figure eight knot the double branch cover is a Lens Space, which has finite fundamental group.
C. Adams : An incompressible proper embedding of a 3-punctured sphere in N is isotopic to a proper totally geodesic embedding of the 3-punctured sphere.

Perspective : Understand minimal surface theory in hyperbolic 3-manifolds.

Applications of the Finite Total Curvature
 Theorem

The theorem, together with the Gauss equation, gives topological obstructions for the existence of proper minimal immersions of prescribed topology in N or in $M \times \mathbb{S}^{1}$:

Applications of the Finite Total Curvature
 Theorem

The theorem, together with the Gauss equation, gives topological obstructions for the existence of proper minimal immersions of prescribed topology in N or in $M \times \mathbb{S}^{1}$:
-A plane \mathbb{R}^{2} can not be so realized in N or in $M \times \mathbb{S}^{1}$,

Applications of the Finite Total Curvature
 Theorem

The theorem, together with the Gauss equation, gives topological obstructions for the existence of proper minimal immersions of prescribed topology in N or in $M \times \mathbb{S}^{1}$:
-A plane \mathbb{R}^{2} can not be so realized in N or in $M \times \mathbb{S}^{1}$, -An annulus $\mathbb{S}^{1} \times \mathbb{R}$ can not be realized in N. If Σ is a properly immersed minimal annulus in $M \times \mathbb{S}^{1}$, then $\Sigma=\gamma \times \mathbb{S}^{1}, \gamma$ a complete geodesic of M.

Applications of the Finite Total Cuvature
 Theorem

More generally, suppose Σ is an orientable surface of genus g with n punctures. Then if Σ can be properly immersed in N or $M \times \mathbb{S}^{1}$ as a minimal surface, we have

$$
\int_{\Sigma} K_{\Sigma}=2 \pi(2-2 g-n)=\int_{\Sigma} K_{e x t}+\int_{\Sigma} K_{\text {sect }}
$$

Applications of the Finite Total Cuvature Theorem

More generally, suppose Σ is an orientable surface of genus g with n punctures. Then if Σ can be properly immersed in N or $M \times \mathbb{S}^{1}$ as a minimal surface, we have

$$
\int_{\Sigma} K_{\Sigma}=2 \pi(2-2 g-n)=\int_{\Sigma} K_{e x t}+\int_{\Sigma} K_{\text {sect }}
$$

Since $K_{\text {ext }} \leq 0$ and

$$
\begin{gathered}
-1 \leq K_{\text {sect }} \leq 0 \text { in } M \times \mathbb{S}^{1} \\
K_{\text {sect }}=-1 \text { in } N
\end{gathered}
$$

we have

$$
2-2 g-n \leq 0
$$

and equality $\Longleftrightarrow K_{\text {ext }}=K_{\text {sect }}=0$.

Applications of the Finite Total Cuvature
 Theorem

In N, we obtain an area estimate :

$$
|\Sigma|=\int_{\Sigma} K_{e x t}+2 \pi(2 g+n-2) \leq 2 \pi(2 g+n-2)
$$

and equality means Σ is totally geodesic.
Question : When do such totally geodesic surfaces exist?
When N is the complement of the figure eight knot, with a complete hyperbolic metric of finite volume, then there is no totally geodesic closed embedded surface.

Existence results

Theorem : There is a properly embedded minimal surface Σ in N of finite topology. Σ is incompressible and stable.

Questions : Can an embedded incompressible surface in N be isotoped to an area minimizing surface? In particular, can one find a once punctured embedded minimal torus in the complement of the figure eight knot?

Is there a compact embedded minimal surface in any N ?

Existence results

Theorem : There is a properly embedded minimal surface Σ in N of finite topology. Σ is incompressible and stable.

Questions: Can an embedded incompressible surface in N be isotoped to an area minimizing surface? In particular, can one find a once punctured embedded minimal torus in the complement of the figure eight knot?

Is there a compact embedded minimal surface in any N ?

