Hypersurfaces with prescribed curvature in warped products

Jorge H. S. Lira
Universidade Federal do Ceará
Fortaleza - Brazil

Seminario de Geometria
Universidad de Granada, 2012

Problems

- Dirichlet problems for the prescribed mean curvature equation

Problems

- Dirichlet problems for the prescribed mean curvature equation

Problems

- Dirichlet problems for the prescribed mean curvature equation
- Evolution of graphs by mean curvature flow under Neumann boundary conditions

Problems

- Dirichlet problems for the prescribed mean curvature equation
- Evolution of graphs by mean curvature flow under Neumann boundary conditions

Extension to higher order mean curvatures and anisotropic mean curvature

Problems

- Dirichlet problems for the prescribed mean curvature equation
- Evolution of graphs by mean curvature flow under Neumann boundary conditions
- Extension to higher order mean curvatures and anisotropic mean curvature

Further developments

Problems

- Dirichlet problems for the prescribed mean curvature equation
- Evolution of graphs by mean curvature flow under Neumann boundary conditions
- Extension to higher order mean curvatures and anisotropic mean curvature
- Further developments

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold \bar{M}^{n+1}.

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold \bar{M}^{n+1}.

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold \bar{M}^{n+1}.

Thus, there exists a function $\varrho \in \mathcal{C}^{\infty}(\bar{M})$ such that

$$
\begin{equation*}
\mathcal{L}_{Y} \bar{g}=2 \varrho \bar{g}, \tag{1}
\end{equation*}
$$

where \bar{g} is the metric in \bar{M}^{n+1}.

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold \bar{M}^{n+1}.

Thus, there exists a function $\varrho \in \mathcal{C}^{\infty}(\bar{M})$ such that

$$
\begin{equation*}
\mathcal{L}_{Y} \bar{g}=2 \varrho \bar{g}, \tag{1}
\end{equation*}
$$

where \bar{g} is the metric in \bar{M}^{n+1}.
From this we deduce the conformal Killing equation

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold \bar{M}^{n+1}.

Thus, there exists a function $\varrho \in \mathcal{C}^{\infty}(\bar{M})$ such that

$$
\begin{equation*}
\mathcal{L}_{Y} \bar{g}=2 \varrho \bar{g}, \tag{1}
\end{equation*}
$$

where \bar{g} is the metric in \bar{M}^{n+1}.
From this we deduce the conformal Killing equation

$$
\begin{equation*}
\left\langle\bar{\nabla}_{X} Y, Z\right\rangle+\left\langle\bar{\nabla}_{Z} Y, X\right\rangle=2 \varrho\langle X, Z\rangle, \quad X, Z \in \Gamma(T \bar{M}) \tag{2}
\end{equation*}
$$

Killing graphs

We suppose for a while that the associated orthogonal distribution \mathcal{D} is integrable.

Killing graphs

We suppose for a while that the associated orthogonal distribution \mathcal{D} is integrable.

Let

$$
\Phi: \mathbb{I} \times M^{n} \rightarrow \bar{M}^{n+1}, \quad \mathbb{I}=(-\infty, a>0)
$$

be the flow generated by Y,

Killing graphs

We suppose for a while that the associated orthogonal distribution \mathcal{D} is integrable.

Let

$$
\Phi: \mathbb{I} \times M^{n} \rightarrow \bar{M}^{n+1}, \quad \mathbb{I}=(-\infty, a>0)
$$

be the flow generated by Y, where M^{n} is an arbitrarily fixed integral leaf of \mathcal{D} labeled as $t=0$.

Killing graphs

We suppose for a while that the associated orthogonal distribution \mathcal{D} is integrable.

Let

$$
\Phi: \mathbb{I} \times M^{n} \rightarrow \bar{M}^{n+1}, \quad \mathbb{I}=(-\infty, a>0)
$$

be the flow generated by Y, where M^{n} is an arbitrarily fixed integral leaf of \mathcal{D} labeled as $t=0$.

The Killing graph Σ of a function u defined on the closure of a $C^{2, \alpha}$ bounded domain Ω in M^{n} is the hypersurface

Killing graphs

We suppose for a while that the associated orthogonal distribution \mathcal{D} is integrable.

Let

$$
\Phi: \mathbb{I} \times M^{n} \rightarrow \bar{M}^{n+1}, \quad \mathbb{I}=(-\infty, a>0)
$$

be the flow generated by Y, where M^{n} is an arbitrarily fixed integral leaf of \mathcal{D} labeled as $t=0$.

The Killing graph Σ of a function u defined on the closure of a $C^{2, \alpha}$ bounded domain Ω in M^{n} is the hypersurface

$$
\begin{equation*}
\Sigma=\{\Phi(u(x), x): x \in \bar{\Omega}\} . \tag{3}
\end{equation*}
$$

Killing graphs

We suppose for a while that the associated orthogonal distribution \mathcal{D} is integrable.

Let

$$
\Phi: \mathbb{I} \times M^{n} \rightarrow \bar{M}^{n+1}, \quad \mathbb{I}=(-\infty, a>0)
$$

be the flow generated by Y, where M^{n} is an arbitrarily fixed integral leaf of \mathcal{D} labeled as $t=0$.

The Killing graph Σ of a function u defined on the closure of a $C^{2, \alpha}$ bounded domain Ω in M^{n} is the hypersurface

$$
\begin{equation*}
\Sigma=\{\Phi(u(x), x): x \in \bar{\Omega}\} . \tag{3}
\end{equation*}
$$

Killing graphs

Proving the existence of a conformal Killing graph with prescribed mean curvature and boundary requires establishing a priori estimates.

Killing graphs

Proving the existence of a conformal Killing graph with prescribed mean curvature and boundary requires establishing a priori estimates.

This is accomplished by the use of Killing cylinders as barriers.

Killing graphs

Proving the existence of a conformal Killing graph with prescribed mean curvature and boundary requires establishing a priori estimates.

This is accomplished by the use of Killing cylinders as barriers.
The Killing cylinder K over $\Gamma=\partial \Omega$ is the hypersurface ruled by the flow lines of Y through Γ, that is,

$$
\begin{equation*}
K=\{\Phi(t, x): x \in \Gamma\} . \tag{4}
\end{equation*}
$$

Geometric facts

Since $\Phi_{t}=\Phi(t, \cdot)$ is a conformal map for any fixed $t \in \mathbb{I}$, there is a positive function $\lambda \in \mathcal{C}^{\infty}(\mathbb{I} \times M)$ such that $\lambda(0, \cdot)=1$ and

$$
\Phi_{t}^{*} \bar{g}=\lambda^{2}(t, \cdot) \bar{g} .
$$

Geometric facts

Since $\Phi_{t}=\Phi(t, \cdot)$ is a conformal map for any fixed $t \in \mathbb{I}$, there is a positive function $\lambda \in \mathcal{C}^{\infty}(\mathbb{I} \times M)$ such that $\lambda(0, \cdot)=1$ and

$$
\Phi_{t}^{*} \bar{g}=\lambda^{2}(t, \cdot) \bar{g} .
$$

We may verify that

Geometric facts

Since $\Phi_{t}=\Phi(t, \cdot)$ is a conformal map for any fixed $t \in \mathbb{I}$, there is a positive function $\lambda \in \mathcal{C}^{\infty}(\mathbb{I} \times M)$ such that $\lambda(0, \cdot)=1$ and

$$
\Phi_{t}^{*} \bar{g}=\lambda^{2}(t, \cdot) \bar{g} .
$$

We may verify that

$$
\begin{equation*}
\varrho=\frac{\lambda_{t}}{\lambda} . \tag{5}
\end{equation*}
$$

Geometric facts

Since $\Phi_{t}=\Phi(t, \cdot)$ is a conformal map for any fixed $t \in \mathbb{I}$, there is a positive function $\lambda \in \mathcal{C}^{\infty}(\mathbb{I} \times M)$ such that $\lambda(0, \cdot)=1$ and

$$
\Phi_{t}^{*} \bar{g}=\lambda^{2}(t, \cdot) \bar{g} .
$$

We may verify that

$$
\begin{equation*}
\varrho=\frac{\lambda_{t}}{\lambda} . \tag{5}
\end{equation*}
$$

One also proves that the integral leaves of \mathcal{D} are totally umbilical hypersurfaces with principal curvatures $k=-\frac{\lambda_{t}}{\lambda^{2}} \sqrt{\gamma}$.

Geometric facts

Since $\Phi_{t}=\Phi(t, \cdot)$ is a conformal map for any fixed $t \in \mathbb{I}$, there is a positive function $\lambda \in \mathcal{C}^{\infty}(\mathbb{I} \times M)$ such that $\lambda(0, \cdot)=1$ and

$$
\Phi_{t}^{*} \bar{g}=\lambda^{2}(t, \cdot) \bar{g} .
$$

We may verify that

$$
\begin{equation*}
\varrho=\frac{\lambda_{t}}{\lambda} . \tag{5}
\end{equation*}
$$

One also proves that the integral leaves of \mathcal{D} are totally umbilical hypersurfaces with principal curvatures $k=-\frac{\lambda_{t}}{\lambda^{2}} \sqrt{\gamma}$.

If in addition Y is closed, then these leaves are spherical hypersurfaces, i.e., they have constant mean curvature.

