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Notation

N denotes a complete, non compact, hyperbolic
3-manifold of finite volume

M denotes a complete hyperbolic surface of finite area ;
also non compact

M × S1 the product metric space

We will discuss properly immersed minimal surfaces in
such N and M × S1



Ends of N

Ends E of N can be parametrized by

{(x, y, t) ∈ R3; y ≥ y0 > 0}/Γ

Metric in N : g = dx2+dy2+dt2

y2

Γ=group generated by two linearly independent
translations of the (x, ., t) plane.

E = ∪y≤y0T(y)

T(y)= CMC-1 tori quotient of the horosphere by Γ.

This end E of N is called a hyperbolic cusp end.



Ends of M × S1

Ends E∗ of M × S1 can be parametrized by

{(x, y, t) ∈ R3; y ≥ y0 > 0}/Γ

Metric in M × S1 : g = dx2+dy2

y2 + dt2

Γ=group generated by two linearly independent
translations of the (x, ., t) plane of the form

(x, y, t)→ (x, y, t + h) and (x, y, t)→ (x + λ, y, t)

E∗ = ∪y≤y0T(y)

T(y)= CMC-1/2 tori quotient of the horosphere by Γ.



Remarks

If L is a line at infinity {y = 0}, and P = L× [y0,∞) then P
is a totally geodesic (cusp) end in E and P is a minimal
surface in E∗.

P is totally geodesic in E∗ only when L is horizontal or
vertical.

P is vertical at infinity (as y→∞) in E∗.



FINITE TOTAL CURVATURE THEOREM
(Collin,Hauswirth, -)

A finite topology properly immersed orientable minimal
surface Σ in N, or in M × S1, has finite total curvature
equal to 2πχ(Σ).

Moreover, the ends of Σ are asymptotic to standard ends :
In N there is one standard end (a cusp), and in M × S1

there are three standard ends

1 A horizontal end= (a cusp end of M)×{point},
2 A vertical end=(a geodesic ray of M)×S1,
3 A helicoidal end with axis at infinity.



RIGIDITY THEOREM (Mazet, -)

Let X be a complete Riemannian 3-manifold with sectional
curvature KX ≤ −1. Let T be a constant mean curvature
one torus embedded in X. Then T separates X and its
mean convex side is isometric to a hyperbolic cusp E.

Mazet and I proved more, inspired by an (unpublished)
result of Calabi.

If S2 is given a metric of curvature between 0 and 1 and γ
is a simple closed geodesic of S2, then the length of γ is at
least 2π.

Calabi proved that when the length is 2π (on a complete
surface M with curvature between 0 and 1) then M is
isometric to the unit sphere or to S1 × R.



RIGIDITY THEOREM (Mazet, -)

We proved that if M is a complete 3-manifold of sectional
curvature between 0 and 1 and Σ is a minimal embedded
2-sphere in M, then the area of Σ is at least 4π.

If the area equals 4π then M is isometric to the unit 3-
sphere or to a quotient of S2 × R by the group of
isometries

(p, t)→ (α(p), t + t0)

α an isometry of S2, t0 6= 0.



Some Introductary Remarks

The existence of closed orientable incompressible
surfaces in a 3-manifold is a great help in understanding
the manifold.

Haken used incompressible surfaces in closed irreducible
3-manifolds (now called Haken manifolds) to determine
knot and link invariants.



Some Introductary Remarks

The existence of closed orientable incompressible
surfaces in a 3-manifold is a great help in understanding
the manifold.

Haken used incompressible surfaces in closed irreducible
3-manifolds (now called Haken manifolds) to determine
knot and link invariants.

It was thought that all irreducible 3-manifolds were Haken
manifolds, (with the exception of some Seifert fibrations),
until Thurston discovered many hyperbolic link
complements, which (after performing Dehn surgery)
contained no incompressible surfaces.
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Some Introductary Remarks

This encouraged considerable research on totally
geodesic surfaces in hyperbolic manifolds. Here are some
(of many) theorems on totally geodesic submainifolds.

