Horizontal Delaunay surfaces with constant mean curvature in

 product spacesJosé M. Manzano

Seminario de Geometría
 de la Universidad de Granada

November $20^{\text {th }}, 2020$

Funded by the research program of the University of Jaén and partially supported by MICINN-FEDER research grants

PID2019-111531GA-I00 and MTM2017-89677-P

based on

- —, F. Torralbo New examples of constant mean curvature surfaces in $S^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$.

Michigan J. Math. 63 (2014), no. 4, 701-723.
\bullet-, F. Torralbo Compact embedded surfaces with constant mean curvature in $\mathrm{S}^{2} \times \mathbb{R}$.
Amer. J. Math. 142 (2020), no. 4, 1981-1994.
\bullet-, F. Torralbo Horizontal Delaunay surfaces with constant mean curvature in $S^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$.
Preprint, arXiv:2007.06882.

The Plateau conjugate technique

Construction of the Delaunay surfaces

Constant mean curvature surfaces

Definition

A surface Σ immersed in a 3 -manifold N is an H-surface (i.e., it has constant mean curvature H) if:
(i) The second fundamental form σ has constant trace 2 H , or equivalently
(ii) Σ is a critical point of $\mathcal{J}=$ Area $-2 H$. Volume.

If $H=0$, then such a Σ is called a minimal surface.

- They show up in nature as interfaces between fluids (Laplace-Young), motivating the popular isoperimetric and Plateau problems.

- However, nature is only interested in (local) minima.

Compact embedded H-surfaces in $\mathbb{S}^{2} \times \mathbb{R}$

Alexandrov reflection principle

Compact embedded H-surfaces in a product 3-manifold $M \times \mathbb{R}$ are bigraphs over domains $\Omega \subset M$.
Compact embedded H-surfaces in \mathbb{R}^{3} and $\mathbb{H}^{2} \times \mathbb{R}$ must be rotational H-spheres (Alexandrov problem). However, there are many compact embedded H-surfaces in $\mathrm{S}^{2} \times \mathbb{R}$.
\Rightarrow The only compact minimal surfaces are the horizontal slices $\mathrm{S}^{2} \times\left\{t_{0}\right\}$.
\checkmark For any $H>0$, there are rotationally invariant H-spheres and H-tori (Pedrosa-Ritoré).
The value $H=\frac{1}{2}$ will play an important role ($\frac{1}{2}$-spheres are bigraphs over an hemisphere of S^{2}).

Theorem (- , 2012)
If $0<H<\frac{1}{2}$, the complement of the domain of a compact H-bigraph in $\mathrm{S}^{2} \times \mathbb{R}$ of genus g consists of $g+1$ convex disks.

Theorem (- \& Torralbo, 2019)
For each $0<H<\frac{1}{2}$ and $g \geq 0$, we find one compact embedded
 H-surface with genus g and dihedral symmetry in $\mathrm{S}^{2} \times \mathbb{R}$.

Theorem (— \& Torralbo, 2020)
For each $H>\frac{1}{2}$, we find finitely-many embedded H-tori with dihedral symmetry in $\mathrm{S}^{2} \times \mathbb{R}$.

Open questions:

- Are there more embedded H-tori in $\mathrm{S}^{2} \times \mathbb{R}$?
- Are there compact embedded H-surfaces in $S^{2} \times \mathbb{R}$ with arbitrary genus if $H \geq \frac{1}{2}$?

Lawson's conjugate technique in \mathbb{R}^{3}

Lawson correspondence
There is an isometric conjugation between 0 -surfaces in S^{3} and 1-surfaces in \mathbb{R}^{3}.

Steps in the construction:

1. Choose a geodesic polygon $\widetilde{\Gamma} \subset S^{3}$ whose angles are divisors of π.
2. Make sure that the Plateau problem for $\widetilde{\Gamma}$ has a solution $\tilde{\Sigma}$.
\rightsquigarrow Meeks-Yau's solution using mean-convex barriers
3. Consider the conjugate surface Σ in \mathbb{R}^{3}.
\rightsquigarrow Each component of its boundary is a plane curve
4. Reflect $\widetilde{\Sigma}$ or Σ to obtain complete surfaces.
\rightsquigarrow Schwarz reflection principle for H-surfaces + absence of isolated singularities.
Difficulty: $\widetilde{\Sigma}$ and Σ are not explicit surfaces. Any desired property of Σ must be deduced from properties of the boundary $\widetilde{\Gamma}$.

