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Graphs with prescribed curvature

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold
M̄n+1.

Thus, there exists a function % ∈ C∞(M̄) such that

LY ḡ = 2%ḡ , (1)

where ḡ is the metric in M̄n+1.

From this we deduce the conformal Killing equation

〈∇̄XY ,Z 〉+ 〈∇̄ZY ,X 〉 = 2%〈X ,Z 〉, X ,Z ∈ Γ(T M̄). (2)
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where ḡ is the metric in M̄n+1.

From this we deduce the conformal Killing equation

〈∇̄XY ,Z 〉+ 〈∇̄ZY ,X 〉 = 2%〈X ,Z 〉, X ,Z ∈ Γ(T M̄). (2)



Graphs with prescribed curvature

Killing graphs

Let Y be a given conformal Killing vector field in a Riemannian manifold
M̄n+1.

Thus, there exists a function % ∈ C∞(M̄) such that

LY ḡ = 2%ḡ , (1)
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Killing graphs

We suppose for a while that the associated orthogonal distribution D is
integrable.

Let
Φ : I×Mn → M̄n+1, I = (−∞, a > 0)

be the flow generated by Y , where Mn is an arbitrarily fixed integral leaf
of D labeled as t = 0.

The Killing graph Σ of a function u defined on the closure of a C 2,α

bounded domain Ω in Mn is the hypersurface

Σ = {Φ(u(x), x) : x ∈ Ω̄}. (3)
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Killing graphs

Proving the existence of a conformal Killing graph with prescribed mean
curvature and boundary requires establishing a priori estimates.

This is accomplished by the use of Killing cylinders as barriers.

The Killing cylinder K over Γ = ∂Ω is the hypersurface ruled by the flow
lines of Y through Γ, that is,

K = {Φ(t, x) : x ∈ Γ}. (4)
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Geometric facts

Since Φt = Φ(t, · ) is a conformal map for any fixed t ∈ I, there is a
positive function λ ∈ C∞(I×M) such that λ(0, ·) = 1 and

Φ∗t ḡ = λ2(t, ·)ḡ .

We may verify that

% =
λt
λ
. (5)

One also proves that the integral leaves of D are totally umbilical
hypersurfaces with principal curvatures k = −λt

λ2

√
γ.

If in addition Y is closed, then these leaves are spherical hypersurfaces,
i.e., they have constant mean curvature.
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Examples

Killing vector fields: static metrics. In this case the leaves are totally
geodesic and the ambient metric may be written as

ρ2(x) dt2 + σij(x)dx idx j , x ∈ M, (6)

that is, M̄ = M ×ρ I.

For instance, constant sectional curvature metrics may be expressed
as

ρ2(r) dt2 + dr 2 + χ2(r) dσ2, (7)

where
ρ(r) = csκ(r), χ(r) = snκ(r). (8)
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Examples

Riemannian products M × R. In this case, Y = ∂
∂t is a parallel vector

field.

Warped products R×χ M. Here, the vector field Y = χ ∂
∂t is a closed

conformal Killing vector field.

Space forms. This time, we may represent constant curvature metrics
as warped metrics of the form

dt2 + χ2(t)dσ2, (9)

where χ(t) = snκ(t).
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Existence results

Normal graphs in Rn+1: graphs over domains in a hyperplane:
classical result by Serrin (1969).

Radial graphs in Rn+1: graphs over domains in open hemispheres of
Sn. Contributions by R. Finn, Serrin and more recently R. López
(2010) and Caldiroli and Gullino (2012).

Normal graphs in Hn+1: graphs over domains in horospheres. López
and Montiel, 1999. We also mention Nelli and Spruck (1996) and
Guan and Spruck (2000) for asymptotic boundary data problems.

Graphs over totally geodesic hyperplanes: P.-A. Nitsche, 2002. The
author considers a Hn × R model for Hn+1.
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(2010) and Caldiroli and Gullino (2012).