Remark Thurston proved there are compact hyperbolic 3 -manifolds that contain no incompressible surface.

Bounded curvature and Stable surfaces

Theorem : (C.-H.-R. + Laurent Mazet) Let Σ be a properly embedded minimal surface in N of bounded curvature.
Then Σ has finite topology.

Corollary A properly embedded stable minimal surface in N has finite topology (hence finite total curvature)

Question: Does a properly embedded stable surface in $M \times \mathbb{S}^{1}$, of bounded curvature, have finite topology ?

In $M \times \mathbb{S}^{1}$ we have many examples of properly embedded minimal surfaces, including many stable ones as above

Examples in $M \times \mathbb{S}^{1}$

We describe two examples in $M \times \mathbb{S}^{1}$ and then examples in N.

Examples in $M \times \mathbb{S}^{1}$

We describe two examples in $M \times \mathbb{S}^{1}$ and then examples in N.

1. The simplest complete hyperbolic surface is a 3 -punctured sphere. It has a unique complete hyperbolic metric of area π, and any other such surface has area greater than π.

Let M be the complete hyperbolic 3-punctured sphere. We will realize M in the unit disc model of \mathbb{H}^{2}.
Σ will be an embedded minimal surface in $M \times \mathbb{S}^{1}$ with three ends ; two helicoidal and the other horizontal.

Examples in $M \times \mathbb{S}^{1}$

The domains and notation we now introduce will be used in all the examples we describe.
Let Γ be the ideal triangle in the disk model of \mathbb{H}^{2} with vertices $A=(0,1), B=(0,-1), C=(-1,0)$ and sides a, b, c as indicated in figure1.

Figure: Ideal triangle $(A B C)$ in \mathbb{H}^{2}

Examples in $M \times \mathbb{S}^{1}$

Let Σ, be the minimal graph over the domain D bounded by Γ, taking the values 0 on b and c and $h>0$ on a.

Extend Σ, to an entire minimal graph $\Sigma \tilde{\Sigma}$ over \mathbb{H}^{2} by rotation by π in all the sides of Γ, and the sides of the triangles thus obtained.

In figure 2, we indicate some of the reflected triangles and the values of the graph $\tilde{\Sigma}$ on their sides.

Figure: Value of the graph $\tilde{\Sigma}$ on geodesics

Examples in $M \times \mathbb{S}^{1}$

Let D be the domain bounded by Γ. Let ψ_{A} be the parabolic isometry with fixed point A which takes the geodesic c to c_{1} and a to $a_{1} ; \psi_{A}=R_{c_{1}} R_{a}$, where R_{γ} denotes reflection in the geodesic γ.

Let ψ_{B} be the parabolic isometry of \mathbb{H}^{2} leaving B fixed, taking b to b_{1} and a to $c_{2} ; \psi_{B}=R_{b_{1}} R_{a}$.

Notice that the group of isometries of $\mathbb{H}^{2} \times \mathbb{R}$, generated by $T(2 h) \circ \psi_{A}$ and $T(2 h) \circ \psi_{B}$, leaves $\tilde{\Sigma}$ invariant.

Examples in $M \times \mathbb{S}^{1}$

The quotient of this graph by the group yields a minimal surface Σ embedded in $M \times(\mathbb{R} / T(2 h))$.

Here M is the 3-punctured sphere obtained by identifying the sides of $D \cup R_{a}(D)$ by $\psi_{A}, \psi_{B}\left(c\right.$ with c_{1}, b with $\left.b_{1}\right) . M$ is hyperbolic and has finite area.
Σ is a 3-punctured sphere with 3-ends; two helicoidal and the other horizontal.
Σ has total curvature -2π and is stable : (Σ is transverse to the killing field $\partial / \partial t$).

Example 2 in $M \times \mathbb{S}^{1}$

A helicoid with one helicoidal end in $M \times \mathbb{S}^{1}, M$ a once punctured torus.

