Scalar conformal differential invariants

Ignacio Sánchez Rodríguez

Department of Geometry and Topology : Geometry Seminar

at the Institute of Mathematics of the University of Granada (IEMath-GR)

Granada (Spain), 27th October 2017

Presentation

I will expose a collection of scalar conformal differential invariants, which, to my knowledge, has been no discussed up to now.

We will take the following steps:

- Define the concept of conformal invariant that we are going to consider.
- Prove the existence of a distinguishing metric g' in the class [g] of a generic conformal structure.
- Show that metric invariants of g' of r-order are conformal invariants of [g] of (r + 2)-order
- For some well-known spacetimes, I have calculated the scalar curvature of g', which turns out a fourth order scalar conformal invariant of [g] and we could call the *conformal scalar curvature* (CSC). We will compare it with usual metric scalars.

Introduction

It is not true that in a conformal class of (pseudo-)Riemannian metrics there is no preferred metric.

In March 1921 Einstein wrote (Berliner Bericht, 1921, 261–264):

If we put $g'_{\mu\nu} = Jg_{\mu\nu}$ [J given next] then $d\sigma^2 = g'_{\mu\nu}dx_{\mu}dx_{\nu}$ is an invariant that depends only upon the ratios of the $g_{\mu\nu}$ [the conformal class]. All Riemann tensors formed as fundamental invariants from $d\sigma$ in the customary manner are—when seen as functions of the $g_{\mu\nu}$ —Weyl tensors of weight 0 [conformally invariant]. . . . Therefore, to every law of nature T(g) = 0 of the general theory of relativity, there corresponds a law T(g') = 0, which contains only the ratios of the $g_{\mu\nu}$.

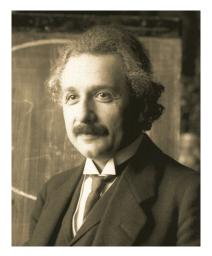
Einstein proposed to add $J = J_0$ (constant) to the field equations of GR:

Our only intention was to point out a logical possibility that is worthy of publication; it may be useful for physics or not.

No one followed this idea, nor Einstein himself!

・ロン ・回 と ・ ヨ と ・ ヨ

Albert Einstein



Albert Einstein during a lecture in Vienna in 1921.

https://commons.wikimedia.org/wiki/File:Einstein1921_by_F_Schmutzer_2.jpg

Ignacio Sánchez Rodríguez

Scalar conformal invariants

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Bundle of G-structures

- Let G ⊂ Gl_n be closed. The bundle M_G of G-structures on M: associated to the linear frame bundle LM ≡ F¹M, with fiber ^{Gl_n}/_G. Local sections of M_G correspond to local G-structures on M.
- Bundle M_{O_n} of metrics on $M : O_n =$ orthogonal group of signature (p, q). There is a diffeomorphism between G_{l_n}/O_n and the symmetric invertible matrices of signature (p, q). A metric g of M corresponds to a section of $\sigma_g : M \to M_{O_n}$ given in coordinates by the matrix (g_{ij}) .
- Bundle M_{C_n} of conformal structures : $C_n = \mathbb{R}^+ \cdot O_n$, conformal orthogonal group of signature (p, q). There is a diffeomorphism between G_{l_n}/C_n and the symmetric invertible matrices of signature (p, q) and absolute value of its determinant one. A conformal structure [g] on M corresponds to a section $\sigma_{[g]}: M \to M_{C_n}$, given in coordinates by $(c_{ij}) = |\det(g_{ij})|^{-1/n}(g_{ij})$.
- The bundle M'_G of *r*-jets of local sections of M_G is associated to $F^{r+1}M$, with fiber $(\mathbb{R}^n_G)^r_0 \equiv J^r_0(\mathbb{R}^n, G^{l_n}/G)$ of *r*-jets at 0 of maps of \mathbb{R}^n to G^{l_n}/G . The *r*-frame bundle F^rM (of *r*-jets at 0 of inverses of charts of *M*) is a principal bundle with the group G^r_n (of *r*-jets at 0 of diffeomorphisms of \mathbb{R}^n fixing 0).