Graphs with prescribed curvature

Examples

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

$$
\begin{equation*}
\rho^{2}(x) d t^{2}+\sigma_{i j}(x) d x^{i} d x^{j}, \quad x \in M \tag{6}
\end{equation*}
$$

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

$$
\begin{equation*}
\rho^{2}(x) d t^{2}+\sigma_{i j}(x) d x^{i} d x^{j}, \quad x \in M \tag{6}
\end{equation*}
$$

that is, $\bar{M}=M \times{ }_{\rho} \mathbb{I}$.

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

$$
\begin{equation*}
\rho^{2}(x) d t^{2}+\sigma_{i j}(x) d x^{i} d x^{j}, \quad x \in M \tag{6}
\end{equation*}
$$

that is, $\bar{M}=M \times{ }_{\rho} \mathbb{I}$.

- For instance, constant sectional curvature metrics may be expressed as

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

$$
\begin{equation*}
\rho^{2}(x) d t^{2}+\sigma_{i j}(x) d x^{i} d x^{j}, \quad x \in M \tag{6}
\end{equation*}
$$

that is, $\bar{M}=M \times{ }_{\rho} \mathbb{I}$.

- For instance, constant sectional curvature metrics may be expressed as

$$
\begin{equation*}
\rho^{2}(r) d t^{2}+d r^{2}+\chi^{2}(r) d \sigma^{2} \tag{7}
\end{equation*}
$$

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

$$
\begin{equation*}
\rho^{2}(x) d t^{2}+\sigma_{i j}(x) d x^{i} d x^{j}, \quad x \in M, \tag{6}
\end{equation*}
$$

that is, $\bar{M}=M \times{ }_{\rho} \mathbb{I}$.

- For instance, constant sectional curvature metrics may be expressed as

$$
\begin{equation*}
\rho^{2}(r) d t^{2}+d r^{2}+\chi^{2}(r) d \sigma^{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(r)=\operatorname{cs}_{\kappa}(r), \quad \chi(r)=\operatorname{sn}_{\kappa}(r) . \tag{8}
\end{equation*}
$$

Examples

- Killing vector fields: static metrics. In this case the leaves are totally geodesic and the ambient metric may be written as

$$
\begin{equation*}
\rho^{2}(x) d t^{2}+\sigma_{i j}(x) d x^{i} d x^{j}, \quad x \in M, \tag{6}
\end{equation*}
$$

that is, $\bar{M}=M \times{ }_{\rho} \mathbb{I}$.

- For instance, constant sectional curvature metrics may be expressed as

$$
\begin{equation*}
\rho^{2}(r) d t^{2}+d r^{2}+\chi^{2}(r) d \sigma^{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(r)=\operatorname{cs}_{\kappa}(r), \quad \chi(r)=\operatorname{sn}_{\kappa}(r) . \tag{8}
\end{equation*}
$$

Graphs with prescribed curvature

Examples

Examples

- Riemannian products $M \times \mathbb{R}$. In this case, $Y=\frac{\partial}{\partial t}$ is a parallel vector field.

Examples

- Riemannian products $M \times \mathbb{R}$. In this case, $Y=\frac{\partial}{\partial t}$ is a parallel vector field.
- Warped products $\mathbb{R} \times{ }_{\chi} M$. Here, the vector field $Y=\chi \frac{\partial}{\partial t}$ is a closed conformal Killing vector field.

Examples

- Riemannian products $M \times \mathbb{R}$. In this case, $Y=\frac{\partial}{\partial t}$ is a parallel vector field.
- Warped products $\mathbb{R} \times{ }_{\chi} M$. Here, the vector field $Y=\chi \frac{\partial}{\partial t}$ is a closed conformal Killing vector field.
- Space forms. This time, we may represent constant curvature metrics as warped metrics of the form

Examples

- Riemannian products $M \times \mathbb{R}$. In this case, $Y=\frac{\partial}{\partial t}$ is a parallel vector field.
- Warped products $\mathbb{R} \times_{\chi} M$. Here, the vector field $Y=\chi \frac{\partial}{\partial t}$ is a closed conformal Killing vector field.
- Space forms. This time, we may represent constant curvature metrics as warped metrics of the form

$$
\begin{equation*}
d t^{2}+\chi^{2}(t) d \sigma^{2} \tag{9}
\end{equation*}
$$

Examples

- Riemannian products $M \times \mathbb{R}$. In this case, $Y=\frac{\partial}{\partial t}$ is a parallel vector field.
- Warped products $\mathbb{R} \times_{\chi} M$. Here, the vector field $Y=\chi \frac{\partial}{\partial t}$ is a closed conformal Killing vector field.
- Space forms. This time, we may represent constant curvature metrics as warped metrics of the form

$$
\begin{equation*}
d t^{2}+\chi^{2}(t) d \sigma^{2} \tag{9}
\end{equation*}
$$

where $\chi(t)=\mathrm{sn}_{\kappa}(t)$.

Existence results

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).
- Radial graphs in \mathbb{R}^{n+1} : graphs over domains in open hemispheres of \mathbb{S}^{n}.

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).
- Radial graphs in \mathbb{R}^{n+1} : graphs over domains in open hemispheres of \mathbb{S}^{n}. Contributions by R. Finn, Serrin and more recently R. López (2010) and Caldiroli and Gullino (2012).

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).
- Radial graphs in \mathbb{R}^{n+1} : graphs over domains in open hemispheres of \mathbb{S}^{n}. Contributions by R. Finn, Serrin and more recently R. López (2010) and Caldiroli and Gullino (2012).
- Normal graphs in \mathbb{H}^{n+1} : graphs over domains in horospheres. López and Montiel, 1999.

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).
- Radial graphs in \mathbb{R}^{n+1} : graphs over domains in open hemispheres of \mathbb{S}^{n}. Contributions by R. Finn, Serrin and more recently R. López (2010) and Caldiroli and Gullino (2012).
- Normal graphs in \mathbb{H}^{n+1} : graphs over domains in horospheres. López and Montiel, 1999. We also mention Nelli and Spruck (1996) and Guan and Spruck (2000) for asymptotic boundary data problems.

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).
- Radial graphs in \mathbb{R}^{n+1} : graphs over domains in open hemispheres of \mathbb{S}^{n}. Contributions by R. Finn, Serrin and more recently R. López (2010) and Caldiroli and Gullino (2012).
- Normal graphs in \mathbb{H}^{n+1} : graphs over domains in horospheres. López and Montiel, 1999. We also mention Nelli and Spruck (1996) and Guan and Spruck (2000) for asymptotic boundary data problems.
- Graphs over totally geodesic hyperplanes: P.-A. Nitsche, 2002. The author considers a $\mathbb{H}^{n} \times \mathbb{R}$ model for \mathbb{H}^{n+1}.

Existence results

- Normal graphs in \mathbb{R}^{n+1} : graphs over domains in a hyperplane: classical result by Serrin (1969).
- Radial graphs in \mathbb{R}^{n+1} : graphs over domains in open hemispheres of \mathbb{S}^{n}. Contributions by R. Finn, Serrin and more recently R. López (2010) and Caldiroli and Gullino (2012).
- Normal graphs in \mathbb{H}^{n+1} : graphs over domains in horospheres. López and Montiel, 1999. We also mention Nelli and Spruck (1996) and Guan and Spruck (2000) for asymptotic boundary data problems.
- Graphs over totally geodesic hyperplanes: P.-A. Nitsche, 2002. The author considers a $\mathbb{H}^{n} \times \mathbb{R}$ model for \mathbb{H}^{n+1}.

Existence results

- Normal graphs in \mathbb{H}^{n+1} : normal graphs over domains in an open hemisphere of a geodesic sphere in \mathbb{H}^{n+1}. L. (2003)

Existence results

- Normal graphs in \mathbb{H}^{n+1} : normal graphs over domains in an open hemisphere of a geodesic sphere in \mathbb{H}^{n+1}. L. (2003)
- Normal graphs over domains in totally geodesic hyperplanes along horocycles in \mathbb{H}^{n+1} were also considered by Barbosa and Earp (1998) and Earp and Guio (2005)

Existence results

- Normal graphs in \mathbb{H}^{n+1} : normal graphs over domains in an open hemisphere of a geodesic sphere in \mathbb{H}^{n+1}. L. (2003)
- Normal graphs over domains in totally geodesic hyperplanes along horocycles in \mathbb{H}^{n+1} were also considered by Barbosa and Earp (1998) and Earp and Guio (2005)
- We also mention general existence results due to Dajczer and Ripoll (JGA, 2005) and Dajczer and Alías (JDG, 2007).

Existence results

- Normal graphs in \mathbb{H}^{n+1} : normal graphs over domains in an open hemisphere of a geodesic sphere in \mathbb{H}^{n+1}. L. (2003)
- Normal graphs over domains in totally geodesic hyperplanes along horocycles in \mathbb{H}^{n+1} were also considered by Barbosa and Earp (1998) and Earp and Guio (2005)
- We also mention general existence results due to Dajczer and Ripoll (JGA, 2005) and Dajczer and Alías (JDG, 2007).