The surface Σ will be topologically the connected sum of a 2 -torus and projective plane, punctured in one point.
M is the once punctured torus obtained from the ideal quadrilateral Q_{1} in \mathbb{H}^{2}, with 4 vertices $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$ by identifying opposite sides.

Let S be the third quadrant of Q_{1} :
$S=\left\{(x, y) \in Q_{1} ; x \leq 0, y \leq 0\right\}$. For $h>0$, let Σ_{1} be the minimal graph over S with boundary values indicated in figure 3.

Figure: Σ_{1} be a minimal graph over S

Example 2 in $M \times \mathbb{S}^{1}$

Let Σ_{3} be the reflection of Σ_{1} through β (cf figure 3) ; Σ_{3} is between heights h and $2 h$ and is a graph over the second quadrant of Q_{1}.

Then rotate $\Sigma_{1} \cup \Sigma_{3}$ by π through the vertical axis between $(0,0)$ and $(0,2 h)$, to obtain $\Sigma_{2} \cup \Sigma_{4} ; \Sigma_{4}$ is a graph over the fourth quadrant of Q_{1}. Σ is the union of the four pieces Σ_{1}, through Σ_{4}, identified along the boundaries as follows.

First we consider identifying opposite sides of Q_{1} be the hyperbolic translations sending the opposite side to the other.

Example 2 in $M \times \mathbb{S}^{1}$

Then we can quotient by $T(2 h)$ or by $T(4 h)$. The first quotient gives an non orientable surface in $M \times \mathbb{S}^{1}$ with one helicoid type end.

The second gives an orientable surface of total curvature -8π with two helicoidal type ends (it is a double cover of the first example). Topologically the first example is the connected sum of a once punctured torus and a projective plane. The second surface is 2 punctured orientable surface of genus two.

Example 2 in $M \times \mathbb{S}^{1}$

The reader can see the helicoidal structure of Σ by going along a horizontal geodesic on Σ at $h=0$, from one puncture to the other. Then spiral up Σ along a helice going to the horizontal geodesic at height h. Continue along this geodesic to the other (it's the same) puncture and spiral up the helices on Σ to height $2 h$. If we do this right, we are back where we started.

Examples in N

The simplest example N I know of is obtained by identifying sides of a regular tetrahedron T in \mathbb{H}^{3}.

Examples in N

The simplest example N I know of is obtained by identifying sides of a regular tetrahedron T in \mathbb{H}^{3}.

One can think in the Klein model (or in the Poincaré model) of \mathbb{H}^{3} as the open unit ball. Take T to be a regular Euclidean tetrahedron with 4 vertices on the unit sphere= $\partial_{\infty}\left(\mathbb{H}^{3}\right)$, and dihedral angle $\alpha=\pi / 3$.

Examples in N

(1) Identify the face A with B by rotation about v by $2 \pi / 3$.
(2) Identify C with D by rotation about w by $2 \pi / 3$.
(3) The quotient has one vertex (at infinity), two faces, and one 3 -cell.

Examples in N

(1) Identify the face A with B by rotation about v by $2 \pi / 3$.
(2) Identify C with D by rotation about w by $2 \pi / 3$.
(3) The quotient has one vertex (at infinity), two faces, and one 3 -cell.

Along each point of the edge in the quotient, there are 6 faces making an angle $\pi / 3$. So a neighborhood of the point is a ball in \mathbb{H}^{3}, and the quotient N is a hyperbolic manifold with one end. The link of the vertex at infinity is a Klein bottle so N is non orientable.

Examples in N

This manifold N was discovered in 1912 by Giesekind.

Examples in N

This manifold N was discovered in 1912 by Giesekind.
C. Adams proved it has the smallest possible volume (1.01) among complete hyperbolic 3-manifolds of finite volume.

Examples in N

The orientable two sheeted covering of N is the complement of the figure eight knot in \mathbb{S}^{3}. This manifold \tilde{N} was shown to have a hyperbolic structure by Riley and Jorgensen. It is discussed in detail in the book of Thurston.