John Milson : He constructed infinitely many closed
hyperbolic n-manifolds, n ≥ 3, that have embedded totally
geodesic hypersurfaces.

Alan Reid : There are infinitely many hyperbolic knot
complements that contain no closed totally geodesic
surfaces and do contain non compact such surfaces.

Gordon, Litherhand : The complement of the figure eight
contains many closed totally geodesic surfaces. There is
no embedded example.



Some Introductary Remarks

The reason there is no embedded such surface, is that a
closed embedded essential surface (incompressible and
not boundary parallel) in N, implies any cyclic branched
cover is Haken. For the figure eight knot the double
branch cover is a Lens Space, which has finite
fundamental group.
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geodesic embedding of the 3-punctured sphere.



Some Introductary Remarks

The reason there is no embedded such surface, is that a
closed embedded essential surface (incompressible and
not boundary parallel) in N, implies any cyclic branched
cover is Haken. For the figure eight knot the double
branch cover is a Lens Space, which has finite
fundamental group.

C. Adams : An incompressible proper embedding of a
3-punctured sphere in N is isotopic to a proper totally
geodesic embedding of the 3-punctured sphere.

Perspective : Understand minimal surface theory in
hyperbolic 3-manifolds.
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Applications of the Finite Total Curvature
Theorem

The theorem, together with the Gauss equation, gives
topological obstructions for the existence of proper
minimal immersions of prescribed topology in N or in
M × S1 :

•A plane R2 can not be so realized in N or in M × S1,

•An annulus S1 × R can not be realized in N. If Σ is a
properly immersed minimal annulus in M × S1, then
Σ = γ × S1, γ a complete geodesic of M.



Applications of the Finite Total Cuvature
Theorem

More generally, suppose Σ is an orientable surface of
genus g with n punctures. Then if Σ can be properly
immersed in N or M × S1 as a minimal surface, we have∫

Σ

KΣ = 2π(2− 2g− n) =

∫
Σ

Kext +

∫
Σ

Ksect



Applications of the Finite Total Cuvature
Theorem

More generally, suppose Σ is an orientable surface of
genus g with n punctures. Then if Σ can be properly
immersed in N or M × S1 as a minimal surface, we have∫

Σ

KΣ = 2π(2− 2g− n) =

∫
Σ

Kext +

∫
Σ

Ksect

Since Kext ≤ 0 and

−1 ≤ Ksect ≤ 0 in M × S1

Ksect = −1 in N

we have
2− 2g− n ≤ 0

and equality⇐⇒ Kext = Ksect = 0.

Hence equality never occurs in N and occurs in M × S1

when Σ = γ × S1, γ a geodesic of M.



Applications of the Finite Total Cuvature
Theorem

In N, we obtain an area estimate :

|Σ| =
∫

Σ

Kext + 2π(2g + n− 2) ≤ 2π(2g + n− 2)

and equality means Σ is totally geodesic.

Question : When do such totally geodesic surfaces exist ?

When N is the complement of the figure eight knot, with a
complete hyperbolic metric of finite volume, then there is
no totally geodesic closed embedded surface.



Existence results

Theorem : There is a properly embedded minimal surface
Σ in N of finite topology. Σ is incompressible and stable.

Questions : Can an embedded incompressible surface in
N be isotoped to an area minimizing surface ? In
particular, can one find a once punctured embedded
minimal torus in the complement of the figure eight knot ?

Is there a compact embedded minimal surface in any N ?



Existence results

Theorem : There is a properly embedded minimal surface
Σ in N of finite topology. Σ is incompressible and stable.

Questions : Can an embedded incompressible surface in
N be isotoped to an area minimizing surface ? In
particular, can one find a once punctured embedded
minimal torus in the complement of the figure eight knot ?

Is there a compact embedded minimal surface in any N ?

Remark Thurston proved there are compact hyperbolic
3-manifolds that contain no incompressible surface.