Killing graphs: Riemannian submersions

Killing graphs: Riemannian submersions

In the more general setting of a Riemannian submersion $\pi: \bar{M} \rightarrow M$ with $\pi_{*} Y=0$,

Killing graphs: Riemannian submersions

In the more general setting of a Riemannian submersion $\pi: \bar{M} \rightarrow M$ with $\pi_{*} Y=0$, when the distribution \mathcal{D} is not necessarily integrable, we proved

Killing graphs: Riemannian submersions

In the more general setting of a Riemannian submersion $\pi: \bar{M} \rightarrow M$ with $\pi_{*} Y=0$, when the distribution \mathcal{D} is not necessarily integrable, we proved

Theorem (Dajczer, -, Annales de l'IHP, 2009)

Let $\Omega \subset M^{n}$ be a bounded domain with $\mathcal{C}^{2, \alpha}$ boundary Γ. Assume that $H_{K} \geq 0$ and

$$
\operatorname{Ric}_{\bar{M}} \geq-n \inf _{\Gamma} H_{K}^{2}
$$

Let $H \in \mathcal{C}^{\alpha}(\bar{\Omega})$ and $\phi \in \mathcal{C}^{2, \alpha}(\Gamma)$ be given. Assume that there exists a $\mathcal{C}^{2, \alpha}$ immersion $\iota: \bar{\Omega} \rightarrow \bar{M}$ transverse to the vertical fibers in $\pi^{-1}(\bar{\Omega})$. If

$$
|H| \leq \inf _{\Gamma} H_{K},
$$

then there exists a unique function $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega})$ satisfying $\left.u\right|_{\Gamma}=\phi$ whose graph has mean curvature function H.

Graphs with prescribed curvature

Examples

Examples

- Heisenberg spaces \mathbb{H}_{n}.

Examples

- Heisenberg spaces \mathbb{H}_{n}.
- Graphs in odd-dimensional spheres, even when endowed with Berger metrics.

Examples

- Heisenberg spaces \mathbb{H}_{n}.
- Graphs in odd-dimensional spheres, even when endowed with Berger metrics.
- Helicoidal graphs in Euclidean space, an interesting case treated earlier in

Examples

- Heisenberg spaces \mathbb{H}_{n}.
- Graphs in odd-dimensional spheres, even when endowed with Berger metrics.
- Helicoidal graphs in Euclidean space, an interesting case treated earlier in

Dajczer and Lira, Helicoidal graphs with prescribed mean curvature, Proc. AMS 137, 7, 2009.

Examples

- Heisenberg spaces \mathbb{H}_{n}.
- Graphs in odd-dimensional spheres, even when endowed with Berger metrics.
- Helicoidal graphs in Euclidean space, an interesting case treated earlier in

Dajczer and Lira, Helicoidal graphs with prescribed mean curvature, Proc. AMS 137, 7, 2009.

- For proving the theorem above, we use a method of obtaining interior estimates due to Korevaar, based on comparing graphical and normal perturbations of a graph.

Conformal Killing graphs

Conformal Killing graphs

In this case the Riemannian ambient manifold is $\bar{M}^{n+1}=\mathbb{I} \times M^{n}$ endowed with a metric of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\lambda^{2}(t)\left(\rho^{2}(x) \mathrm{d} t^{2}+\sigma_{i j}(x) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right) \tag{10}
\end{equation*}
$$

Conformal Killing graphs

In this case the Riemannian ambient manifold is $\bar{M}^{n+1}=\mathbb{I} \times M^{n}$ endowed with a metric of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\lambda^{2}(t)\left(\rho^{2}(x) \mathrm{d} t^{2}+\sigma_{i j}(x) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho^{2}=\left.\langle Y, Y\rangle\right|_{M} \tag{11}
\end{equation*}
$$

Conformal Killing graphs

In this case the Riemannian ambient manifold is $\bar{M}^{n+1}=\mathbb{I} \times M^{n}$ endowed with a metric of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\lambda^{2}(t)\left(\rho^{2}(x) \mathrm{d} t^{2}+\sigma_{i j}(x) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho^{2}=\left.\langle Y, Y\rangle\right|_{M} \tag{11}
\end{equation*}
$$

The graph Σ has prescribed mean curvature H if and only if u satisfies

Conformal Killing graphs

In this case the Riemannian ambient manifold is $\bar{M}^{n+1}=\mathbb{I} \times M^{n}$ endowed with a metric of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=\lambda^{2}(t)\left(\rho^{2}(x) \mathrm{d} t^{2}+\sigma_{i j}(x) \mathrm{d} x^{i} \mathrm{~d} x^{j}\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho^{2}=\left.\langle Y, Y\rangle\right|_{M} \tag{11}
\end{equation*}
$$

The graph Σ has prescribed mean curvature H if and only if u satisfies

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{\gamma+|\nabla u|^{2}}}\right)-\frac{1}{\sqrt{\gamma+|\nabla u|^{2}}}\left(\frac{\langle\nabla \gamma, \nabla u\rangle}{2 \gamma}+\frac{n \gamma \lambda_{t}}{\lambda}\right)-n \lambda H=0,
$$

where the divergence and gradient are taken in M^{n} and $\gamma=\rho^{-2}$.

Local geometry of the graphs

Indeed the induced metric in Σ has local components

$$
\begin{equation*}
g_{i j}=\lambda^{2}(u)\left(\sigma_{i j}+\frac{1}{\gamma} u^{i} u^{j}\right) \tag{12}
\end{equation*}
$$

Local geometry of the graphs

Indeed the induced metric in Σ has local components

$$
\begin{equation*}
g_{i j}=\lambda^{2}(u)\left(\sigma_{i j}+\frac{1}{\gamma} u^{i} u^{j}\right) \tag{12}
\end{equation*}
$$

The second fundamental form is locally expressed by

$$
\begin{equation*}
a_{i j}=\frac{u_{i ; j}}{W}-\frac{u_{i}}{W} \frac{\gamma_{j}}{2 \gamma}-\frac{u_{j}}{W} \frac{\gamma_{i}}{2 \gamma}-\frac{u_{i} u_{j}}{2 W} u^{k} \frac{\gamma_{k}}{\gamma^{2}}-\frac{\lambda_{t}}{\lambda} u_{i} u_{j}-\frac{\lambda_{t}}{\lambda} \gamma \sigma_{i j} \tag{13}
\end{equation*}
$$

Local geometry of the graphs

Indeed the induced metric in Σ has local components

$$
\begin{equation*}
g_{i j}=\lambda^{2}(u)\left(\sigma_{i j}+\frac{1}{\gamma} u^{i} u^{j}\right) \tag{12}
\end{equation*}
$$

The second fundamental form is locally expressed by

$$
\begin{equation*}
a_{i j}=\frac{u_{i, j}}{W}-\frac{u_{i}}{W} \frac{\gamma_{j}}{2 \gamma}-\frac{u_{j}}{W} \frac{\gamma_{i}}{2 \gamma}-\frac{u_{i} u_{j}}{2 W} u^{k} \frac{\gamma_{k}}{\gamma^{2}}-\frac{\lambda_{t}}{\lambda} u_{i} u_{j}-\frac{\lambda_{t}}{\lambda} \gamma \sigma_{i j} \tag{13}
\end{equation*}
$$

Taking traces we deduce the equation above.

Conformal Killing graphs

Conformal Killing graphs

- A sufficient condition to have a maximum principle is

$$
\begin{equation*}
(\lambda H)_{t} \geq 0 \quad \text { and } \quad\left(\lambda_{t} / \lambda\right)_{t}=\varrho_{t} \geq 0 \tag{14}
\end{equation*}
$$

Conformal Killing graphs

- A sufficient condition to have a maximum principle is

$$
\begin{equation*}
(\lambda H)_{t} \geq 0 \quad \text { and } \quad\left(\lambda_{t} / \lambda\right)_{t}=\varrho_{t} \geq 0 \tag{14}
\end{equation*}
$$

- If we assume that $H=H(x)$, the first condition says that that the mean curvature of the leaves and of the graph have opposite signs.

Conformal Killing graphs

- A sufficient condition to have a maximum principle is

$$
\begin{equation*}
(\lambda H)_{t} \geq 0 \quad \text { and } \quad\left(\lambda_{t} / \lambda\right)_{t}=\varrho_{t} \geq 0 \tag{14}
\end{equation*}
$$

- If we assume that $H=H(x)$, the first condition says that that the mean curvature of the leaves and of the graph have opposite signs.
- If the leaves are mean convex, that is, if $\lambda_{t} \geq 0$, then we fix $H \geq 0$.

Conformal Killing graphs

- A sufficient condition to have a maximum principle is

$$
\begin{equation*}
(\lambda H)_{t} \geq 0 \quad \text { and } \quad\left(\lambda_{t} / \lambda\right)_{t}=\varrho_{t} \geq 0 \tag{14}
\end{equation*}
$$

- If we assume that $H=H(x)$, the first condition says that that the mean curvature of the leaves and of the graph have opposite signs.
- If the leaves are mean convex, that is, if $\lambda_{t} \geq 0$, then we fix $H \geq 0$.
- The second condition is related to the growing rate of the mean curvature of the leaves.