Examples in N

Theorem (Jorgensen) Given $V>0$, there are a finite number of complete, non compact hyperbolic 3-manifolds N_{i} with volume $\leq V$.

Theorem (Thurston) Any compact hyperbolic 3-manifold with volume $\leq V$, is obtained from one of the N_{i} above by hyperbolic Dehn surgery.

Minimal surfaces in N

The simplest example in N is a 3-punctured sphere Σ defined by the faces of T in the quotient of N.

Minimal surfaces in N

The simplest example in N is a 3-punctured sphere Σ defined by the faces of T in the quotient of N.
Along the edge in N there are six faces meeting at equal angles $\pi / 3$, so each face continues smoothly through the edge to give a totally geodesic immersion Σ.

Minimal surfaces in N

The simplest example in N is a 3-punctured sphere Σ defined by the faces of T in the quotient of N.

Along the edge in N there are six faces meeting at equal angles $\pi / 3$, so each face continues smoothly through the edge to give a totally geodesic immersion Σ.
Σ is obtained by gluing together the two faces, A and B, C and D, giving a losange. The edges of this losange are identified as in the figure which gives a 3-punctured sphere :

Minimal surfaces in N

Here is a smooth immersion of a Klein bottle punctured in 2 points as a totally geodesic surface.

Minimal surfaces in N

Here is a smooth immersion of a Klein bottle punctured in 2 points as a totally geodesic surface.
For each edge, take the plane of \mathbb{H}^{3} passing through the bisectrice of the edge and the edge of T opposite to the first edge

Minimal surfaces in N

The union of these 6 planar triangles defines a smooth totally geodesic immersion in N.

Minimal surfaces in N

The union of these 6 planar triangles defines a smooth totally geodesic immersion in N.

The six triangles make a hexagon at m with the boundary identifications indicated in figure

Minimal surfaces in N

This is a Klein bottle with a puncture at $[b c]$ and another at [ab].

Minimal surfaces in N

This is a Klein bottle with a puncture at $[b c]$ and another at [ab].

Theorem There is no closed embedded totally geodesic surface in N.

Minimal surfaces in N

Now I describe the simplest properly immersed minimal surface in N (that we know of). I know no embedded example.

Minimal surfaces in N

Now I describe the simplest properly immersed minimal surface in N (that we know of). I know no embedded example.

Consider the 3 geodesic polygons of the 1 -skeleton of T without the vertices :

Minimal surfaces in N

Now I describe the simplest properly immersed minimal surface in N (that we know of). I know no embedded example.

Consider the 3 geodesic polygons of the 1 -skeleton of T without the vertices :

Notice that rotation by $2 \pi / 3$ about v sends C_{1}, to C_{3}, and rotation by $2 \pi / 3$ about w sends C_{1} to C_{2} (and
$\left.\operatorname{Rot}_{v}(2 \pi / 3)\left(C_{2}\right)=C_{1}\right)$.

Minimal surfaces in N

Each C_{k} bounds a unique minimal disk D_{k} in \mathbb{H}^{3} (contained in T) :

Minimal surfaces in N

Rotation by π about an edge of T smoothly extends the D_{i} passing through this edge to the unique $D_{j} \neq D_{i}$ sharing this same edge

Minimal surfaces in N

Rotation by π about an edge of T smoothly extends the D_{i} passing through this edge to the unique $D_{j} \neq D_{i}$ sharing this same edge

Minimal surfaces in N

Rotation by π about an edge of T smoothly extends the D_{i} passing through this edge to the unique $D_{j} \neq D_{i}$ sharing this same edge

Here D_{1} (in the back tetrahedron) extends to D_{2}. Thus the $3 D_{i}$'s give an immersed minimal surface Σ in N.

Existence of properly embedded minimal surfaces in N^{3}

Suppose M^{3} is a compact orientable irreducible Riemannian 3-manifold, $\partial M^{3} \neq \emptyset$, and M^{3} not topologically a 3-ball.