Example: As for Lawson's doubly periodic H-surfaces in \mathbb{R}^{3}, the fundamental piece Σ looks like this:

Daniel's sister correspondence in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$

$\mathbb{E}(\kappa, \tau)$-spaces

Simply-connected homogeneous 3-manifolds with 4-dimensional isometry group are given by a 2-parameter family $\mathbb{E}(\kappa, \tau)$ with $\kappa, \tau \in \mathbb{R}$.

	$\kappa>0$	$\kappa=0$	$\kappa<0$
$\tau=0$	$\mathrm{~S}^{2} \times \mathbb{R}$	\mathbb{R}^{3}	$\mathbb{H}^{2} \times \mathbb{R}$
$\tau \neq 0$	$\mathrm{~S}_{b}^{3}$	Nil_{3}	$\widetilde{\mathrm{~S}}_{2}(\mathbb{R})$

- Common framework for Thurston geometries except for \mathbb{H}^{3} and Sol_{3}.
- $\mathbb{E}(\kappa, \tau)$ admits a Killing submersion over $\mathbb{M}^{2}(\kappa)$ whose fibers are the integral curves of a unitary Killing vector field.
\rightsquigarrow The constant τ is the bundle curvature and accounts for the integrability of the horizontal distribution.
\rightsquigarrow The notions of vertical and horizontal are natural in $\mathbb{E}(\kappa, \tau)$.

Sister correspondence (Daniel, 2007)

Let $\epsilon \in\{-1,0,1\}$. There is an isometric conjugation between:

1. minimal surfaces in $\mathbb{E}\left(4 H^{2}+\epsilon, H\right)$,
2. H-surfaces in $\mathbb{E}(\epsilon, 0)=\mathbb{M}^{2}(\epsilon) \times \mathbb{R}$.

They determine each other up to (positive) isometries.

This yields the following cases:

minimal surface in	gives an H-surface in		
	$\mathrm{S}^{2} \times \mathbb{R}$	$\mathbb{H}^{2} \times \mathbb{R}$	\mathbb{R}^{3}
$\mathrm{~S}_{b}^{3}\left(4 H^{2}+\epsilon, H\right)$	$H>0$	$H>1 / 2$	$H>0$
Nil_{3}	-	$H=1 / 2$	-
$\widetilde{\mathrm{SL}}_{2}\left(4 H^{2}-1, H\right)$	-	$0<H<1 / 2$	-
$\mathbb{H}^{2} \times \mathbb{R}$	-	$H=0$	-
$\mathrm{S}^{2} \times \mathbb{R}$	$H=0$	-	-
\mathbb{R}^{3}	-	-	$H=0$

The conjugate technique in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$

Let $\widetilde{\Sigma} \rightarrow \mathbb{E}\left(4 H^{2}+\epsilon, H\right)$ and $\Sigma \rightarrow \mathbb{M}^{2}(\epsilon) \times \mathbb{R}$ be conjugate.

- $\widetilde{\Sigma}$ and Σ are isometric.
- Their angle function $v=\langle N, \tilde{\xi}\rangle=\langle\widetilde{N}, \widetilde{\xi}\rangle$ is the same.
- The tangent part of the Killing and the shape operator rotate $\frac{\pi}{2}$ degrees in Σ with respect to $\widetilde{\Sigma}$.

Boundary behavior (— \& Torralbo, 2012), (Plehnert, 2014)
(a) A horizontal geodesic $\widetilde{\gamma} \subset \widetilde{\Sigma}$ corresponds to a planar line of symmetry $\gamma \subset \Sigma$ contained in a vertical plane $\mathbb{M}^{1}(\epsilon) \times \mathbb{R}$.
(b) A vertical geodesic $\tilde{\gamma} \subset \widetilde{\Sigma}$ corresponds to a planar line of symmetry $\gamma \subset \Sigma$ contained in a horizontal slice $\mathbb{M}^{2}(\epsilon) \times\left\{t_{0}\right\}$.