Normal graphs in Hn+1: graphs over domains in horospheres. López
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Existence results

Normal graphs in Hn+1: normal graphs over domains in an open
hemisphere of a geodesic sphere in Hn+1. L. (2003)

Normal graphs over domains in totally geodesic hyperplanes along
horocycles in Hn+1 were also considered by Barbosa and Earp (1998)
and Earp and Guio (2005)

We also mention general existence results due to Dajczer and Ripoll
(JGA, 2005) and Dajczer and Aĺıas (JDG, 2007).
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Killing graphs: Riemannian submersions

In the more general setting of a Riemannian submersion π : M̄ → M with
π∗Y = 0, when the distribution D is not necessarily integrable, we proved

Theorem (Dajczer, –, Annales de l’IHP, 2009)

Let Ω ⊂ Mn be a bounded domain with C2,α boundary Γ. Assume that
HK ≥ 0 and

RicM̄ ≥ −n inf
Γ

H2
K .

Let H ∈ Cα(Ω̄) and φ ∈ C2,α(Γ) be given. Assume that there exists a C2,α

immersion ι : Ω̄→ M̄ transverse to the vertical fibers in π−1(Ω̄). If

|H| ≤ inf
Γ

HK ,

then there exists a unique function u ∈ C2,α(Ω̄) satisfying u|Γ = φ whose
graph has mean curvature function H.
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RicM̄ ≥ −n inf
Γ

H2
K .

Let H ∈ Cα(Ω̄) and φ ∈ C2,α(Γ) be given. Assume that there exists a C2,α

immersion ι : Ω̄→ M̄ transverse to the vertical fibers in π−1(Ω̄). If

|H| ≤ inf
Γ

HK ,

then there exists a unique function u ∈ C2,α(Ω̄) satisfying u|Γ = φ whose
graph has mean curvature function H.



Graphs with prescribed curvature

Examples

Heisenberg spaces Hn.

Graphs in odd-dimensional spheres, even when endowed with Berger
metrics.

Helicoidal graphs in Euclidean space, an interesting case treated
earlier in

Dajczer and Lira, Helicoidal graphs with prescribed mean curvature,
Proc. AMS 137, 7, 2009.

For proving the theorem above, we use a method of obtaining interior
estimates due to Korevaar, based on comparing graphical and normal
perturbations of a graph.
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Graphs with prescribed curvature

Conformal Killing graphs

In this case the Riemannian ambient manifold is M̄n+1 = I×Mn endowed
with a metric of the form

ds2 = λ2(t)(ρ2(x)dt2 + σij(x)dx idx j), (10)

where
ρ2 = 〈Y ,Y 〉|M . (11)

The graph Σ has prescribed mean curvature H if and only if u satisfies

div

(
∇u√

γ + |∇u|2

)
− 1√

γ + |∇u|2

(
〈∇γ,∇u〉

2γ
+

nγλt
λ

)
− nλH = 0,

where the divergence and gradient are taken in Mn and γ = ρ−2.
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Graphs with prescribed curvature

Local geometry of the graphs

Indeed the induced metric in Σ has local components

gij = λ2(u)
(
σij +

1

γ
uiuj

)
(12)

The second fundamental form is locally expressed by

aij =
ui ;j

W
− ui

W

γj
2γ
−

uj

W

γi
2γ
−

uiuj

2W
uk γk
γ2
− λt
λ

uiuj −
λt
λ
γσij (13)

Taking traces we deduce the equation above.
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Graphs with prescribed curvature

Conformal Killing graphs

A sufficient condition to have a maximum principle is

(λH)t ≥ 0 and (λt/λ)t = %t ≥ 0. (14)

If we assume that H = H(x), the first condition says that that the
mean curvature of the leaves and of the graph have opposite signs.

If the leaves are mean convex, that is, if λt ≥ 0, then we fix H ≥ 0.

The second condition is related to the growing rate of the mean
curvature of the leaves.
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Graphs with prescribed curvature

Existence results

Theorem (Dajczer, –, JGA, 2012)

Let Ω ⊂ Mn be a C2,α bounded domain such that

Ricrad
M̄
≥ −n inf

Γ
H2
K .