Existence of properly embedded minimal surfaces in N^{3}

Suppose M^{3} is a compact orientable irreducible Riemannian 3-manifold, $\partial M^{3} \neq \emptyset$, and M^{3} not topologically a 3-ball.

Then $H^{1}(\partial M, \mathbb{R}) \rightarrow H^{1}(M)$ gives a non zero closed one form α on M. A surface S dual to α, can be chosen to be embedded, 2 sided, and incompressible in M and in ∂M.

Existence of properly embedded minimal surfaces in N^{3}

If ∂M is mean convex then a theorem of Meeks-Yau gives a least area embedded minimal surface Σ (or a double cover of) in the isotopy class of S. When $\partial S \subset \partial M$, the isotopy can be chosen to leave ∂S fixed.

Existence of properly embedded minimal surfaces in N^{3}

If ∂M is mean convex then a theorem of Meeks-Yau gives a least area embedded minimal surface Σ (or a double cover of) in the isotopy class of S. When $\partial S \subset \partial M$, the isotopy can be chosen to leave ∂S fixed.

The condition ∂M mean convex guarantees that one can choose minimizing sequences (for the area of S) that stay away from ∂M. One can solve the Plateau problem in M.

Existence of properly embedded minimal surfaces in N^{3}

If ∂M is mean convex then a theorem of Meeks-Yau gives a least area embedded minimal surface Σ (or a double cover of) in the isotopy class of S. When $\partial S \subset \partial M$, the isotopy can be chosen to leave ∂S fixed.

The condition ∂M mean convex guarantees that one can choose minimizing sequences (for the area of S) that stay away from ∂M. One can solve the Plateau problem in M.

In the hyperbolic 3-manifold N, large geodesic balls of N are not mean convex; when the ball enters deep into a cusp end, its boundary becomes concave.

Existence of properly embedded minimal surfaces in N^{3}

If ∂M is mean convex then a theorem of Meeks-Yau gives a least area embedded minimal surface Σ (or a double cover of) in the isotopy class of S. When $\partial S \subset \partial M$, the isotopy can be chosen to leave ∂S fixed.

The condition ∂M mean convex guarantees that one can choose minimizing sequences (for the area of S) that stay away from ∂M. One can solve the Plateau problem in M.

In the hyperbolic 3-manifold N, large geodesic balls of N are not mean convex; when the ball enters deep into a cusp end, its boundary becomes concave.

Thus sequences of surfaces of decreasing area may go off to infinity in the ends of N and solving Plateau-type problems may be difficult.

Existence of properly embedded minimal surfaces in N^{3}

An end of N is homeomorphic to $\mathbb{T} \times \mathbb{R}^{+}, \mathbb{T}$ a 2-torus, and the metric is $e^{-2 s} g_{0}+d s^{2}, g_{0}$ a flat metric on \mathbb{T}.

Existence of properly embedded minimal surfaces in N^{3}

An end of N is homeomorphic to $\mathbb{T} \times \mathbb{R}^{+}, \mathbb{T}$ a 2 -torus, and the metric is $e^{-2 s} g_{0}+d s^{2}, g_{0}$ a flat metric on \mathbb{T}.

The tori $\mathbb{T}(s)=\mathbb{T} \times(s)$ are the quotient of horospheres of \mathbb{H}^{3} (with the same point at infinity) by 2 independent parabolic isometries (fixing the point at infinity). Going a distance $s>0$ from $\mathbb{T}(0)$, by the geodesic s-flow ; shrinks lengths on $\mathbb{T}(0)$ by e^{-s}.

Existence of properly embedded minimal surfaces in N^{3}

An end of N is homeomorphic to $\mathbb{T} \times \mathbb{R}^{+}, \mathbb{T}$ a 2 -torus, and the metric is $e^{-2 s} g_{0}+d s^{2}, g_{0}$ a flat metric on \mathbb{T}.