Hence Σ can be completed by succesive mirror symmetries.

- If θ is the angle between the normal to Σ and a constant reference along $\widetilde{\gamma}$, the geodesic curvature κ_{g} of γ in $\mathbb{M}^{2} \times\left\{t_{0}\right\}$ verifies

$$
\kappa_{g}=2 H-\theta^{\prime} .
$$

An easy but surprising example:

Minimal helicoids in Berger spheres $\mathbb{E}\left(4 H^{2}+\epsilon, H\right)$.

Vertical Delaunay H-surfaces in \mathbb{R}^{3}, $\mathrm{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$.

Compact H-surfaces with arbitrary genus in $\mathbb{S}^{2} \times \mathbb{R}$

Theorem (— \& Torralbo, 2019)
Given $0<H<1 / 2$ and $g \geq 0$, there is a compact embedded H-surface in $S^{2} \times \mathbb{R}$ with genus g. It is invariant under a dihedral group of symmetries of S^{2}.

Initial minimal surface
$\mathbb{E}\left(4 H^{2}+\epsilon, H\right)$

Steps in the construction

1. Find the points in which $v=0$ and $v=-1$ by comparing with umbrellas and Hopf tori.
2. Fit the length $\ell=\frac{\pi}{2}$ via continuity.
3. Embeddedness follows from estimates of the curvature of the boundary (convex circles).

Horizontal Delaunay surfaces 1 . Solution of the Plateau problem

We will consider the local model for the Berger spheres

$$
\left[\mathbb{R}^{3}, \frac{\mathrm{~d} x^{2}+\mathrm{d} y^{2}}{\left(1+\frac{4 H^{2}+\epsilon}{4}\left(x^{2}+y^{2}\right)\right)^{2}}+\left(\mathrm{d} z+\frac{H(x \mathrm{~d} y-x \mathrm{~d} y)}{1+\frac{4 H^{2}+\epsilon}{4}\left(x^{2}+y^{2}\right)}\right)^{2}\right]
$$

$\lambda=0$
minimal helicoid

$0<\lambda<\frac{\pi}{2}$

$\lambda=\frac{\pi}{2}$ minimal sphere

Boundary: $\widetilde{\Gamma}_{\lambda}=\widetilde{h}_{0} \cup \widetilde{h}_{1} \cup \widetilde{h}_{2} \cup \widetilde{v}$.

Solution of the Plateau problem: $\widetilde{\Sigma}_{\lambda}$

- Mean convex body with the helicoid and the cylinder as barriers.
$\widetilde{\Sigma}_{\lambda}$ is a graph if and only if $0 \leq \lambda \leq \frac{\pi}{2}$.
- $\widetilde{\Gamma}_{\lambda}$ is not a Nitsche graph if $\lambda>\frac{\pi}{2}$.

Uniqueness of solution:
$\Rightarrow \widetilde{\Gamma}_{\lambda}$ is actually a Nitsche graph in the direction of the Killing vector field

$$
\widetilde{X}=-y \partial_{x}+x \partial_{y}+\frac{2 H}{4 H^{2}+\kappa} \partial_{z}
$$

giving rise to a Killing submersion structure inside the cylinder.
\Rightarrow Then $\widetilde{\Sigma}_{\lambda}$ is the solution to a Dirichlet problem over a half-disk:

Understanding the model is crucial.

Horizontal Delaunay surfaces 2. Analysis of the angle function

The case $0 \leq \lambda \leq \frac{1}{2}$

- Vertical points $(v=0): \quad \widetilde{v}$
- Horizontal points $(v=-1): \widetilde{2}$ and $\widetilde{3}$

The case $\lambda>\frac{1}{2}$

- Vertical points $(v=0): \quad \tilde{v} \cup \widetilde{\delta}$
- Horizontal points $(v= \pm 1): \widetilde{2}$ and $\widetilde{3}$

Analysis of vertical points: the zeroes of v and ∇v can be captured by looking at the intersection with a tangent Clifford cylinder:

- $v=0 \rightsquigarrow$ at least 2 curves in the intersection.
$\nabla v=\nabla v=0 \rightsquigarrow$ at least 3 curves in the intersection.