Assume λt ≥ 0 and (λt/λ)t ≥ 0. Let H ∈ Cα(Ω) and φ ∈ C2,α(Γ) be
such that

inf
Γ

HK > H ≥ 0

and φ ≤ 0. Then, there exists a unique function u ∈ C2,α(Ω̄) whose
conformal Killing graph has mean curvature function H and boundary
data φ.



Graphs with prescribed curvature

Existence results

A conformal Killing field is closed if

〈∇̄XY ,Z 〉 = %〈X ,Z 〉.

for all X ,Z ∈ T M̄.

Corollary

When the conformal Killing field Y is closed the result holds with the
assumption on the Ricci curvature replaced by

nRicradM ≥ −(n − 1)2 inf
Γ

H2
Γ .

Moreover, if Y is a Killing field we may assume

inf
Γ

HK ≥ H.
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Graphs with prescribed curvature

Existence results

Let Ω0 denote the largest open subset of points of Ω that can be joined
to Γ by a unique minimizing geodesic. At points of Ω0, we denote

Ricrad
M̄

(x) = RicM̄(η, η), (15)

where η ∈ TxM is an unit vector tangent to the unique minimizing
geodesic from x ∈ Ω0 to Γ.

It was shown by Y.-Y. Li and L. Nirenberg (2005) that the distance
function d(x) = dist(x , Γ) in Ω0 has the same regularity as Γ.
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Graphs with prescribed curvature

Existence results

Let Γε and Kε be level sets d = ε in Mn and M̄n+1, respectively.

By HKε we denote the mean curvature of the Killing cylinder Kε over Γε.

The hypothesis on Ricci assures that Riccati’s equation yields the “nice”
behavior for HKε :

Proposition

Assume that the Ricci curvature tensor of M̄n+1 satisfies

inf
Ω0

Ric rad
M̄
≥ −n inf

Γ
H2
K .

Then, HKε |x0 ≥ HK |y0 if y0 ∈ Γ is the closest point to x0 ∈ Γε ⊂ Ω0.
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Graphs with prescribed curvature

Existence results

The statements may be rewritten in terms of the Ricci curvature of
the leaf M using the following relation

RicM̄(η, η) + k ′ + nk2 = RicM(η, η) + η(κ) + κ2 (16)

Since

nHK = κ+
n − 1

λ
HΓ (17)

the mean convexity of the cylinder does not necessarily imply the
mean convexity of the boundary of the domain.
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Graphs with prescribed curvature

Proof of the results

We apply the well-known continuity method to the family parametrized
by τ ∈ [0, 1] of Dirichlet problems{

Qτ [u] = 0,

u|Γ = τφ

where

Qτ [u] = div

(
∇u√

γ + |∇u|2

)
− 〈∇γ,∇u〉

2γ
√
γ + |∇u|2

−τ
(

nγρ√
γ + |∇u|2

+nλH

)
.

Let I be the subset of [0, 1] consisting of values of τ for which the
Dirichlet problem has a C 2,α solution. Then, the proof reduces to
show that I = [0, 1].
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Proof of the results

The set I non-empty since u = 0 is a solution for τ = 0.

The set I of [0, 1] consisting of values of τ for which the above
Dirichlet problem has a C2,α solution is open since the maximum
principle holds.

That I is closed follows from standard theory of quasilinear elliptic
differential equations provided we have a priori estimates for solutions.
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Graphs with prescribed curvature

A priori estimates

Proposition

There exists a positive constant C = C (Ω,H) such that

|u|0 ≤ C + |φ|0

for any solution u of the Dirichlet problem.

We construct barriers on Ω0 which are subsolutions to the PDE of the form

ϕ(x) = inf
Γ
φ+ f (d(x))

where d(x) = dist(x , Γ) and

f =
eDB

D

(
e−Dd − 1

)
where B > diam(Ω) and D > 0 is a constant to be chosen.
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A priori estimates

Proposition

There exists a positive constant C = C (Ω,H, φ, |u|0) such that

sup
Γ
|∇u| ≤ C

for any solution u of the Dirichlet problem.