Bounded curvature and Stable surfaces

Theorem : (C.-H.-R. + Laurent Mazet) Let Σ be a properly
embedded minimal surface in N of bounded curvature.
Then Σ has finite topology.

Corollary A properly embedded stable minimal surface in
N has finite topology (hence finite total curvature)

Question : Does a properly embedded stable surface in
M × S1, of bounded curvature, have finite topology ?

In M × S1 we have many examples of properly embedded
minimal surfaces, including many stable ones as above
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Examples in M × S1

We describe two examples in M × S1 and then examples
in N.

1. The simplest complete hyperbolic surface is a
3-punctured sphere. It has a unique complete hyperbolic
metric of area π, and any other such surface has area
greater than π.

Let M be the complete hyperbolic 3-punctured sphere.
We will realize M in the unit disc model of H2.

Σ will be an embedded minimal surface in M × S1 with
three ends ; two helicoidal and the other horizontal.



Examples in M × S1

The domains and notation we now introduce will be used
in all the examples we describe.
Let Γ be the ideal triangle in the disk model of H2 with
vertices A = (0, 1),B = (0,−1),C = (−1, 0) and sides
a, b, c as indicated in figure1.



b

D

A

C

B

a

c

FIGURE: Ideal triangle (ABC) in H2



Examples in M × S1

Let Σ, be the minimal graph over the domain D bounded
by Γ, taking the values 0 on b and c and h > 0 on a.

Extend Σ, to an entire minimal graph Σ̃ over H2 by rotation
by π in all the sides of Γ, and the sides of the triangles
thus obtained.

In figure 2, we indicate some of the reflected triangles and
the values of the graph Σ̃ on their sides.
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FIGURE: Value of the graph Σ̃ on geodesics



Examples in M × S1

Let D be the domain bounded by Γ. Let ψA be the
parabolic isometry with fixed point A which takes the
geodesic c to c1 and a to a1 ; ψA = Rc1Ra, where Rγ denotes
reflection in the geodesic γ.

Let ψB be the parabolic isometry of H2 leaving B fixed,
taking b to b1 and a to c2 ; ψB = Rb1Ra.

Notice that the group of isometries of H2 × R, generated
by T(2h) ◦ ψA and T(2h) ◦ ψB, leaves Σ̃ invariant.



Examples in M × S1

The quotient of this graph by the group yields a minimal
surface Σ embedded in M × (R/T(2h)).

Here M is the 3-punctured sphere obtained by identifying
the sides of D ∪ Ra(D) by ψA, ψB (c with c1, b with b1). M is
hyperbolic and has finite area.

Σ is a 3-punctured sphere with 3-ends ; two helicoidal and
the other horizontal.

Σ has total curvature −2π and is stable : (Σ is transverse
to the killing field ∂/∂t).



Example 2 in M × S1

A helicoid with one helicoidal end in M × S1, M a once
punctured torus.

The surface Σ will be topologically the connected sum of
a 2-torus and projective plane, punctured in one point.

M is the once punctured torus obtained from the ideal
quadrilateral Q1 in H2, with 4 vertices (± 1√

2
,± 1√

2
) by

identifying opposite sides.

Let S be the third quadrant of Q1 :
S = {(x, y) ∈ Q1; x ≤ 0, y ≤ 0}. For h > 0, let Σ1 be the
minimal graph over S with boundary values indicated in
figure 3.



Σ1

2h
Σ3

β

0

h

FIGURE: Σ1 be a minimal graph over S



Example 2 in M × S1

Let Σ3 be the reflection of Σ1 through β (cf figure 3) ; Σ3 is
between heights h and 2h and is a graph over the second
quadrant of Q1.

Then rotate Σ1 ∪Σ3 by π through the vertical axis between
(0, 0) and (0, 2h), to obtain Σ2 ∪ Σ4 ; Σ4 is a graph over the
fourth quadrant of Q1. Σ is the union of the four pieces Σ1,
through Σ4, identified along the boundaries as follows.