The tori $\mathbb{T}(s)=\mathbb{T} \times(s)$ are the quotient of horospheres of \mathbb{H}^{3} (with the same point at infinity) by 2 independent parabolic isometries (fixing the point at infinity). Going a distance $s>0$ from $\mathbb{T}(0)$, by the geodesic s-flow ; shrinks lengths on $\mathbb{T}(0)$ by e^{-s}.

A small circle C on $\mathbb{T}(0)$ of length ℓ (for the metric $g(0)$) bounds the infinite cylinder $C \times[0, \infty)$, whose area equals ℓ. The disk on $\mathbb{T}(0)$ bounded by C has area $\pi \ell^{2}$; which is less than ℓ for $\ell \ll 1$.

Existence of properly embedded minimal surfaces in N^{3}

This suggests one can solve the Plateau problem in N.

Existence of properly embedded minimal surfaces in N^{3}

This suggests one can solve the Plateau problem in N.
Let Γ be a smooth Jordan curve of N that is null homotopic in N. Then Γ lifts to \mathbb{H}^{3}, to a smooth Jordan curve $\tilde{\Gamma}$.

Existence of properly embedded minimal surfaces in N^{3}

This suggests one can solve the Plateau problem in N.
Let Γ be a smooth Jordan curve of N that is null homotopic in N. Then Γ lifts to \mathbb{H}^{3}, to a smooth Jordan curve $\tilde{\Gamma}$.

Let \tilde{D} be a disk solution to the Plateau problem of Γ in N, \tilde{D} is an immersed minimal disk with boundary $\tilde{\Gamma}$, that minimizes area.

Existence of properly embedded minimal surfaces in N^{3}

This suggests one can solve the Plateau problem in N.
Let Γ be a smooth Jordan curve of N that is null homotopic in N. Then Γ lifts to \mathbb{H}^{3}, to a smooth Jordan curve $\tilde{\Gamma}$.

Let \tilde{D} be a disk solution to the Plateau problem of Γ in N, \tilde{D} is an immersed minimal disk with boundary $\tilde{\Gamma}$, that minimizes area.
The projection of $\tilde{\Gamma}$ to N is a solution to the Plateau problem for Γ

Existence of properly embedded minimal surfaces in N^{3}

Theorem N contains a properly embedded minimal surfaces Σ of finite topology. Σ is incompressible and stable.

Questions
Does N contain an embedded closed minimal surface Σ, i.e., compact and with empty boundary ?

Existence of properly embedded minimal surfaces in N^{3}

Theorem N contains a properly embedded minimal surfaces Σ of finite topology. Σ is incompressible and stable.

Questions
Does N contain an embedded closed minimal surface Σ, i.e., compact and with empty boundary ?

Is there an infinite genus Σ in N, embedded and minimal?

Idea of the proof

N is homeomorphic to the complement of a non trivial link in \mathbb{S}^{3}. The link bounds a compact orientable embedded surface S in \mathbb{S}^{3}, S incompressible.

Think of S as properly embedded in N.

Idea of the proof

N is homeomorphic to the complement of a non trivial link in \mathbb{S}^{3}. The link bounds a compact orientable embedded surface S in \mathbb{S}^{3}, S incompressible.
Think of S as properly embedded in N.
Each part of S entering a cusp end of N is a disk or annulus since S is incompressible

Idea of the proof

N is homeomorphic to the complement of a non trivial link in \mathbb{S}^{3}. The link bounds a compact orientable embedded surface S in \mathbb{S}^{3}, S incompressible.
Think of S as properly embedded in N.
Each part of S entering a cusp end of N is a disk or annulus since S is incompressible

Let E_{1}, \ldots, E_{m} be the cusp-ends of N, each E_{j} foliated by the constant mean curvature one tori $\left\{\mathbb{T}^{j}(s), 0 \leq s<\infty\right\}$.