Ignacio Sánchez Rodríguez

Invariants of G-structures

A paradigm : The scalar curvature $R_g \colon M \to \mathbb{R}$ is an invariant because:

 $R_{\varphi^*g} = R_g \circ \varphi$, for any local diffeomorphism φ of M. (1)

But $R_g(m)$ is made from the 2-jet of g at $m \in M$, then it defines the function:

$$R\colon M^2_{O_n}\to\mathbb{R},\quad R(j^2_m\sigma_g):=R_g(m); \tag{2}$$

and the property (1) becomes:

$$\boldsymbol{R} \circ \widehat{\varphi}^2 = \boldsymbol{R}, \quad \forall \, \varphi, \tag{3}$$

with $\hat{\varphi}^2$ being the case r = 2 of the action of φ on M_G^r given by:

$$\widehat{\varphi}^{r} \colon M_{G}^{r} \to M_{G}^{r}, \quad j_{\rho}^{r} \sigma \mapsto j_{\varphi(\rho)}^{r} (\bar{\varphi} \circ \sigma \circ \varphi^{-1}), \tag{4}$$

with $\bar{\varphi}$ the lifting of φ to M_G . Following (2) and (3) as model, we define:

Definition

An scalar invariant of *r*-order of *G*-structures on *M* is a function $f: M'_G \to \mathbb{R}$ verifying $f \circ \hat{\varphi}^r = f$, for any local diffeomorphism φ of *M*.

Ignacio Sánchez Rodríguez

Distinctive metric of a generic conformal structure

A tensor T on M, obtained from the r-jet of g by an specific formula, is said *conformally invariant* if, $\forall \bar{g} \in [g]$, T is equal to the tensor \bar{T} obtained from the r-jet of \bar{g} by the same formula.

- The conformal curvature or Weyl tensor C^{i}_{ikl} is conformally invariant.
- The square of the Weyl tensor, $H = C_{ijkl}C^{ijkl}$, is not conformally invariant because it depends of the metric g used to raising and lowering indices.

A conformal structure [g] will be called *generic* if $H(m) \neq 0$, $\forall m \in M$. The following theorem assert that a generic conformal structure owns a distinctive metric.

Theorem

Let [g] be a generic conformal structure on M. The metric $g' := Jg \in [g]$, where $J = |H|^{1/2}$, do not depends of the metric g in the class of [g].

Note that the theorem is of local character and can be formulated in a neighborhood of a generic point.

Ignacio Sánchez Rodríguez

・ロ・・ (日・・ 日・・ 日・・

Distinctive metric of a generic conformal structure

Demostration

$$\mathcal{H}=\mathcal{C}_{ijkl}\mathcal{C}^{ijkl}=g_{ia}\mathcal{C}^{a}_{jkl}\mathcal{C}^{i}_{bcd}g^{bj}g^{ck}g^{dl}.$$

If we change g by $\bar{g} = \alpha g$ then $\bar{g}_{ij} = \alpha g_{ij}$ and $\bar{g}^{ij} = \alpha^{-1} g^{ij}$. Using that Weyl tensor is conformally invariant: $\bar{C}^{i}_{ikl} = C^{i}_{ikl}$, we obtain:

$$\bar{H} = \bar{C}_{ijkl}\bar{C}^{ijkl} = \bar{g}_{ia}C^{a}_{jkl}C^{i}_{bcd}\bar{g}^{bj}\bar{g}^{ck}\bar{g}^{dl} = \alpha^{-2}H.$$

Taking absolute values and square roots, we obtain $\bar{J} = \alpha^{-1}J$. Finally, we get the result:

$$g' := Jg = \alpha^{-1} J\alpha g = \bar{J}\bar{g}.$$

Furthermore, the scalar J' corresponding to g' is constant one, hence we can say that the distinctive metric of a generic conformal class is the only metric that normalizes to ± 1 the square of the Weyl tensor.