First we consider identifying opposite sides of Q1 be the
hyperbolic translations sending the opposite side to the
other.



Example 2 in M × S1

Then we can quotient by T(2h) or by T(4h). The first
quotient gives an non orientable surface in M × S1 with
one helicoid type end.

The second gives an orientable surface of total curvature
−8π with two helicoidal type ends (it is a double cover of
the first example). Topologically the first example is the
connected sum of a once punctured torus and a
projective plane. The second surface is 2 punctured
orientable surface of genus two.



Example 2 in M × S1

The reader can see the helicoidal structure of Σ by going
along a horizontal geodesic on Σ at h = 0, from one
puncture to the other. Then spiral up Σ along a helice
going to the horizontal geodesic at height h. Continue
along this geodesic to the other (it’s the same) puncture
and spiral up the helices on Σ to height 2h. If we do this
right, we are back where we started.
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The simplest example N I know of is obtained by
identifying sides of a regular tetrahedron T in H3.



Examples in N

The simplest example N I know of is obtained by
identifying sides of a regular tetrahedron T in H3.

One can think in the Klein model (or in the Poincaré
model) of H3 as the open unit ball. Take T to be a regular
Euclidean tetrahedron with 4 vertices on the unit sphere=
∂∞(H3), and dihedral angle α = π/3.



D=bottom face

A
B

v

w

C=back face



Examples in N

1 Identify the face A with B by rotation about v by 2π/3.
2 Identify C with D by rotation about w by 2π/3.
3 The quotient has one vertex (at infinity), two faces,

and one 3-cell.



Examples in N

1 Identify the face A with B by rotation about v by 2π/3.
2 Identify C with D by rotation about w by 2π/3.
3 The quotient has one vertex (at infinity), two faces,

and one 3-cell.

Along each point of the edge in the quotient, there are 6
faces making an angle π/3. So a neighborhood of the
point is a ball in H3, and the quotient N is a hyperbolic
manifold with one end. The link of the vertex at infinity is a
Klein bottle so N is non orientable.



Examples in N

This manifold N was discovered in 1912 by Giesekind.



Examples in N

This manifold N was discovered in 1912 by Giesekind.

C. Adams proved it has the smallest possible volume
(1.01) among complete hyperbolic 3-manifolds of finite
volume.



Examples in N

The orientable two sheeted covering of N is the
complement of the figure eight knot in S3. This manifold Ñ
was shown to have a hyperbolic structure by Riley and
Jorgensen. It is discussed in detail in the book of
Thurston.



Examples in N

Theorem (Jorgensen) Given V > 0, there are a finite
number of complete, non compact hyperbolic 3-manifolds
Ni with volume ≤ V.

Theorem (Thurston) Any compact hyperbolic 3-manifold
with volume ≤ V, is obtained from one of the Ni above by
hyperbolic Dehn surgery.



Minimal surfaces in N

The simplest example in N is a 3-punctured sphere Σ
defined by the faces of T in the quotient of N.
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Along the edge in N there are six faces meeting at equal
angles π/3, so each face continues smoothly through the
edge to give a totally geodesic immersion Σ.



Minimal surfaces in N

The simplest example in N is a 3-punctured sphere Σ
defined by the faces of T in the quotient of N.

Along the edge in N there are six faces meeting at equal
angles π/3, so each face continues smoothly through the
edge to give a totally geodesic immersion Σ.

Σ is obtained by gluing together the two faces, A and B, C
and D, giving a losange. The edges of this losange are
identified as in the figure which gives a 3-punctured
sphere :

b

a
b

c

c
a



Minimal surfaces in N

Here is a smooth immersion of a Klein bottle punctured in
2 points as a totally geodesic surface.



Minimal surfaces in N

Here is a smooth immersion of a Klein bottle punctured in
2 points as a totally geodesic surface.