Idea of the proof

N is homeomorphic to the complement of a non trivial link in \mathbb{S}^{3}. The link bounds a compact orientable embedded surface S in \mathbb{S}^{3}, S incompressible.
Think of S as properly embedded in N.
Each part of S entering a cusp end of N is a disk or annulus since S is incompressible

Let E_{1}, \ldots, E_{m} be the cusp-ends of N, each E_{j} foliated by the constant mean curvature one tori $\left\{\mathbb{T}^{j}(s), 0 \leq s<\infty\right\}$.

For each $n>1$, let $M(n)$ be the thick part of N bounded by $\cup_{j=1}^{m} T^{j}(n)$.

Existence of properly embedded minimal surfaces in N^{3}

Isotop S to a surface \tilde{S}_{n} such that \tilde{S}_{n} meets each $T^{j}(n)$ transversally, in one Jordan curve, and the complement in
\tilde{S}_{n} of $\tilde{S}_{n} \cap M(n)$ consists of m annuli : $\mathbb{S}^{1} \times[0, \infty)$

Existence of properly embedded minimal surfaces in N^{3}

Change the hyperbolic metric of $N(n)$ in a neighborhood of $\partial M(n)$ so that ∂M_{n} becomes mean convex, and the metric of $M(n)$ is unchanged at points a distance greater than $1 / 2$ from $\partial M(n)$.

Existence of properly embedded minimal surfaces in N^{3}

Change the hyperbolic metric of $N(n)$ in a neighborhood of $\partial M(n)$ so that ∂M_{n} becomes mean convex, and the metric of $M(n)$ is unchanged at points a distance greater than $1 / 2$ from $\partial M(n)$.

Now minimize the area of \tilde{S}_{n} in its isotopy class, with $\partial \tilde{S}_{n}$ fixed. This yields a minimal surface $\tilde{\Sigma}_{n}$ in $M(n)$.

Existence of properly embedded minimal surfaces in N^{3}

Change the hyperbolic metric of $N(n)$ in a neighborhood of $\partial M(n)$ so that ∂M_{n} becomes mean convex, and the metric of $M(n)$ is unchanged at points a distance greater than $1 / 2$ from $\partial M(n)$.

Now minimize the area of \tilde{S}_{n} in its isotopy class, with $\partial \tilde{S}_{n}$ fixed. This yields a minimal surface $\tilde{\Sigma}_{n}$ in $M(n)$.

Using the fact that the $T^{j}(s)$ are shrinking exponentially as $s \rightarrow \infty$, and curvature bounds for stable surfaces (such curvature bounds do not require positive injectivity radius of the ambient space (Rosenberg,Souam, Toubiana), we can nrove •

Existence of properly embedded minimal surfaces in N^{3}

Proposition: As $n \rightarrow \infty$, a subsequence of the Σ_{n}, in the region bounded by $T^{j}(n-2)$ and $T^{j}(n-1)$ converges to a union of flat annuli $\gamma_{\ell} \times[n-2, n-1]$, where the γ_{ℓ} are disjoint compact geodesics of T^{j}.

Existence of properly embedded minimal surfaces in N^{3}

Proposition : As $n \rightarrow \infty$, a subsequence of the Σ_{n}, in the region bounded by $T^{j}(n-2)$ and $T^{j}(n-1)$ converges to a union of flat annuli $\gamma_{\ell} \times[n-2, n-1]$, where the γ_{ℓ} are disjoint compact geodesics of T^{j}.

Thus for n large, we have a section of $\tilde{\Sigma}_{n}$ as in figure :

Existence of properly embedded minimal surfaces in N^{3}

The sequence of minimal surfaces Σ_{n} have uniformly bounded curvature and area so a subsequence converges to a properly embedded minimal surface Σ.

Existence of properly embedded minimal surfaces in N^{3}

The sequence of minimal surfaces Σ_{n} have uniformly bounded curvature and area so a subsequence converges to a properly embedded minimal surface Σ.
Σ may not have the same topology as S. The compact annuli bounded by $\alpha_{i} \cup \alpha_{j}$ may escape to infinity as $n \rightarrow \infty$ to become non compact. Σ is stable, hence has bounded curvaure. Thus, by the bounded curvature theorem, Σ has finite topoogy.

