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Constant mean curvature surfaces

Definition

A surface Σ immersed in a 3-manifold N is an H-surface (i.e., it has constant mean curvature H) if:

(i) The second fundamental form σ has constant trace 2H, or equivalently

(ii) Σ is a critical point of J = Area− 2H ·Volume.

If H = 0, then such a Σ is called a minimal surface.

I They show up in nature as interfaces between fluids (Laplace-Young), motivating the popular isoperimetric
and Plateau problems.

I However, nature is only interested in (local) minima.



Compact embedded H-surfaces in S2 ×R

Alexandrov reflection principle

Compact embedded H-surfaces in a product 3-manifold M×R are bigraphs over domains Ω ⊂ M.

Compact embedded H-surfaces in R3 and H2 ×R must be rotational H-spheres (Alexandrov problem). However,

there are many compact embedded H-surfaces in S2 ×R.

I The only compact minimal surfaces are the horizontal slices S2 × {t0}.
I For any H > 0, there are rotationally invariant H-spheres and H-tori (Pedrosa–Ritoré).

The value H = 1
2 will play an important role ( 1

2 -spheres are bigraphs over an hemisphere of S2).

Theorem ( —, 2012)

If 0 < H < 1
2 , the complement of the domain of a compact

H-bigraph in S2 ×R of genus g consists of g + 1 convex disks.

Theorem ( — & Torralbo, 2019)

For each 0 < H < 1
2 and g ≥ 0, we find one compact embedded

H-surface with genus g and dihedral symmetry in S2 ×R.

Theorem ( — & Torralbo, 2020)

For each H > 1
2 , we find finitely-many embedded H-tori with

dihedral symmetry in S2 ×R.

Open questions:

I Are there more embedded H-tori in S2 ×R?

I Are there compact embedded H-surfaces in S2 ×R with

arbitrary genus if H ≥ 1
2 ?



Lawson’s conjugate technique in R3

Lawson correspondence

There is an isometric conjugation between 0-surfaces in S3 and 1-surfaces in R3.

Steps in the construction:

1. Choose a geodesic polygon Γ̃ ⊂ S3 whose angles are divisors of π.

2. Make sure that the Plateau problem for Γ̃ has a solution Σ̃.
 Meeks-Yau’s solution using mean-convex barriers

3. Consider the conjugate surface Σ in R3.
 Each component of its boundary is a plane curve

4. Reflect Σ̃ or Σ to obtain complete surfaces.
 Schwarz reflection principle for H-surfaces + absence of isolated
singularities.

Difficulty: Σ̃ and Σ are not explicit surfaces. Any desired property of Σ
must be deduced from properties of the boundary Γ̃.

Example: As for Lawson’s doubly
periodic H-surfaces in R3, the
fundamental piece Σ looks like this:



Daniel’s sister correspondence in H2 ×R and S2 ×R

E(κ, τ)-spaces

Simply-connected homogeneous 3-manifolds with
4-dimensional isometry group are given by a
2-parameter family E(κ, τ) with κ, τ ∈ R.

κ > 0 κ = 0 κ < 0

τ = 0 S2 ×R R3 H2 ×R

τ 6= 0 S3
b Nil3 S̃l2(R)

I Common framework for Thurston geometries
except for H3 and Sol3.

I E(κ, τ) admits a Killing submersion over

M2(κ) whose fibers are the integral curves
of a unitary Killing vector field.

 The constant τ is the bundle
curvature and accounts for the
integrability of the horizontal
distribution.

 The notions of vertical and horizontal
are natural in E(κ, τ).

Sister correspondence (Daniel, 2007)

Let ε ∈ {−1, 0, 1}. There is an isometric conjugation between:

1. minimal surfaces in E(4H2 + ε, H),

2. H-surfaces in E(ε, 0) = M2(ε)×R.

They determine each other up to (positive) isometries.

This yields the following cases:

minimal surface in gives an H-surface in

S2 ×R H2 ×R R3

S3
b (4H2 + ε, H) H > 0 H > 1/2 H > 0

Nil3 — H = 1/2 —

S̃L2(4H2 − 1, H) — 0 < H < 1/2 —

H2 ×R — H = 0 —

S2 ×R H = 0 — —

R3 — — H = 0



The conjugate technique in H2 ×R and S2 ×R

Let Σ̃# E(4H2 + ε, H) and Σ#M2(ε)×R be conjugate.

I Σ̃ and Σ are isometric.

I Their angle function ν = 〈N, ξ〉 = 〈Ñ, ξ̃〉 is the same.

I The tangent part of the Killing and the shape operator rotate
π
2 degrees in Σ with respect to Σ̃.

Boundary behavior ( — & Torralbo, 2012), (Plehnert, 2014)

(a) A horizontal geodesic γ̃ ⊂ Σ̃ corresponds to a planar line of

symmetry γ ⊂ Σ contained in a vertical plane M1(ε)×R.

(b) A vertical geodesic γ̃ ⊂ Σ̃ corresponds to a planar line of

symmetry γ ⊂ Σ contained in a horizontal slice M2(ε)× {t0}.

Hence Σ can be completed by succesive mirror symmetries.

I If θ is the angle between the normal to Σ and
a constant reference along γ̃, the geodesic
curvature κg of γ in M2 × {t0} verifies

κg = 2H − θ′ .

An easy but surprising example:

Minimal helicoids
in Berger spheres
E(4H2 + ε, H).