For each edge, take the plane of H3 passing through the
bisectrice of the edge and the edge of T opposite to the
first edge

m



Minimal surfaces in N

The union of these 6 planar triangles defines a smooth
totally geodesic immersion in N.



Minimal surfaces in N

The union of these 6 planar triangles defines a smooth
totally geodesic immersion in N.

The six triangles make a hexagon at m with the boundary
identifications indicated in figure

m

a

a

c

c

b

b



Minimal surfaces in N

This is a Klein bottle with a puncture at [bc] and another at
[ab].



Minimal surfaces in N

This is a Klein bottle with a puncture at [bc] and another at
[ab].

Theorem There is no closed embedded totally geodesic
surface in N.
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surface in N (that we know of). I know no embedded
example.
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Minimal surfaces in N
Now I describe the simplest properly immersed minimal
surface in N (that we know of). I know no embedded
example.

Consider the 3 geodesic polygons of the 1-skeleton of T
without the vertices :

C3C1
C2

Notice that rotation by 2π/3 about v sends C1, to C3, and
rotation by 2π/3 about w sends C1 to C2 (and
Rotv(2π/3)(C2) = C1).



Minimal surfaces in N

Each Ck bounds a unique minimal disk Dk in H3

(contained in T) :

D3D1
D2



Minimal surfaces in N

Rotation by π about an edge of T smoothly extends the Di

passing through this edge to the unique Dj 6= Di sharing
this same edge
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Minimal surfaces in N

Rotation by π about an edge of T smoothly extends the Di

passing through this edge to the unique Dj 6= Di sharing
this same edge

Here D1 (in the back tetrahedron) extends to D2. Thus the
3 Di’s give an immersed minimal surface Σ in N.



Existence of properly embedded minimal
surfaces in N3

Suppose M3 is a compact orientable irreducible
Riemannian 3-manifold, ∂M3 6= ∅, and M3 not topologically
a 3-ball.



Existence of properly embedded minimal
surfaces in N3

Suppose M3 is a compact orientable irreducible
Riemannian 3-manifold, ∂M3 6= ∅, and M3 not topologically
a 3-ball.

Then H1(∂M,R)→ H1(M) gives a non zero closed one
form α on M. A surface S dual to α, can be chosen to be
embedded, 2 sided, and incompressible in M and in ∂M.



Existence of properly embedded minimal
surfaces in N3

If ∂M is mean convex then a theorem of Meeks-Yau gives
a least area embedded minimal surface Σ (or a double
cover of) in the isotopy class of S. When ∂S ⊂ ∂M, the
isotopy can be chosen to leave ∂S fixed.
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Existence of properly embedded minimal
surfaces in N3

If ∂M is mean convex then a theorem of Meeks-Yau gives
a least area embedded minimal surface Σ (or a double
cover of) in the isotopy class of S. When ∂S ⊂ ∂M, the
isotopy can be chosen to leave ∂S fixed.

The condition ∂M mean convex guarantees that one can
choose minimizing sequences (for the area of S) that stay
away from ∂M. One can solve the Plateau problem in M.

In the hyperbolic 3-manifold N, large geodesic balls of N
are not mean convex ; when the ball enters deep into a
cusp end, its boundary becomes concave.

Thus sequences of surfaces of decreasing area may go
off to infinity in the ends of N and solving Plateau-type
problems may be difficult.
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An end of N is homeomorphic to T× R+, T a 2-torus, and
the metric is e−2sg0 + ds2, g0 a flat metric on T.
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An end of N is homeomorphic to T× R+, T a 2-torus, and
the metric is e−2sg0 + ds2, g0 a flat metric on T.

The tori T(s) = T× (s) are the quotient of horospheres of
H3 (with the same point at infinity) by 2 independent
parabolic isometries (fixing the point at infinity). Going a
distance s > 0 from T(0), by the geodesic s-flow ; shrinks
lengths on T(0) by e−s.



Existence of properly embedded minimal
surfaces in N3

An end of N is homeomorphic to T× R+, T a 2-torus, and
the metric is e−2sg0 + ds2, g0 a flat metric on T.