Existence results

Theorem (Dajczer, -, JGA, 2012)

Let $\Omega \subset M^{n}$ be a $\mathcal{C}^{2, \alpha}$ bounded domain such that

$$
\operatorname{Ric}_{\bar{M}}^{\mathrm{rad}} \geq-n \inf _{\Gamma} H_{K}^{2} .
$$

Assume $\lambda_{t} \geq 0$ and $\left(\lambda_{t} / \lambda\right)_{t} \geq 0$. Let $H \in \mathcal{C}^{\alpha}(\Omega)$ and $\phi \in \mathcal{C}^{2, \alpha}(\Gamma)$ be such that

$$
\inf _{\Gamma} H_{K}>H \geq 0
$$

and $\phi \leq 0$. Then, there exists a unique function $u \in \mathcal{C}^{2, \alpha}(\bar{\Omega})$ whose conformal Killing graph has mean curvature function H and boundary data ϕ.

Existence results

- A conformal Killing field is closed if

$$
\left\langle\bar{\nabla}_{X} Y, Z\right\rangle=\varrho\langle X, Z\rangle
$$

for all $X, Z \in T \bar{M}$.

Existence results

- A conformal Killing field is closed if

$$
\left\langle\bar{\nabla}_{X} Y, Z\right\rangle=\varrho\langle X, Z\rangle
$$

for all $X, Z \in T \bar{M}$.

Corollary

When the conformal Killing field Y is closed the result holds with the assumption on the Ricci curvature replaced by

$$
n \operatorname{Ric}_{M}^{\mathrm{rad}} \geq-(n-1)^{2} \inf _{\Gamma} H_{\Gamma}^{2}
$$

Moreover, if Y is a Killing field we may assume

$$
\inf _{\Gamma} H_{K} \geq H
$$

Existence results

Existence results

Let Ω_{0} denote the largest open subset of points of Ω that can be joined to Γ by a unique minimizing geodesic. At points of Ω_{0}, we denote

Existence results

Let Ω_{0} denote the largest open subset of points of Ω that can be joined to Γ by a unique minimizing geodesic. At points of Ω_{0}, we denote

$$
\begin{equation*}
\operatorname{Ric}_{\bar{M}}^{\mathrm{rad}}(x)=\operatorname{Ric}_{\bar{M}}(\eta, \eta) \tag{15}
\end{equation*}
$$

Existence results

Let Ω_{0} denote the largest open subset of points of Ω that can be joined to Γ by a unique minimizing geodesic. At points of Ω_{0}, we denote

$$
\begin{equation*}
\operatorname{Ric}_{\bar{M}}^{\mathrm{rad}}(x)=\operatorname{Ric}_{\bar{M}}(\eta, \eta), \tag{15}
\end{equation*}
$$

where $\eta \in T_{x} M$ is an unit vector tangent to the unique minimizing geodesic from $x \in \Omega_{0}$ to Γ.

Existence results

Let Ω_{0} denote the largest open subset of points of Ω that can be joined to Γ by a unique minimizing geodesic. At points of Ω_{0}, we denote

$$
\begin{equation*}
\operatorname{Ric}_{\bar{M}}^{\mathrm{rad}}(x)=\operatorname{Ric}_{\bar{M}}(\eta, \eta), \tag{15}
\end{equation*}
$$

where $\eta \in T_{x} M$ is an unit vector tangent to the unique minimizing geodesic from $x \in \Omega_{0}$ to Γ.

It was shown by Y.-Y. Li and L. Nirenberg (2005) that the distance function $d(x)=\operatorname{dist}(x, \Gamma)$ in Ω_{0} has the same regularity as Γ.

Existence results

Let Γ_{ϵ} and K_{ϵ} be level sets $d=\epsilon$ in M^{n} and \bar{M}^{n+1}, respectively.

Existence results

Let Γ_{ϵ} and K_{ϵ} be level sets $d=\epsilon$ in M^{n} and \bar{M}^{n+1}, respectively. By $H_{K_{\epsilon}}$ we denote the mean curvature of the Killing cylinder K_{ϵ} over Γ_{ϵ}.

Existence results

Let Γ_{ϵ} and K_{ϵ} be level sets $d=\epsilon$ in M^{n} and \bar{M}^{n+1}, respectively.
By $H_{K_{\epsilon}}$ we denote the mean curvature of the Killing cylinder K_{ϵ} over Γ_{ϵ}. The hypothesis on Ricci assures that Riccati's equation yields the "nice" behavior for $H_{K_{\epsilon}}$:

Existence results

Let Γ_{ϵ} and K_{ϵ} be level sets $d=\epsilon$ in M^{n} and \bar{M}^{n+1}, respectively.
By $H_{K_{\epsilon}}$ we denote the mean curvature of the Killing cylinder K_{ϵ} over Γ_{ϵ}.
The hypothesis on Ricci assures that Riccati's equation yields the "nice" behavior for $H_{K_{\epsilon}}$:

Proposition

Assume that the Ricci curvature tensor of \bar{M}^{n+1} satisfies

$$
\inf _{\Omega_{0}} \operatorname{Ric}_{\bar{M}}^{\mathrm{rad}} \geq-n \inf _{\Gamma} H_{K}^{2}
$$

Then, $\left.H_{K_{\epsilon}}\right|_{x_{0}} \geq\left. H_{K}\right|_{y_{0}}$ if $y_{0} \in \Gamma$ is the closest point to $x_{0} \in \Gamma_{\epsilon} \subset \Omega_{0}$.

Existence results

- The statements may be rewritten in terms of the Ricci curvature of the leaf M using the following relation

$$
\begin{equation*}
\operatorname{Ric}_{\bar{M}}(\eta, \eta)+k^{\prime}+n k^{2}=\operatorname{Ric}_{M}(\eta, \eta)+\eta(\kappa)+\kappa^{2} \tag{16}
\end{equation*}
$$

Existence results

- The statements may be rewritten in terms of the Ricci curvature of the leaf M using the following relation

$$
\begin{equation*}
\operatorname{Ric}_{\bar{M}}(\eta, \eta)+k^{\prime}+n k^{2}=\operatorname{Ric}_{M}(\eta, \eta)+\eta(\kappa)+\kappa^{2} \tag{16}
\end{equation*}
$$

Existence results

- The statements may be rewritten in terms of the Ricci curvature of the leaf M using the following relation

$$
\begin{equation*}
\operatorname{Ric}_{\bar{M}}(\eta, \eta)+k^{\prime}+n k^{2}=\operatorname{Ric}_{M}(\eta, \eta)+\eta(\kappa)+\kappa^{2} \tag{16}
\end{equation*}
$$

- Since

$$
\begin{equation*}
n H_{K}=\kappa+\frac{n-1}{\lambda} H_{\Gamma} \tag{17}
\end{equation*}
$$

the mean convexity of the cylinder does not necessarily imply the mean convexity of the boundary of the domain.

Proof of the results

We apply the well-known continuity method to the family parametrized by $\tau \in[0,1]$ of Dirichlet problems

$$
\left\{\begin{array}{l}
\mathcal{Q}_{\tau}[u]=0, \\
\left.u\right|_{\Gamma}=\tau \phi
\end{array}\right.
$$

where
$\mathcal{Q}_{\tau}[u]=\operatorname{div}\left(\frac{\nabla u}{\sqrt{\gamma+|\nabla u|^{2}}}\right)-\frac{\langle\nabla \gamma, \nabla u\rangle}{2 \gamma \sqrt{\gamma+|\nabla u|^{2}}}-\tau\left(\frac{n \gamma \rho}{\sqrt{\gamma+|\nabla u|^{2}}}+n \lambda H\right)$.

Proof of the results

We apply the well-known continuity method to the family parametrized by $\tau \in[0,1]$ of Dirichlet problems

$$
\left\{\begin{array}{l}
\mathcal{Q}_{\tau}[u]=0 \\
\left.u\right|_{\Gamma}=\tau \phi
\end{array}\right.
$$

where
$\mathcal{Q}_{\tau}[u]=\operatorname{div}\left(\frac{\nabla u}{\sqrt{\gamma+|\nabla u|^{2}}}\right)-\frac{\langle\nabla \gamma, \nabla u\rangle}{2 \gamma \sqrt{\gamma+|\nabla u|^{2}}}-\tau\left(\frac{n \gamma \rho}{\sqrt{\gamma+|\nabla u|^{2}}}+n \lambda H\right)$.

Let \mathcal{I} be the subset of $[0,1]$ consisting of values of τ for which the Dirichlet problem has a $C^{2, \alpha}$ solution. Then, the proof reduces to show that $\mathcal{I}=[0,1]$.

Proof of the results

- The set \mathcal{I} non-empty since $u=0$ is a solution for $\tau=0$.

Proof of the results

- The set \mathcal{I} non-empty since $u=0$ is a solution for $\tau=0$.
- The set \mathcal{I} of $[0,1]$ consisting of values of τ for which the above Dirichlet problem has a $\mathcal{C}^{2, \alpha}$ solution is open since the maximum principle holds.

Proof of the results

- The set \mathcal{I} non-empty since $u=0$ is a solution for $\tau=0$.
- The set \mathcal{I} of $[0,1]$ consisting of values of τ for which the above Dirichlet problem has a $\mathcal{C}^{2, \alpha}$ solution is open since the maximum principle holds.
- That \mathcal{I} is closed follows from standard theory of quasilinear elliptic differential equations provided we have a priori estimates for solutions.

A priori estimates

A priori estimates

Proposition

There exists a positive constant $C=C(\Omega, H)$ such that

$$
|u|_{0} \leq C+|\phi|_{0}
$$

for any solution u of the Dirichlet problem.