Vertical Delaunay
H-surfaces in R3,
S2 ×R and H2 ×R.



Compact H-surfaces with arbitrary genus in S2 ×R

Theorem ( — & Torralbo, 2019)

Given 0 < H < 1/2 and g ≥ 0, there is a compact embedded

H-surface in S2 ×R with genus g. It is invariant under a

dihedral group of symmetries of S2.

Steps in the construction

1. Find the points in which ν = 0 and ν = −1
by comparing with umbrellas and Hopf tori.

2. Fit the length ` = π
2 via continuity.

3. Embeddedness follows from estimates of the
curvature of the boundary (convex circles).



Horizontal Delaunay surfaces 1. Solution of the Plateau problem

We will consider the local model for the Berger spheresR3 ,
dx2 + dy2

(1 + 4H2+ε
4 (x2 + y2))2

+
(

dz +
H(xdy− xdy)

1 + 4H2+ε
4 (x2 + y2)

)2
 .

Boundary: Γ̃λ = h̃0 ∪ h̃1 ∪ h̃2 ∪ ṽ.

Solution of the Plateau problem: Σ̃λ

I Mean convex body with the helicoid
and the cylinder as barriers.

I Σ̃λ is a graph if and only if 0 ≤ λ ≤ π
2 .

I Γ̃λ is not a Nitsche graph if λ > π
2 .

Uniqueness of solution:

I Γ̃λ is actually a Nitsche graph in the
direction of the Killing vector field

X̃ = −y∂x + x∂y + 2H
4H2+κ

∂z

giving rise to a Killing submersion
structure inside the cylinder.

I Then Σ̃λ is the solution to a Dirichlet
problem over a half-disk:

I Understanding the model is crucial.



Horizontal Delaunay surfaces 2. Analysis of the angle function

The case 0 ≤ λ ≤ 1
2

I Vertical points (ν = 0): ṽ

I Horizontal points (ν = −1): 2̃ and 3̃

The case λ > 1
2

I Vertical points (ν = 0): ṽ ∪ δ̃

I Horizontal points (ν = ±1): 2̃ and 3̃

Analysis of vertical points: the zeroes of ν and ∇ν can be captured
by looking at the intersection with a tangent Clifford cylinder:

I ν = 0  at least 2 curves in the intersection.

I ν = ∇ν = 0  at least 3 curves in the intersection.



Horizontal Delaunay surfaces 3. Depiction of the conjugate surfaces

The case λ = 0: equivariant H-tori

The case 0 < λ < π
2 : H-unduloids

The case λ = π
2 : equivariant H-spheres

The case λ > π
2 : H-nodoids

Monotonicity properties

I The signed lengths `0, `1, `2 of the projections
depend monotonically on λ.

I The signed heights µ1, µ2 of the points 2 and 3
depend monotonically on λ.

I The lengths of h0 and v are equal and coincide
with those of vertical Delaunay H-surfaces (not
depending on λ).

Embeddedness
If the boundary Γ̃λ projects one-to-one to H2, then the
fundamental piece is embedded by maximum principle.
However, it is hard to control the curve ṽ.



Horizontal Delaunay surfaces 4. Embeddedness

Embeddedness of the fundamental annulus

I The initial minimal surface is a graph in the direction of X̃.

I ũ = 〈X̃, Ñ〉 lies in the kernel of the common stability operator and
extends to the fundamental annulus Aλ giving λ1(Aλ) = 0.

I Let X be the Killing vector field in M2(ε)×R coming from translations
along the axis Γ, so u = 〈X, N〉 vanishes on ∂Aλ .

I Hence, u = aλ ũ has sign and Aλ is a X-multigraph.

The unduloids do not go over the north pole if H > 1
2

I If H > 1
2 , the sphere (λ = π

2 )
does not go over the north pole.

Then neither do the curves h̃1
and h̃2 by monotonicity.

I If an interior point goes over the
north pole, then u = 0 at that
point (contradiction).

Moduli space

We obtain a family of examples in terms of
2-parameters

I H > 0: the value of the mean
curvature.

I m > 1: a half of the number of
fundamental pieces we need to
complete the equator of S2.

Each point of the dotted horizontal lines
represents an embedded H-torus with dihedral
symmetry group Dm .

I The picture looks like that of invariant
Delaunay surfaces in S3.

I The limit of tangent 1
2 -spheres shows

up again.



Horizontal Delaunay surfaces 5. The case of H2 ×R

Theorem ( — & Torralbo, 2020)

For each H > 1
2 , there is a 1-parameter family Σλ , λ > 0, of H-surfaces lying at

bounded distance from a horizontal geodesic Γ:

I If λ = 0, then Σλ is an H-cylinder invariant by hyperbolic translations.

I If 0 < λ < π
2 , then Σλ is a properly embedded H-unduloid.

I If λ = π
2 , then Σλ is a rotationally invariant H-sphere.

I If λ > π
2 , then Σλ is a proper (non-Alexandrov-embedded) H-nodoid.

Theorem ( — & Torralbo, 2020)

There are no properly immersed
H-surfaces in H2 ×R at bounded
distance from a horizontal
geodesic with H ≤ 1

2 .

Sketch. There is a foliation
CH = Σ0 of (H2 ×R)− Γ by the

H-cylinders with 1
2 < H < ∞.

Apply Mazet’s halfspace theorem.



Thanks for your attention...

... and cite us if you liked it.
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