The tori T(s) = T× (s) are the quotient of horospheres of
H3 (with the same point at infinity) by 2 independent
parabolic isometries (fixing the point at infinity). Going a
distance s > 0 from T(0), by the geodesic s-flow ; shrinks
lengths on T(0) by e−s.

A small circle C on T(0) of length ` (for the metric g(0))
bounds the infinite cylinder C × [0,∞), whose area equals
`. The disk on T(0) bounded by C has area π`2 ; which is
less than ` for ` << 1.
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This suggests one can solve the Plateau problem in N.

Let Γ be a smooth Jordan curve of N that is null
homotopic in N. Then Γ lifts to H3, to a smooth Jordan
curve Γ̃.

Let D̃ be a disk solution to the Plateau problem of Γ in N,
D̃ is an immersed minimal disk with boundary Γ̃, that
minimizes area.



Existence of properly embedded minimal
surfaces in N3

This suggests one can solve the Plateau problem in N.

Let Γ be a smooth Jordan curve of N that is null
homotopic in N. Then Γ lifts to H3, to a smooth Jordan
curve Γ̃.

Let D̃ be a disk solution to the Plateau problem of Γ in N,
D̃ is an immersed minimal disk with boundary Γ̃, that
minimizes area.

The projection of Γ̃ to N is a solution to the Plateau
problem for Γ



Existence of properly embedded minimal
surfaces in N3

Theorem N contains a properly embedded minimal
surfaces Σ of finite topology. Σ is incompressible and
stable.

Questions

Does N contain an embedded closed minimal surface Σ,
i.e., compact and with empty boundary ?



Existence of properly embedded minimal
surfaces in N3

Theorem N contains a properly embedded minimal
surfaces Σ of finite topology. Σ is incompressible and
stable.

Questions

Does N contain an embedded closed minimal surface Σ,
i.e., compact and with empty boundary ?

Is there an infinite genus Σ in N, embedded and minimal ?
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N is homeomorphic to the complement of a non trivial link
in S3. The link bounds a compact orientable embedded
surface S in S3, S incompressible.

Think of S as properly embedded in N.
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Idea of the proof

N is homeomorphic to the complement of a non trivial link
in S3. The link bounds a compact orientable embedded
surface S in S3, S incompressible.

Think of S as properly embedded in N.

Each part of S entering a cusp end of N is a disk or
annulus since S is incompressible

Let E1, ...,Em be the cusp-ends of N, each Ej foliated by
the constant mean curvature one tori {Tj(s), 0 ≤ s <∞}.

For each n > 1, let M(n) be the thick part of N bounded by
∪m

j=1T j(n).



Existence of properly embedded minimal
surfaces in N3

Isotop S to a surface S̃n such that S̃n meets each T j(n)
transversally, in one Jordan curve, and the complement in
S̃n of S̃n ∩M(n) consists of m annuli : S1 × [0,∞)

T j(n)

Sn

Tk(0)

T j(0)



Existence of properly embedded minimal
surfaces in N3

Change the hyperbolic metric of N(n) in a neighborhood
of ∂M(n) so that ∂Mn becomes mean convex, and the
metric of M(n) is unchanged at points a distance greater
than 1/2 from ∂M(n).



Existence of properly embedded minimal
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Existence of properly embedded minimal
surfaces in N3

Change the hyperbolic metric of N(n) in a neighborhood
of ∂M(n) so that ∂Mn becomes mean convex, and the
metric of M(n) is unchanged at points a distance greater
than 1/2 from ∂M(n).

Now minimize the area of S̃n in its isotopy class, with ∂S̃n

fixed. This yields a minimal surface Σ̃n in M(n).