We use barriers defined on a tubular neighborhood Ωε of Γ of the form

f = −A ln(1 + Bd) + φ

where A and B are positive constants.
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A priori estimates

Proposition

There exists a positive constant C = C (Ω,H, φ, |∇u|Γ|0) such that

sup
Ω
|∇u| ≤ C

for any solution u of the Dirichlet problem.

We consider on Σ the function

χ = e2Cuv ,

where v = |∇u|2.

If χ achieves its maximum on Γ we already have the desired bound. Thus,
we may assume that χ attains maximum value at an interior point x0 ∈ Ω
where |∇u| 6= 0.
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A priori estimates

Then we fix coordinates so that

u1(x0) = |∇u(x0)|.

Hence rotating the remaining axis we have

u1;1(x0) = −K |∇u|2, u1;j(x0) = 0

and (ui ;j)i ,j≥2 is diagonal at x0.

We proceed differentiating both sides of the equation. Contracting the
result with the gradient it results that

aijuluij ;l − 2K 2v 3 = O(v 2). (18)
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Interior gradient estimates

On the other hand using the fact that χ has a maximum at x0 and the
particular choice of coordinates above we have

0 ≥ aijχi ;j = aijulul ;ij + K 2γv 2 + O(v 2) (19)

The third derivatives are ruled out by Ricci commutation formula and we
obtain at the end

(K 2γ − R + C (n,H, γ))v 3 − (K 2γ2 + 2Rγ + C (n,H, λ, γ))v 2

+C (n,H, λ, γ)v ≤ 0.

We conclude that

|∇u|(x) ≤ |∇u|(x0)e4K |u|0 . (20)
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Graphs with prescribed curvature

Interior gradient estimates

Another strategy is to adapt Korevaar’s method of normal perturbations of
the graph.

p̃ = expp ηN, p ∈ Σ, (21)

for a certain function η to be chosen later.

The mean curvature of the perturbed graph (locally given as the graph of
a function ũ) is written as

H(y , ũ(y)) = H(x , u(x)) + εJη + O(ε2) (22)

whereas the mean curvature of the original graph is expanded as

H(y , u(y)) = H(x , u(x)) + εHiT
i + O(ε2). (23)
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a function ũ) is written as
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Interior gradient estimates

If a local maximum of ũ − u is attained at y , then the comparison
principle implies that

H(y , u(y)) ≥ H(y , ũ(y)).
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Graphs with prescribed curvature

Prescribed mean curvature

Using this, we get
∆Ση −Mη ≤ O(ε) (∗)

for a positive constant M > 0 which does not depend on η.

Finally, we define
θ(x , t) =

(
Kt + (r 2

0 − r 2))+

for a (small) constant K > 0 and

η = g(θ) := eCθ − 1

for C >> 0.

It is clear that (*) becomes

g ′′|∇Σθ|2 + g ′∆Σθ − gM ≤ O(ε).
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Prescribed mean curvature

However, if e denotes the normalized projection of Y in the tangent space
of Σ, then

〈∇Σθ, e〉 ≥ γ

W
(K |∇u| − C̃ ).

Thus, we conclude that if

|∇u| > C̃

K
,

then
|∇Σθ| > 0.

This contradicts (∗).

We then obtain an estimate for |∇u|.
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Another results

Korevaar’s technique could be rephrased in the following way:

we consider
a maximum point for the function

ηW ,

where η is defined as above.

Then at that point one has

∆η ≤ − η

W

(
∆W − 2

W
|∇W |2

)
.

On the other hand since 1
W = 〈Y ,N〉 it results that

∆W − 2

W
|∇W |2 = (|A|2 + Ric(N,N))W + 〈∇̄H,

∇u

W
〉W
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Another results

Elaborating on this one obtains

∆η −Mη ≤ 0.