A priori estimates

Proposition

There exists a positive constant $C=C(\Omega, H)$ such that

$$
|u|_{0} \leq C+|\phi|_{0}
$$

for any solution u of the Dirichlet problem.

We construct barriers on Ω_{0} which are subsolutions to the PDE of the form

$$
\varphi(x)=\inf _{\Gamma} \phi+f(d(x))
$$

where $d(x)=\operatorname{dist}(x, \Gamma)$ and

$$
f=\frac{e^{D B}}{D}\left(e^{-D d}-1\right)
$$

where $B>\operatorname{diam}(\Omega)$ and $D>0$ is a constant to be chosen.

A priori estimates

A priori estimates

Proposition

There exists a positive constant $C=C\left(\Omega, H, \phi,|u|_{0}\right)$ such that

$$
\sup _{\Gamma}|\nabla u| \leq C
$$

for any solution u of the Dirichlet problem.

A priori estimates

Proposition

There exists a positive constant $C=C\left(\Omega, H, \phi,|u|_{0}\right)$ such that

$$
\sup _{\Gamma}|\nabla u| \leq C
$$

for any solution u of the Dirichlet problem.

We use barriers defined on a tubular neighborhood Ω_{ϵ} of Γ of the form

$$
f=-A \ln (1+B d)+\phi
$$

where A and B are positive constants.

A priori estimates

A priori estimates

Proposition

There exists a positive constant $C=C\left(\Omega, H, \phi,\left.|\nabla u|_{\Gamma}\right|_{0}\right)$ such that

$$
\sup _{\Omega}|\nabla u| \leq C
$$

for any solution u of the Dirichlet problem.

A priori estimates

Proposition

There exists a positive constant $C=C\left(\Omega, H, \phi,\left.|\nabla u|_{\Gamma}\right|_{0}\right)$ such that

$$
\sup _{\Omega}|\nabla u| \leq C
$$

for any solution u of the Dirichlet problem.

We consider on Σ the function

$$
\chi=e^{2 C u} v,
$$

where $v=|\nabla u|^{2}$.

A priori estimates

Proposition

There exists a positive constant $C=C\left(\Omega, H, \phi,\left.|\nabla u|_{\Gamma}\right|_{0}\right)$ such that

$$
\sup _{\Omega}|\nabla u| \leq C
$$

for any solution u of the Dirichlet problem.

We consider on Σ the function

$$
\chi=e^{2 C u} v,
$$

where $v=|\nabla u|^{2}$.
If χ achieves its maximum on Γ we already have the desired bound. Thus, we may assume that χ attains maximum value at an interior point $x_{0} \in \Omega$ where $|\nabla u| \neq 0$.

A priori estimates

A priori estimates

Then we fix coordinates so that

$$
u_{1}\left(x_{0}\right)=\left|\nabla u\left(x_{0}\right)\right| .
$$

A priori estimates

Then we fix coordinates so that

$$
u_{1}\left(x_{0}\right)=\left|\nabla u\left(x_{0}\right)\right| .
$$

Hence rotating the remaining axis we have

$$
u_{1 ; 1}\left(x_{0}\right)=-K|\nabla u|^{2}, \quad u_{1 ; j}\left(x_{0}\right)=0
$$

A priori estimates

Then we fix coordinates so that

$$
u_{1}\left(x_{0}\right)=\left|\nabla u\left(x_{0}\right)\right| .
$$

Hence rotating the remaining axis we have

$$
u_{1 ; 1}\left(x_{0}\right)=-K|\nabla u|^{2}, \quad u_{1 ; j}\left(x_{0}\right)=0
$$

and $\left(u_{i ; j}\right)_{i, j \geq 2}$ is diagonal at x_{0}.

A priori estimates

Then we fix coordinates so that

$$
u_{1}\left(x_{0}\right)=\left|\nabla u\left(x_{0}\right)\right| .
$$

Hence rotating the remaining axis we have

$$
u_{1 ; 1}\left(x_{0}\right)=-K|\nabla u|^{2}, \quad u_{1 ; j}\left(x_{0}\right)=0
$$

and $\left(u_{i ; j}\right)_{i, j \geq 2}$ is diagonal at x_{0}.
We proceed differentiating both sides of the equation. Contracting the result with the gradient it results that

$$
\begin{equation*}
a^{i j} u^{\prime} u_{i j ; I}-2 K^{2} v^{3}=O\left(v^{2}\right) \tag{18}
\end{equation*}
$$

A priori estimates

Then we fix coordinates so that

$$
u_{1}\left(x_{0}\right)=\left|\nabla u\left(x_{0}\right)\right| .
$$

Hence rotating the remaining axis we have

$$
u_{1 ; 1}\left(x_{0}\right)=-K|\nabla u|^{2}, \quad u_{1 ; j}\left(x_{0}\right)=0
$$

and $\left(u_{i ; j}\right)_{i, j \geq 2}$ is diagonal at x_{0}.
We proceed differentiating both sides of the equation. Contracting the result with the gradient it results that

$$
\begin{equation*}
a^{i j} u^{\prime} u_{i j ; I}-2 K^{2} v^{3}=O\left(v^{2}\right) \tag{18}
\end{equation*}
$$

Interior gradient estimates

On the other hand using the fact that χ has a maximum at x_{0} and the particular choice of coordinates above we have

$$
\begin{equation*}
0 \geq a^{i j} \chi_{i ; j}=a^{i j} u^{l} u_{; i j}+K^{2} \gamma v^{2}+O\left(v^{2}\right) \tag{19}
\end{equation*}
$$

Interior gradient estimates

On the other hand using the fact that χ has a maximum at x_{0} and the particular choice of coordinates above we have

$$
\begin{equation*}
0 \geq a^{i j} \chi_{i ; j}=a^{i j} u^{\prime} u_{; i j}+K^{2} \gamma v^{2}+O\left(v^{2}\right) \tag{19}
\end{equation*}
$$

The third derivatives are ruled out by Ricci commutation formula and we obtain at the end

$$
\begin{aligned}
& \left(K^{2} \gamma-R+C(n, H, \gamma)\right) v^{3}-\left(K^{2} \gamma^{2}+2 R \gamma+C(n, H, \lambda, \gamma)\right) v^{2} \\
& \quad+C(n, H, \lambda, \gamma) v \leq 0 .
\end{aligned}
$$

We conclude that

Interior gradient estimates

On the other hand using the fact that χ has a maximum at x_{0} and the particular choice of coordinates above we have

$$
\begin{equation*}
0 \geq a^{i j} \chi_{i ; j}=a^{i j} u^{\prime} u_{; i j}+K^{2} \gamma v^{2}+O\left(v^{2}\right) \tag{19}
\end{equation*}
$$

The third derivatives are ruled out by Ricci commutation formula and we obtain at the end

$$
\begin{aligned}
& \left(K^{2} \gamma-R+C(n, H, \gamma)\right) v^{3}-\left(K^{2} \gamma^{2}+2 R \gamma+C(n, H, \lambda, \gamma)\right) v^{2} \\
& \quad+C(n, H, \lambda, \gamma) v \leq 0 .
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
|\nabla u|(x) \leq|\nabla u|\left(x_{0}\right) e^{4 K|u|_{0}} . \tag{20}
\end{equation*}
$$

Interior gradient estimates

On the other hand using the fact that χ has a maximum at x_{0} and the particular choice of coordinates above we have

$$
\begin{equation*}
0 \geq a^{i j} \chi_{i ; j}=a^{i j} u^{\prime} u_{; i j}+K^{2} \gamma v^{2}+O\left(v^{2}\right) \tag{19}
\end{equation*}
$$

The third derivatives are ruled out by Ricci commutation formula and we obtain at the end

$$
\begin{aligned}
& \left(K^{2} \gamma-R+C(n, H, \gamma)\right) v^{3}-\left(K^{2} \gamma^{2}+2 R \gamma+C(n, H, \lambda, \gamma)\right) v^{2} \\
& \quad+C(n, H, \lambda, \gamma) v \leq 0 .
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
|\nabla u|(x) \leq|\nabla u|\left(x_{0}\right) e^{4 K|u|_{0}} . \tag{20}
\end{equation*}
$$

Interior gradient estimates

Another strategy is to adapt Korevaar's method of normal perturbations of the graph.

$$
\begin{equation*}
\tilde{p}=\exp _{p} \eta N, \quad p \in \Sigma, \tag{21}
\end{equation*}
$$

for a certain function η to be chosen later.

Interior gradient estimates

Another strategy is to adapt Korevaar's method of normal perturbations of the graph.

$$
\begin{equation*}
\tilde{p}=\exp _{p} \eta N, \quad p \in \Sigma, \tag{21}
\end{equation*}
$$

for a certain function η to be chosen later.

The mean curvature of the perturbed graph (locally given as the graph of a function \tilde{u}) is written as

Interior gradient estimates

Another strategy is to adapt Korevaar's method of normal perturbations of the graph.

$$
\begin{equation*}
\tilde{p}=\exp _{p} \eta N, \quad p \in \Sigma, \tag{21}
\end{equation*}
$$

for a certain function η to be chosen later.