Using the fact that the T j(s) are shrinking exponentially as
s→∞, and curvature bounds for stable surfaces (such
curvature bounds do not require positive injectivity radius
of the ambient space (Rosenberg,Souam, Toubiana), we
can prove :



Existence of properly embedded minimal
surfaces in N3

Proposition : As n→∞, a subsequence of the Σn, in the
region bounded by T j(n− 2) and T j(n− 1) converges to a
union of flat annuli γ` × [n− 2, n− 1], where the γ` are
disjoint compact geodesics of T j.



Existence of properly embedded minimal
surfaces in N3

Proposition : As n→∞, a subsequence of the Σn, in the
region bounded by T j(n− 2) and T j(n− 1) converges to a
union of flat annuli γ` × [n− 2, n− 1], where the γ` are
disjoint compact geodesics of T j.

Thus for n large, we have a section of Σ̃n as in figure :

∂Sn

αi

αj

α`

T j(n− 2) T j(n− 1) T j(n)



Existence of properly embedded minimal
surfaces in N3

The sequence of minimal surfaces Σn have uniformly
bounded curvature and area so a subsequence
converges to a properly embedded minimal surface Σ.



Existence of properly embedded minimal
surfaces in N3

The sequence of minimal surfaces Σn have uniformly
bounded curvature and area so a subsequence
converges to a properly embedded minimal surface Σ.

Σ may not have the same topology as S. The compact
annuli bounded by αi ∪ αj may escape to infinity as n→∞
to become non compact. Σ is stable, hence has bounded
curvaure. Thus, by the bounded curvature theorem, Σ has
finite topoogy.



Idea of the proof of the Rigidity Theorem

Let n(p) be the mean curvature vector of T ⊂ N, at p ∈ T.
Define

φ : T × R+ → N
φ(p, t) = expp(tn(p))

and ε0 = sup{ε > 0;φ is an immersion on T × [0, ε)}.

Pull back the metric of N to T × [0, t0)

dσ2 = dt2 + dσ2
t .



Idea of the proof of the Rigidity Theorem

Let T(t) = T × {t}=the equidistance to T(0) and
H(p, t)=the mean curvature of T(t) at (p, t).

Let λ satisfy H + λ and H − λ are the principal curvatures
of T(t) at (p, t).

Then the Gauss equation and Gauss Bonnet

0 =

∫
T(t)

K̃(t) =

∫
T(t)

H2 − λ2 + Kt, Kt = Ksect

Since Kt ≤ 1,=⇒∫
T(t)

λ2 =

∫
T(t)

H2 + Kt ≤
∫

T(t)
H2 − |T(t)|



Idea of the proof of the Rigidity Theorem

Let F(t) =
∫

T(t) H2 − |T(t)|, so F(0) = 0 and F(t) ≥ 0, t ≥ 0.

Calculate

F′(t) =
∫

T(t)(2H ∂H
∂t −2H3)+

∫
T(t) 2H =

∫
T(t) H(Ric( ∂

∂t +2)+2λ2)

H(p, 0) = 1 so there exists t ∈ (0, ε0), and C > 0, such that

0 < H ≤ C on T × [0, ε].



Idea of the proof of the Rigidity Theorem

Ricci(∂t) + 2 ≤ 0, so

F′(t) ≤
∫

T(t)
2Hλ2 ≤ 2CF(t).

Hence F(t) ≤ F(0)e2Ct for t ∈ [0, ε],⇒ F(t) = 0 for t ∈ [0, t].

Then λ = 0 and the T(t) are umbilical, and Ricci(∂t) = −2
since H > 0.

So H satisfies ∂H
∂t = −2 + 2H2,⇒ H = 1 on T × [0, ε].



Idea of the proof of the Rigidity Theorem

Let ε→ ε0 ; =⇒ Ric(∂t) = −2 and H = 1 on T × [0, t0].

Since 0 =
∫

T(t)(H2 + Ksect(t)),=⇒ Ksect = −1.

=⇒ dσ0 is flat and dσ2
t = e−2tdσ2

0,

=⇒ φ : T × R+ → hyperbolic cusp, is an immersion and a
local isometry.

One proves φ is injective.



Gracias