Ignacio	Sánchez	z Rodríguez
---------	---------	-------------

Theorem

To each scalar metric invariant of r-order on M corresponds an scalar conformal invariant of (r + 2)-order on M.

(Sketch of the proof:) Because *J* is made from the partial derivatives up to second order of the metric *g* of *M*, the well-defined map between conformal structures and metrics, given by $[g] \mapsto g' = Jg$, depends of the 2-jet of the components c_{ij} that characterize [g]. Then, it can be show that the map between conformal structures and metrics induces, for successive order *r*, the maps

$$\Gamma: M^{r+2}_{C_n} \longrightarrow M^r_{O_n}, \qquad j^{r+2}_m \sigma_{[g]} \longmapsto j^r_m \sigma_{g'},$$

which is equivariant by diffeomorphisms. The result easily follows.

In particular, the scalar curvature of the metric g', which is a second order invariant, turns out to be a conformal invariant of fourth order that we call the *conformal scalar curvature (CSC)* of [g].

Conformal scalar curvature

- I have calculated, for several spacetime metrics g, the scalar curvature of the distinctive metric g' of [g]; I mean the CSC of [g]. To do this I used the package xAct xCoba for the Mathematica software program.
- In the Table below, we can compare the scalar curvature, R_g, and the Kretschmann scalar, K_g, with the CSC of [g], denoted by S_[g].

Metrics	R_{g}	Kg	$S_{[g]}$	
Schwarzschild	0	$\frac{48M^2}{r^6}$	$\frac{9\sqrt{3}}{4}(1-\frac{r}{6M})$	
Reissner-Nordstrøm	0	$\frac{8(7q^4 - 12Mq^2r + 6M^2r^2)}{r^8}$	$\frac{9\sqrt{3}}{8}(1-\frac{r}{3M}+\frac{q^2}{3M^2})$	
Gödel	$-\frac{1}{a^2}$	$\frac{3}{a^4}$	$-\frac{\sqrt{3}}{2}$	
Barriola-Vilenkin	$\frac{2-k^2}{k^2r^2}$	$\frac{4(k+1)^2(k-1)^2}{k^4r^4}$	$-\sqrt{3}$	

Table: Scalar invariants of some spacetimes

Ignacio		

As a conclusion: further research

- Einstein proposed the natural addition of the differential equation $J = J_0$ (constant), free of genericity conditions, to the field equations of General Relativity. What solutions of the field equations of GR verify $J = J_0 \neq 0$?
- The so-called Weyl gravity theory (or conformal gravity) is governed by the Lagrangian $H\Omega_g$, with Ω_g being the volume form of g. In four dimensions, $\Omega_{g'} = H\Omega_g$; what does this mean for that theory?
- The CSC of Schwarzschild spacetime is 0 when r = 6M which is the radius of the *innermost stable circular orbit* (ISCO), the smallest stable orbit that exists for a test particle around a massive object. Could be related CSC with ISCO?
- The question about uniqueness: What other factors *J* can be made from *g* and its derivatives such that *Jg* is a distinctive metric of the conformal class [*g*]?

・ロット (母) ・ ヨ) ・ ヨ)

References

A. Einstein,

Uber eine naheliegende Ergänzung des Fundamentes der allgemeinen Relativitätstheorie, Berl. Ber. 1921, (1921) 261–264.

B. Kruglikov, Conformal differential invariants. J. Geom. Phys. 113 (2017), 170–175.

I. Sánchez-Rodríguez, An approach to differential invariants of G-structures, http://arxiv.org/abs/1709.02382

I. Sánchez-Rodríguez, Scalar conformal invariants of weight zero, http://arxiv.org/abs/1709.06798v2

H. J. Treder.

Conform Invariance and Mach's Principle in Cosmology, Found. Phys. 22 (1992), 1089–1093.

・ロト ・同ト ・ヨト ・ヨト