The mean curvature of the perturbed graph (locally given as the graph of a function \tilde{u}) is written as

$$
\begin{equation*}
H(y, \tilde{u}(y))=H(x, u(x))+\epsilon J \eta+O\left(\epsilon^{2}\right) \tag{22}
\end{equation*}
$$

Interior gradient estimates

Another strategy is to adapt Korevaar's method of normal perturbations of the graph.

$$
\begin{equation*}
\tilde{p}=\exp _{p} \eta N, \quad p \in \Sigma, \tag{21}
\end{equation*}
$$

for a certain function η to be chosen later.

The mean curvature of the perturbed graph (locally given as the graph of a function \tilde{u}) is written as

$$
\begin{equation*}
H(y, \tilde{u}(y))=H(x, u(x))+\epsilon J \eta+O\left(\epsilon^{2}\right) \tag{22}
\end{equation*}
$$

whereas the mean curvature of the original graph is expanded as

Interior gradient estimates

Another strategy is to adapt Korevaar's method of normal perturbations of the graph.

$$
\begin{equation*}
\tilde{p}=\exp _{p} \eta N, \quad p \in \Sigma, \tag{21}
\end{equation*}
$$

for a certain function η to be chosen later.

The mean curvature of the perturbed graph (locally given as the graph of a function \tilde{u}) is written as

$$
\begin{equation*}
H(y, \tilde{u}(y))=H(x, u(x))+\epsilon J \eta+O\left(\epsilon^{2}\right) \tag{22}
\end{equation*}
$$

whereas the mean curvature of the original graph is expanded as

$$
\begin{equation*}
H(y, u(y))=H(x, u(x))+\epsilon H_{i} T^{i}+O\left(\epsilon^{2}\right) . \tag{23}
\end{equation*}
$$

Interior gradient estimates

Another strategy is to adapt Korevaar's method of normal perturbations of the graph.

$$
\begin{equation*}
\tilde{p}=\exp _{p} \eta N, \quad p \in \Sigma, \tag{21}
\end{equation*}
$$

for a certain function η to be chosen later.

The mean curvature of the perturbed graph (locally given as the graph of a function \tilde{u}) is written as

$$
\begin{equation*}
H(y, \tilde{u}(y))=H(x, u(x))+\epsilon J \eta+O\left(\epsilon^{2}\right) \tag{22}
\end{equation*}
$$

whereas the mean curvature of the original graph is expanded as

$$
\begin{equation*}
H(y, u(y))=H(x, u(x))+\epsilon H_{i} T^{i}+O\left(\epsilon^{2}\right) . \tag{23}
\end{equation*}
$$

Interior gradient estimates

If a local maximum of $\tilde{u}-u$ is attained at y, then the comparison principle implies that

Interior gradient estimates

If a local maximum of $\tilde{u}-u$ is attained at y, then the comparison principle implies that

$$
H(y, u(y)) \geq H(y, \tilde{u}(y)) .
$$

Prescribed mean curvature

Using this, we get

$$
\Delta_{\Sigma \eta}-M \eta \leq O(\epsilon)
$$

for a positive constant $M>0$ which does not depend on η.

Prescribed mean curvature

Using this, we get

$$
\Delta_{\Sigma} \eta-M \eta \leq O(\epsilon)
$$

for a positive constant $M>0$ which does not depend on η.
Finally, we define

$$
\theta(x, t)=\left(K t+\left(r_{0}^{2}-r^{2}\right)\right)^{+}
$$

for a (small) constant $K>0$ and

Prescribed mean curvature

Using this, we get

$$
\Delta_{\Sigma} \eta-M \eta \leq O(\epsilon)
$$

for a positive constant $M>0$ which does not depend on η.
Finally, we define

$$
\theta(x, t)=\left(K t+\left(r_{0}^{2}-r^{2}\right)\right)^{+}
$$

for a (small) constant $K>0$ and

$$
\eta=g(\theta):=e^{C \theta}-1
$$

for $C \gg 0$.

Prescribed mean curvature

Using this, we get

$$
\Delta_{\Sigma} \eta-M \eta \leq O(\epsilon)
$$

for a positive constant $M>0$ which does not depend on η.
Finally, we define

$$
\theta(x, t)=\left(K t+\left(r_{0}^{2}-r^{2}\right)\right)^{+}
$$

for a (small) constant $K>0$ and

$$
\eta=g(\theta):=e^{C \theta}-1
$$

for $C \gg 0$.
It is clear that $\left(^{*}\right)$ becomes

$$
g^{\prime \prime}\left|\nabla^{\Sigma} \theta\right|^{2}+g^{\prime} \Delta_{\Sigma} \theta-g M \leq O(\epsilon) .
$$

Prescribed mean curvature

Using this, we get

$$
\Delta_{\Sigma} \eta-M \eta \leq O(\epsilon)
$$

for a positive constant $M>0$ which does not depend on η.
Finally, we define

$$
\theta(x, t)=\left(K t+\left(r_{0}^{2}-r^{2}\right)\right)^{+}
$$

for a (small) constant $K>0$ and

$$
\eta=g(\theta):=e^{C \theta}-1
$$

for $C \gg 0$.
It is clear that $\left(^{*}\right)$ becomes

$$
g^{\prime \prime}\left|\nabla^{\Sigma} \theta\right|^{2}+g^{\prime} \Delta_{\Sigma} \theta-g M \leq O(\epsilon) .
$$

Prescribed mean curvature

However, if e denotes the normalized projection of Y in the tangent space of Σ, then

$$
\left\langle\nabla^{\Sigma} \theta, e\right\rangle \geq \frac{\gamma}{W}(K|\nabla u|-\tilde{C}) .
$$

Prescribed mean curvature

However, if e denotes the normalized projection of Y in the tangent space of Σ, then

$$
\left\langle\nabla^{\Sigma} \theta, e\right\rangle \geq \frac{\gamma}{W}(K|\nabla u|-\tilde{C}) .
$$

Thus, we conclude that if

$$
|\nabla u|>\frac{\tilde{C}}{K},
$$

then

$$
\left|\nabla^{\Sigma} \theta\right|>0 .
$$

Prescribed mean curvature

However, if e denotes the normalized projection of Y in the tangent space of Σ, then

$$
\left\langle\nabla^{\Sigma} \theta, e\right\rangle \geq \frac{\gamma}{W}(K|\nabla u|-\tilde{C}) .
$$

Thus, we conclude that if

$$
|\nabla u|>\frac{\tilde{C}}{K}
$$

then

$$
\left|\nabla^{\Sigma} \theta\right|>0 .
$$

This contradicts $(*)$.

Prescribed mean curvature

However, if e denotes the normalized projection of Y in the tangent space of Σ, then

$$
\left\langle\nabla^{\Sigma} \theta, e\right\rangle \geq \frac{\gamma}{W}(K|\nabla u|-\tilde{C})
$$

Thus, we conclude that if

$$
|\nabla u|>\frac{\tilde{C}}{K}
$$

then

$$
\left|\nabla^{\Sigma} \theta\right|>0 .
$$

This contradicts $(*)$.
We then obtain an estimate for $|\nabla u|$.

Prescribed mean curvature

However, if e denotes the normalized projection of Y in the tangent space of Σ, then

$$
\left\langle\nabla^{\Sigma} \theta, e\right\rangle \geq \frac{\gamma}{W}(K|\nabla u|-\tilde{C})
$$

Thus, we conclude that if

$$
|\nabla u|>\frac{\tilde{C}}{K}
$$

then

$$
\left|\nabla^{\Sigma} \theta\right|>0 .
$$

This contradicts $(*)$.
We then obtain an estimate for $|\nabla u|$.

Another results

Korevaar's technique could be rephrased in the following way:

Another results

Korevaar's technique could be rephrased in the following way: we consider a maximum point for the function

Another results

Korevaar's technique could be rephrased in the following way: we consider a maximum point for the function
ηW,

Another results

Korevaar's technique could be rephrased in the following way: we consider a maximum point for the function

$$
\eta W
$$

where η is defined as above.