However from the particular choice of η it follows that

∆η = C 2eCθ
(
K 2γ
|∇Mu|2

W 2
+

4Krγ

r 2
0 W
〈∇Md ,

∇Mu

W
〉+

4r 2

r 4
0

(1− |∇
Mu|2

W 2
)
)

+CeCθK1 + eCθK2.

One concludes that |∇Mu| is bounded in terms of |u|0 and of the distance
to the boundary of the domain.
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Graphs with prescribed curvature

Another results

Using this one proves that there exists an uniform gradient bound for
Killing graphs in Hn+1 with prescribed mean curvature |H| < 1

and
asymptotic boundary given by a function ϕ defined in ∂∞Hn.

This assures the existence of such graphs in Hn+1 (joint work with M.
Dajczer and J. Ripoll).
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Graphs with prescribed curvature

Evolution of graphs with prescribed Neumann data

Now we discuss the following initial value problem: consider a 1-parameter
family of graphs

X (s, x) = Φ(u(s, x), x), x ∈ Ω̄, s ∈ [0,T ) (24)

evolving according to the following conditions

∂X

∂s
= (nH −H)N, (25)

X (0, ·) = Φ(u0(·), ·), (26)

for prescribed functions u0 : Ω̄→ R and H : [0,T ]× Ω̄→ R, with

Neumann condition of the form

〈N,∇d〉 = ϕ in ∂Ω× [0,∞), (27)
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Graphs with prescribed curvature

Evolution of graphs with prescribed Neumann data

For Killing graphs the problem is rewritten in nonparametric terms as

∂u

∂s
= Wdiv

∇u

W
− γ〈∇̄Y Y ,∇u〉 − HW (28)

u(0, ·) = u0. (29)
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Graphs with prescribed curvature

Estimates

Height estimates are obtained by deducing a parabolic maximum principle
for the derivative us .

Interior gradient estimates are obtained using a method due to Bo Guan
and Joel Spruck and also based on Korevaar’s approach to gradient
estimates.

In fact, we consider a function of the form

η = eKuh, (30)

where
h = 1 + αd − φ〈N,∇d〉. (31)
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Estimates

Let (x0, s0) ∈ Ω× (0,T ) be a maximum point for ηW .

Consider the linear parabolic operator

Lv = g ijvi ;j −
( 1

2γ
+

1

2W 2

)
γivi − vt . (32)

Hence we have

LW − 2

W
|∇W |2Σ = |A|2W + nHW 3〈AY T ,Y T 〉 − nHW 3〈∇γ

2γ2
,N〉

−3γ〈AY T ,X∗
∇γ
2γ
〉+ g ij γi ;j

2γ
W − 3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W

+γW 〈∇̄N
∇̄γ
2γ2

,N〉 −W 〈∇ΣH,N〉 − |∇γ|
2

4γ

1

W
−Wt .



Graphs with prescribed curvature

Estimates

Let (x0, s0) ∈ Ω× (0,T ) be a maximum point for ηW .

Consider the linear parabolic operator

Lv = g ijvi ;j −
( 1

2γ
+

1

2W 2

)
γivi − vt . (32)

Hence we have

LW − 2

W
|∇W |2Σ = |A|2W + nHW 3〈AY T ,Y T 〉 − nHW 3〈∇γ

2γ2
,N〉

−3γ〈AY T ,X∗
∇γ
2γ
〉+ g ij γi ;j

2γ
W − 3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W

+γW 〈∇̄N
∇̄γ
2γ2

,N〉 −W 〈∇ΣH,N〉 − |∇γ|
2

4γ

1

W
−Wt .



Graphs with prescribed curvature

Estimates

Let (x0, s0) ∈ Ω× (0,T ) be a maximum point for ηW .