Idea of the proof of the Rigidity Theorem

Let $n(p)$ be the mean curvature vector of $T \subset N$, at $p \in T$. Define

$$
\begin{aligned}
& \phi: T \times \mathbb{R}^{+} \rightarrow N \\
& \phi(p, t)=\exp _{p}(\operatorname{tn}(p))
\end{aligned}
$$

and $\epsilon_{0}=\sup \{\epsilon>0 ; \phi$ is an immersion on $T \times[0, \epsilon)\}$.
Pull back the metric of N to $T \times\left[0, t_{0}\right)$

$$
d \sigma^{2}=d t^{2}+d \sigma_{t}^{2}
$$

Idea of the proof of the Rigidity Theorem

Let $T(t)=T \times\{t\}=$ the equidistance to $T(0)$ and $H(p, t)=$ the mean curvature of $T(t)$ at (p, t).

Let λ satisfy $H+\lambda$ and $H-\lambda$ are the principal curvatures of $T(t)$ at (p, t).

Then the Gauss equation and Gauss Bonnet

$$
0=\int_{T(t)} \tilde{K}(t)=\int_{T(t)} H^{2}-\lambda^{2}+K_{t}, K_{t}=K_{\text {sect }}
$$

Since $K_{t} \leq 1, \Longrightarrow$

$$
\int_{T(t)} \lambda^{2}=\int_{T(t)} H^{2}+K_{t} \leq \int_{T(t)} H^{2}-|T(t)|
$$

Idea of the proof of the Rigidity Theorem

Let $F(t)=\int_{T(t)} H^{2}-|T(t)|$, so $F(0)=0$ and $F(t) \geq 0, t \geq 0$.
Calculate

$$
F^{\prime}(t)=\int_{T(t)}\left(2 H \frac{\partial H}{\partial t}-2 H^{3}\right)+\int_{T(t)} 2 H=\int_{T(t)} H\left(\operatorname{Ric}\left(\frac{\partial}{\partial t}+2\right)+2 \lambda^{2}\right)
$$

$H(p, 0)=1$ so there exists $t \in\left(0, \epsilon_{0}\right)$, and $C>0$, such that
$0<H \leq C$ on $T \times[0, \epsilon]$.

Idea of the proof of the Rigidity Theorem

$\operatorname{Ricci}\left(\partial_{t}\right)+2 \leq 0$, so

$$
F^{\prime}(t) \leq \int_{T(t)} 2 H \lambda^{2} \leq 2 C F(t)
$$

Hence $F(t) \leq F(0) e^{2 C t}$ for $t \in[0, \epsilon], \Rightarrow F(t)=0$ for $t \in[0, t]$.
Then $\lambda=0$ and the $T(t)$ are umbilical, and $\operatorname{Ricci}\left(\partial_{t}\right)=-2$ since $H>0$.

So H satisfies $\frac{\partial H}{\partial t}=-2+2 H^{2}, \Rightarrow H=1$ on $T \times[0, \epsilon]$.

Idea of the proof of the Rigidity Theorem

Let $\epsilon \rightarrow \epsilon_{0} ; \Longrightarrow \operatorname{Ric}\left(\partial_{t}\right)=-2$ and $H=1$ on $T \times\left[0, t_{0}\right]$.
Since $0=\int_{T(t)}\left(H^{2}+K_{\text {sect }}(t)\right), \Longrightarrow K_{\text {sect }}=-1$.
$\Longrightarrow d \sigma_{0}$ is flat and $d \sigma_{t}^{2}=e^{-2 t} d \sigma_{0}^{2}$,
$\Longrightarrow \phi: T \times \mathbb{R}^{+} \rightarrow$ hyperbolic cusp, is an immersion and a local isometry.

One proves ϕ is injective.

Gracias