Horizontal Delaunay surfaces 3. Depiction of the conjugate surfaces

The case $\lambda=0$: equivariant H-tori

The case $0<\lambda<\frac{\pi}{2}$: H-unduloids

The case $\lambda=\frac{\pi}{2}$: equivariant H-spheres

The case $\lambda>\frac{\pi}{2}: H$-nodoids

Monotonicity properties

- The signed lengths $\ell_{0}, \ell_{1}, \ell_{2}$ of the projections depend monotonically on λ.
- The signed heights μ_{1}, μ_{2} of the points 2 and 3 depend monotonically on λ.
- The lengths of h_{0} and v are equal and coincide with those of vertical Delaunay H-surfaces (not depending on λ).

Embeddedness

If the boundary $\widetilde{\Gamma}_{\lambda}$ projects one-to-one to \mathbb{H}^{2}, then the fundamental piece is embedded by maximum principle. However, it is hard to control the curve \widetilde{v}.

Horizontal Delaunay surfaces 4. Embeddedness

Embeddedness of the fundamental annulus

$\tilde{X}=-y \partial_{x}+x \partial_{y}+\frac{2 H}{4 H^{2}+\kappa} \partial_{z}$

Fundamental piece

Fundamental annulus

- The initial minimal surface is a graph in the direction of \tilde{X}.
- $\widetilde{u}=\langle\widetilde{X}, \widetilde{N}\rangle$ lies in the kernel of the common stability operator and extends to the fundamental annulus A_{λ} giving $\lambda_{1}\left(A_{\lambda}\right)=0$.
- Let X be the Killing vector field in $\mathbb{M}^{2}(\epsilon) \times \mathbb{R}$ coming from translations along the axis Γ, so $u=\langle X, N\rangle$ vanishes on ∂A_{λ}.
- Hence, $u=a_{\lambda} \widetilde{u}$ has sign and A_{λ} is a X-multigraph.

The unduloids do not go over the north pole if $H>\frac{1}{2}$

- If $H>\frac{1}{2}$, the sphere $\left(\lambda=\frac{\pi}{2}\right)$ does not go over the north pole. Then neither do the curves \widetilde{h}_{1} and \widetilde{h}_{2} by monotonicity.
- If an interior point goes over the north pole, then $u=0$ at that point (contradiction).

Moduli space

We obtain a family of examples in terms of 2-parameters

- $H>0$: the value of the mean curvature.
- $m>1$: a half of the number of fundamental pieces we need to complete the equator of S^{2}.

Each point of the dotted horizontal lines represents an embedded H-torus with dihedral symmetry group D_{m}.

- The picture looks like that of invariant Delaunay surfaces in S^{3}.
\Rightarrow The limit of tangent $\frac{1}{2}$-spheres shows up again.

Horizontal Delaunay surfaces 5 . The case of $\mathbb{H}^{2} \times \mathbb{R}$

Theorem (— \& Torralbo, 2020)
For each $H>\frac{1}{2}$, there is a 1-parameter family $\bar{\Sigma}_{\lambda}, \lambda>0$, of H-surfaces lying at bounded distance from a horizontal geodesic Γ :

- If $\lambda=0$, then $\bar{\Sigma}_{\lambda}$ is an H-cylinder invariant by hyperbolic translations.
- If $0<\lambda<\frac{\pi}{2}$, then $\bar{\Sigma}_{\lambda}$ is a properly embedded H-unduloid.
- If $\lambda=\frac{\pi}{2}$, then $\bar{\Sigma}_{\lambda}$ is a rotationally invariant H-sphere.
- If $\lambda>\frac{\pi}{2}$, then $\bar{\Sigma}_{\lambda}$ is a proper (non-Alexandrov-embedded) H-nodoid.

Theorem (— \& Torralbo, 2020)
There are no properly immersed H-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ at bounded distance from a horizontal geodesic with $H \leq \frac{1}{2}$.

Sketch. There is a foliation $C_{H}=\bar{\Sigma}_{0}$ of $\left(\mathbb{H}^{2} \times \mathbb{R}\right)-\Gamma$ by the H-cylinders with $\frac{1}{2}<H<\infty$. Apply Mazet's halfspace theorem.

Thanks for your attention...

... and cite us if you liked it.