Consider the linear parabolic operator

Lv = g ijvi ;j −
( 1

2γ
+

1

2W 2

)
γ ivi − vt . (32)

Hence we have

LW − 2

W
|∇W |2Σ = |A|2W + nHW 3〈AY T ,Y T 〉 − nHW 3〈∇γ

2γ2
,N〉

−3γ〈AY T ,X∗
∇γ
2γ
〉+ g ij γi ;j

2γ
W − 3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W

+γW 〈∇̄N
∇̄γ
2γ2

,N〉 −W 〈∇ΣH,N〉 − |∇γ|
2

4γ

1

W
−Wt .



Graphs with prescribed curvature

Estimates

Let (x0, s0) ∈ Ω× (0,T ) be a maximum point for ηW .

Consider the linear parabolic operator

Lv = g ijvi ;j −
( 1

2γ
+

1

2W 2

)
γ ivi − vt . (32)

Hence we have

LW − 2

W
|∇W |2Σ = |A|2W + nHW 3〈AY T ,Y T 〉 − nHW 3〈∇γ

2γ2
,N〉

−3γ〈AY T ,X∗
∇γ
2γ
〉+ g ij γi ;j

2γ
W − 3

4

|∇γ|2

4γ2
W − 1

4
〈∇γ

2γ
,N〉2W

+γW 〈∇̄N
∇̄γ
2γ2

,N〉 −W 〈∇ΣH,N〉 − |∇γ|
2

4γ

1

W
−Wt .



Graphs with prescribed curvature

Estimates

On the other hand

1

η
Lη =

1

h
|A|2〈N,∇d〉+ K 2γ|∇u|2

W 2
+ KHW + ...

Using the fact that ηW attains maximum value at x0, we proceed as
before for obtaining an estimate of the form

W (s, x) ≤W (s0, x0)
η(s0, x0)

η(s, x)
≤ C1eC2|u−u0|Ω̄×[0,T ) (33)

for s ∈ [0,T ).
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Existence result

Theorem (–, G. Albuquerque)

The evolution problem (25)-(27) has (a unique) solution for s ∈ [0,∞).

This result extends former ones due to B. Guan (Euclidean case) and M.
Calle and L. Shahriyari (M × R).
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Curvature functions

In general, we consider a function

F : S → R

and define f as

F (aij) = f (λ(aij)),

where λ(aij) are the eingenvalues of (aij) ∈ S.
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Curvature functions

Some well-known examples are

f (λ) = H
1/k
k (λ) =

( ∑
i1<...<ik

λi1 . . . λik
)1/k

and

f (λ) =
(Hk

Hl

) 1
k−l

with k > l .
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Dirichlet problem

Using the notation above, the problem of prescribing the f -curvature is
reduced to finding an admissible solution of the equation

F (aij(x , u(x))) = Ψ(x , u(x)), x ∈ Ω̄,

where Ψ is a given function defined in Ω̄× R.

The boundary condition is given by

u|∂Ω = ϕ.
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Existence results for the Dirichlet problem

Theorem (Flávio Cruz, –)

Suppose that RicM ≥ 0. Assume that

Ψ > 0, ∂Ψ
∂u ≥ 0

Ω is f -convex and satisfies

Ψ(x , 0) ≤ f (λ′, 0), (34)

fn(λ′, 0) ≥ 0, (35)

where λ′ are the principal curvatures of ∂Ω.

Then, provided that there exists any bonded admissible subsolution of the
equation F = Ψ in Ω, there exists a unique admissible solution u of the
Dirichlet problem with ϕ = 0.
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Existence results for the Dirichlet problem

Theorem (Flávio Cruz, –)

Assume that there exists a subsolution u of F = Ψ with u = ϕ on ∂Ω.
Suppose that u is C 2 and locally strictly convex in a neighborhood of ∂Ω.

Then there exists a unique admissible solution u of the Dirichlet problem
for any positive Ψ satisfying ∂Ψ

∂z ≥ 0 and for any boundary data ϕ.
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Comments

The first result generalizes those one by Caffarelli, Nirenberg e Spruck
since the convexity of the boundary is replaced by f -convexity.

The second theorem extend contributions by Trudinger, Lin and Ivochkina
to Riemannian ambients and for general curvature functions.
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Thanks for your attention!
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