Another results

Korevaar's technique could be rephrased in the following way: we consider a maximum point for the function

$$
\eta W
$$

where η is defined as above.
Then at that point one has

$$
\Delta \eta \leq-\frac{\eta}{W}\left(\Delta W-\frac{2}{W}|\nabla W|^{2}\right)
$$

Another results

Korevaar's technique could be rephrased in the following way: we consider a maximum point for the function

$$
\eta W
$$

where η is defined as above.
Then at that point one has

$$
\Delta \eta \leq-\frac{\eta}{W}\left(\Delta W-\frac{2}{W}|\nabla W|^{2}\right)
$$

On the other hand since $\frac{1}{W}=\langle Y, N\rangle$ it results that

Another results

Korevaar's technique could be rephrased in the following way: we consider a maximum point for the function

$$
\eta W
$$

where η is defined as above.
Then at that point one has

$$
\Delta \eta \leq-\frac{\eta}{W}\left(\Delta W-\frac{2}{W}|\nabla W|^{2}\right)
$$

On the other hand since $\frac{1}{W}=\langle Y, N\rangle$ it results that

$$
\Delta W-\frac{2}{W}|\nabla W|^{2}=\left(|A|^{2}+\operatorname{Ric}(N, N)\right) W+\left\langle\bar{\nabla} H, \frac{\nabla u}{W}\right\rangle W
$$

Another results

Elaborating on this one obtains

Another results

Elaborating on this one obtains

$$
\Delta \eta-M \eta \leq 0
$$

Another results

Elaborating on this one obtains

$$
\Delta \eta-M \eta \leq 0
$$

However from the particular choice of η it follows that

Another results

Elaborating on this one obtains

$$
\Delta \eta-M \eta \leq 0
$$

However from the particular choice of η it follows that

$$
\begin{aligned}
& \Delta \eta=C^{2} e^{C \theta}\left(K^{2} \gamma \frac{\left|\nabla^{M} u\right|^{2}}{W^{2}}+\frac{4 K r \gamma}{r_{0}^{2} W}\left\langle\nabla^{M} d, \frac{\nabla^{M} u}{W}\right\rangle+\frac{4 r^{2}}{r_{0}^{4}}\left(1-\frac{\left|\nabla^{M} u\right|^{2}}{W^{2}}\right)\right) \\
& +C e^{C \theta} K_{1}+e^{C \theta} K_{2}
\end{aligned}
$$

Another results

Elaborating on this one obtains

$$
\Delta \eta-M \eta \leq 0
$$

However from the particular choice of η it follows that

$$
\begin{aligned}
& \Delta \eta=C^{2} e^{C \theta}\left(K^{2} \gamma \frac{\left|\nabla^{M} u\right|^{2}}{W^{2}}+\frac{4 K r \gamma}{r_{0}^{2} W}\left\langle\nabla^{M} d, \frac{\nabla^{M} u}{W}\right\rangle+\frac{4 r^{2}}{r_{0}^{4}}\left(1-\frac{\left|\nabla^{M} u\right|^{2}}{W^{2}}\right)\right) \\
& +C e^{C \theta} K_{1}+e^{C \theta} K_{2}
\end{aligned}
$$

One concludes that $\left|\nabla^{M} u\right|$ is bounded in terms of $|u|_{0}$ and of the distance to the boundary of the domain.

Another results

Using this one proves that there exists an uniform gradient bound for Killing graphs in \mathbb{H}^{n+1} with prescribed mean curvature $|H|<1$

Another results

Using this one proves that there exists an uniform gradient bound for Killing graphs in \mathbb{H}^{n+1} with prescribed mean curvature $|H|<1$ and asymptotic boundary given by a function φ defined in $\partial_{\infty} \mathbb{H}^{n}$.

Another results

Using this one proves that there exists an uniform gradient bound for Killing graphs in \mathbb{H}^{n+1} with prescribed mean curvature $|H|<1$ and asymptotic boundary given by a function φ defined in $\partial_{\infty} \mathbb{H}^{n}$.

This assures the existence of such graphs in \mathbb{H}^{n+1} (joint work with M. Dajczer and J. Ripoll).

Evolution of graphs with prescribed Neumann data

Now we discuss the following initial value problem: consider a 1-parameter family of graphs

Evolution of graphs with prescribed Neumann data

Now we discuss the following initial value problem: consider a 1-parameter family of graphs

$$
\begin{equation*}
X(s, x)=\Phi(u(s, x), x), \quad x \in \bar{\Omega}, s \in[0, T) \tag{24}
\end{equation*}
$$

Evolution of graphs with prescribed Neumann data

Now we discuss the following initial value problem: consider a 1-parameter family of graphs

$$
\begin{equation*}
X(s, x)=\Phi(u(s, x), x), \quad x \in \bar{\Omega}, s \in[0, T) \tag{24}
\end{equation*}
$$

evolving according to the following conditions

Evolution of graphs with prescribed Neumann data

Now we discuss the following initial value problem: consider a 1-parameter family of graphs

$$
\begin{equation*}
X(s, x)=\Phi(u(s, x), x), \quad x \in \bar{\Omega}, s \in[0, T) \tag{24}
\end{equation*}
$$

evolving according to the following conditions

$$
\begin{align*}
& \frac{\partial X}{\partial s}=(n H-\mathcal{H}) N \tag{25}\\
& X(0, \cdot)=\Phi\left(u_{0}(\cdot), \cdot\right) \tag{26}
\end{align*}
$$

Evolution of graphs with prescribed Neumann data

Now we discuss the following initial value problem: consider a 1-parameter family of graphs

$$
\begin{equation*}
X(s, x)=\Phi(u(s, x), x), \quad x \in \bar{\Omega}, s \in[0, T) \tag{24}
\end{equation*}
$$

evolving according to the following conditions

$$
\begin{align*}
& \frac{\partial X}{\partial s}=(n H-\mathcal{H}) N \tag{25}\\
& X(0, \cdot)=\Phi\left(u_{0}(\cdot), \cdot\right) \tag{26}
\end{align*}
$$

for prescribed functions $u_{0}: \bar{\Omega} \rightarrow \mathbb{R}$ and $\mathcal{H}:[0, T] \times \bar{\Omega} \rightarrow \mathbb{R}$, with Neumann condition of the form

$$
\begin{equation*}
\langle N, \nabla d\rangle=\varphi \quad \text { in } \quad \partial \Omega \times[0, \infty) \tag{27}
\end{equation*}
$$

Evolution of graphs with prescribed Neumann data

For Killing graphs the problem is rewritten in nonparametric terms as

$$
\begin{gather*}
\frac{\partial u}{\partial s}=W \operatorname{div} \frac{\nabla u}{W}-\gamma\left\langle\bar{\nabla}_{Y} Y, \nabla u\right\rangle-\mathcal{H} W \tag{28}\\
u(0, \cdot)=u_{0} \tag{29}
\end{gather*}
$$

Evolution of graphs with prescribed Neumann data

For Killing graphs the problem is rewritten in nonparametric terms as

$$
\begin{gather*}
\frac{\partial u}{\partial s}=W \operatorname{div} \frac{\nabla u}{W}-\gamma\left\langle\bar{\nabla}_{Y} Y, \nabla u\right\rangle-\mathcal{H} W \tag{28}\\
u(0, \cdot)=u_{0} \tag{29}
\end{gather*}
$$

Evolution of graphs with prescribed Neumann data

For Killing graphs the problem is rewritten in nonparametric terms as

$$
\begin{gather*}
\frac{\partial u}{\partial s}=W \operatorname{div} \frac{\nabla u}{W}-\gamma\left\langle\bar{\nabla}_{Y} Y, \nabla u\right\rangle-\mathcal{H} W \tag{28}\\
u(0, \cdot)=u_{0} \tag{29}
\end{gather*}
$$

Estimates

Height estimates are obtained by deducing a parabolic maximum principle for the derivative u_{s}.

Estimates

Height estimates are obtained by deducing a parabolic maximum principle for the derivative u_{s}.

Interior gradient estimates are obtained using a method due to Bo Guan and Joel Spruck and also based on Korevaar's approach to gradient estimates.

Estimates

Height estimates are obtained by deducing a parabolic maximum principle for the derivative u_{s}.

Interior gradient estimates are obtained using a method due to Bo Guan and Joel Spruck and also based on Korevaar's approach to gradient estimates.

In fact, we consider a function of the form

Estimates

Height estimates are obtained by deducing a parabolic maximum principle for the derivative u_{s}.

Interior gradient estimates are obtained using a method due to Bo Guan and Joel Spruck and also based on Korevaar's approach to gradient estimates.

In fact, we consider a function of the form

$$
\begin{equation*}
\eta=e^{K u} h, \tag{30}
\end{equation*}
$$

Estimates

Height estimates are obtained by deducing a parabolic maximum principle for the derivative u_{s}.

Interior gradient estimates are obtained using a method due to Bo Guan and Joel Spruck and also based on Korevaar's approach to gradient estimates.

In fact, we consider a function of the form

$$
\begin{equation*}
\eta=e^{K u} h, \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
h=1+\alpha d-\phi\langle N, \nabla d\rangle . \tag{31}
\end{equation*}
$$

Estimates

Let $\left(x_{0}, s_{0}\right) \in \Omega \times(0, T)$ be a maximum point for ηW.

Estimates

Let $\left(x_{0}, s_{0}\right) \in \Omega \times(0, T)$ be a maximum point for ηW.
Consider the linear parabolic operator

Estimates

Let $\left(x_{0}, s_{0}\right) \in \Omega \times(0, T)$ be a maximum point for ηW.
Consider the linear parabolic operator

$$
\begin{equation*}
L v=g^{i j} v_{i ; j}-\left(\frac{1}{2 \gamma}+\frac{1}{2 W^{2}}\right) \gamma^{i} v_{i}-v_{t} . \tag{32}
\end{equation*}
$$

Estimates

Let $\left(x_{0}, s_{0}\right) \in \Omega \times(0, T)$ be a maximum point for ηW.
Consider the linear parabolic operator

$$
\begin{equation*}
L v=g^{i j} v_{i, j}-\left(\frac{1}{2 \gamma}+\frac{1}{2 W^{2}}\right) \gamma^{i} v_{i}-v_{t} . \tag{32}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
& L W-\frac{2}{W}|\nabla W|_{\Sigma}^{2}=|A|^{2} W+n H W^{3}\left\langle A Y^{T}, Y^{T}\right\rangle-n H W^{3}\left\langle\frac{\nabla \gamma}{2 \gamma^{2}}, N\right\rangle \\
& -3 \gamma\left\langle A Y^{T}, X_{*} \frac{\nabla \gamma}{2 \gamma}\right\rangle+g^{i j} \frac{\gamma_{i, j}}{2 \gamma} W-\frac{3}{4} \frac{|\nabla \gamma|^{2}}{4 \gamma^{2}} W-\frac{1}{4}\left\langle\frac{\nabla \gamma}{2 \gamma}, N\right\rangle^{2} W \\
& +\gamma W\left\langle\bar{\nabla}_{N} \frac{\bar{\nabla} \gamma}{2 \gamma^{2}}, N\right\rangle-W\left\langle\nabla^{\Sigma} \mathcal{H}, N\right\rangle-\frac{|\nabla \gamma|^{2}}{4 \gamma} \frac{1}{W}-W_{t} .
\end{aligned}
$$

Estimates

On the other hand

$$
\frac{1}{\eta} L \eta=\frac{1}{h}|A|^{2}\langle N, \nabla d\rangle+K^{2} \frac{\gamma|\nabla u|^{2}}{W^{2}}+K \mathcal{H} W+\ldots
$$

Estimates

On the other hand

$$
\frac{1}{\eta} L \eta=\frac{1}{h}|A|^{2}\langle N, \nabla d\rangle+K^{2} \frac{\gamma|\nabla u|^{2}}{W^{2}}+K \mathcal{H} W+\ldots
$$

Using the fact that ηW attains maximum value at x_{0}, we proceed as before for obtaining an estimate of the form

$$
\begin{equation*}
W(s, x) \leq W\left(s_{0}, x_{0}\right) \frac{\eta\left(s_{0}, x_{0}\right)}{\eta(s, x)} \leq C_{1} e^{c_{2}\left|u-u_{0}\right|_{\bar{\Omega} \times[0, T)}} \tag{33}
\end{equation*}
$$

Estimates

On the other hand

$$
\frac{1}{\eta} L \eta=\frac{1}{h}|A|^{2}\langle N, \nabla d\rangle+K^{2} \frac{\gamma|\nabla u|^{2}}{W^{2}}+K \mathcal{H} W+\ldots
$$

Using the fact that ηW attains maximum value at x_{0}, we proceed as before for obtaining an estimate of the form

$$
\begin{equation*}
W(s, x) \leq W\left(s_{0}, x_{0}\right) \frac{\eta\left(s_{0}, x_{0}\right)}{\eta(s, x)} \leq C_{1} e^{C_{2}\left|u-u_{0}\right|_{\bar{\Omega} \times[0, T)}} \tag{33}
\end{equation*}
$$

for $s \in[0, T)$.

Existence result

Theorem (-, G. Albuquerque)

The evolution problem (25)-(27) has (a unique) solution for $s \in[0, \infty)$.

Existence result

Theorem (,- G. Albuquerque)

The evolution problem (25)-(27) has (a unique) solution for $s \in[0, \infty)$.

This result extends former ones due to B . Guan (Euclidean case) and M . Calle and L. Shahriyari $(M \times \mathbb{R})$.

Curvature functions

In general, we consider a function

Curvature functions

In general, we consider a function

$$
F: \mathcal{S} \rightarrow \mathbb{R}
$$

Curvature functions

In general, we consider a function

$$
F: \mathcal{S} \rightarrow \mathbb{R}
$$

and define f as

Curvature functions

In general, we consider a function

$$
F: \mathcal{S} \rightarrow \mathbb{R}
$$

and define f as

$$
F\left(a_{i j}\right)=f\left(\lambda\left(a_{i j}\right)\right)
$$

Curvature functions

In general, we consider a function

$$
F: \mathcal{S} \rightarrow \mathbb{R}
$$

and define f as

$$
F\left(a_{i j}\right)=f\left(\lambda\left(a_{i j}\right)\right),
$$

where $\lambda\left(a_{i j}\right)$ are the eingenvalues of $\left(a_{i j}\right) \in \mathcal{S}$.

Curvature functions

Some well-known examples are

Curvature functions

Some well-known examples are

$$
f(\lambda)=H_{k}^{1 / k}(\lambda)=\left(\sum_{i_{1}<\ldots<i_{k}} \lambda_{i_{1}} \ldots \lambda_{i_{k}}\right)^{1 / k}
$$

Curvature functions

Some well-known examples are

$$
f(\lambda)=H_{k}^{1 / k}(\lambda)=\left(\sum_{i_{1}<\ldots<i_{k}} \lambda_{i_{1}} \ldots \lambda_{i_{k}}\right)^{1 / k}
$$

and

Curvature functions

Some well-known examples are

$$
f(\lambda)=H_{k}^{1 / k}(\lambda)=\left(\sum_{i_{1}<\ldots<i_{k}} \lambda_{i_{1}} \ldots \lambda_{i_{k}}\right)^{1 / k}
$$

and

$$
f(\lambda)=\left(\frac{H_{k}}{H_{l}}\right)^{\frac{1}{k-l}}
$$

Curvature functions

Some well-known examples are

$$
f(\lambda)=H_{k}^{1 / k}(\lambda)=\left(\sum_{i_{1}<\ldots<i_{k}} \lambda_{i_{1}} \ldots \lambda_{i_{k}}\right)^{1 / k}
$$

and

$$
f(\lambda)=\left(\frac{H_{k}}{H_{l}}\right)^{\frac{1}{k-l}}
$$

with $k>l$.

Dirichlet problem

Using the notation above, the problem of prescribing the f-curvature is reduced to finding an admissible solution of the equation

Dirichlet problem

Using the notation above, the problem of prescribing the f-curvature is reduced to finding an admissible solution of the equation

$$
F\left(a_{i j}(x, u(x))\right)=\Psi(x, u(x)), \quad x \in \bar{\Omega},
$$

Dirichlet problem

Using the notation above, the problem of prescribing the f-curvature is reduced to finding an admissible solution of the equation

$$
F\left(a_{i j}(x, u(x))\right)=\Psi(x, u(x)), \quad x \in \bar{\Omega}
$$

where ψ is a given function defined in $\bar{\Omega} \times \mathbb{R}$.

Dirichlet problem

Using the notation above, the problem of prescribing the f-curvature is reduced to finding an admissible solution of the equation

$$
F\left(a_{i j}(x, u(x))\right)=\Psi(x, u(x)), \quad x \in \bar{\Omega}
$$

where ψ is a given function defined in $\bar{\Omega} \times \mathbb{R}$.
The boundary condition is given by

Dirichlet problem

Using the notation above, the problem of prescribing the f-curvature is reduced to finding an admissible solution of the equation

$$
F\left(a_{i j}(x, u(x))\right)=\Psi(x, u(x)), \quad x \in \bar{\Omega}
$$

where Ψ is a given function defined in $\bar{\Omega} \times \mathbb{R}$.
The boundary condition is given by

$$
\left.u\right|_{\partial \Omega}=\varphi .
$$

Dirichlet problem

Using the notation above, the problem of prescribing the f-curvature is reduced to finding an admissible solution of the equation

$$
F\left(a_{i j}(x, u(x))\right)=\Psi(x, u(x)), \quad x \in \bar{\Omega}
$$

where Ψ is a given function defined in $\bar{\Omega} \times \mathbb{R}$.
The boundary condition is given by

$$
\left.u\right|_{\partial \Omega}=\varphi .
$$

Existence results for the Dirichlet problem

Theorem (Flávio Cruz, -)

Suppose that $\operatorname{Ric}_{M} \geq 0$. Assume that

- $\Psi>0, \frac{\partial \Psi}{\partial u} \geq 0$
- Ω is f-convex and satisfies

$$
\begin{array}{r}
\Psi(x, 0) \leq f\left(\lambda^{\prime}, 0\right) \\
f_{n}\left(\lambda^{\prime}, 0\right) \geq 0 \tag{35}
\end{array}
$$

where λ^{\prime} are the principal curvatures of $\partial \Omega$.
Then, provided that there exists any bonded admissible subsolution of the equation $F=\Psi$ in Ω, there exists a unique admissible solution u of the Dirichlet problem with $\varphi=0$.

Existence results for the Dirichlet problem

Theorem (Flávio Cruz, -)

Assume that there exists a subsolution \underline{u} of $F=\Psi$ with $\underline{u}=\varphi$ on $\partial \Omega$. Suppose that \underline{u} is C^{2} and locally strictly convex in a neighborhood of $\partial \Omega$.

Existence results for the Dirichlet problem

Theorem (Flávio Cruz, -)

Assume that there exists a subsolution \underline{u} of $F=\Psi$ with $\underline{u}=\varphi$ on $\partial \Omega$. Suppose that \underline{u} is C^{2} and locally strictly convex in a neighborhood of $\partial \Omega$. Then there exists a unique admissible solution u of the Dirichlet problem for any positive ψ satisfying $\frac{\partial \Psi}{\partial z} \geq 0$ and for any boundary data φ.

Comments

The first result generalizes those one by Caffarelli, Nirenberg e Spruck since the convexity of the boundary is replaced by f-convexity.

Comments

The first result generalizes those one by Caffarelli, Nirenberg e Spruck since the convexity of the boundary is replaced by f-convexity.

The second theorem extend contributions by Trudinger, Lin and Ivochkina to Riemannian ambients and for general curvature functions.

Thanks for your attention!

