Horizontal Delaunay surfaces with constant mean curvature in product spaces #### José M. Manzano ### Seminario de Geometría de la Universidad de Granada November 20th, 2020 Funded by the research program of the University of Jaén and partially supported by MICINN-FEDER research grants PID2019-111531GA-100 and MTM2017-89677-P #### hased on - —, F. Torralbo New examples of constant mean curvature surfaces in $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$. Michigan J. Math. **63** (2014), no. 4, 701–723. - —, F. Torralbo Compact embedded surfaces with constant mean curvature in $S^2 \times \mathbb{R}$. Amer. J. Math. **142** (2020), no. 4, 1981–1994. - ullet —, F. Torralbo Horizontal Delaunay surfaces with constant mean curvature in $S^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$. Preprint, arXiv:2007.06882. Introduction The Plateau conjugate technique Construction of the Delaunay surfaces ### Constant mean curvature surfaces #### Definition A surface Σ immersed in a 3-manifold N is an H-surface (i.e., it has constant mean curvature H) if: - (i) The second fundamental form σ has constant trace 2H, or equivalently - (ii) Σ is a critical point of $\mathcal{J} = \text{Area} 2H \cdot \text{Volume}$. If H=0, then such a Σ is called a minimal surface. They show up in nature as interfaces between fluids (Laplace-Young), motivating the popular isoperimetric and Plateau problems. However, nature is only interested in (local) minima. # Compact embedded H-surfaces in $\mathbb{S}^2 \times \mathbb{R}$ #### Alexandrov reflection principle Compact embedded H-surfaces in a product 3-manifold $M \times \mathbb{R}$ are bigraphs over domains $\Omega \subset M$. Compact embedded H-surfaces in \mathbb{R}^3 and $\mathbb{H}^2 \times \mathbb{R}$ must be rotational H-spheres (Alexandrov problem). However, there are many compact embedded H-surfaces in $\mathbb{S}^2 \times \mathbb{R}$. - ▶ The only compact minimal surfaces are the horizontal slices $\mathbb{S}^2 \times \{t_0\}$. - For any H > 0, there are rotationally invariant H-spheres and H-tori (Pedrosa-Ritoré). The value $H=\frac{1}{2}$ will play an important role ($\frac{1}{2}$ -spheres are bigraphs over an hemisphere of \mathbb{S}^2). #### Theorem (--, 2012) If $0 < H < \frac{1}{2}$, the complement of the domain of a compact H-bigraph in $\mathbb{S}^2 \times \mathbb{R}$ of genus g consists of g+1 convex disks. #### Theorem (— & Torralbo, 2019) For each $0 < H < \frac{1}{2}$ and $g \ge 0$, we find one compact embedded H-surface with genus g and dihedral symmetry in $\mathbb{S}^2 \times \mathbb{R}$. #### Theorem (— & Torralbo, 2020) For each $H > \frac{1}{2}$, we find finitely-many embedded H-tori with dihedral symmetry in $S^2 \times \mathbb{R}$. #### Open questions: - Are there more embedded H-tori in $\mathbb{S}^2 \times \mathbb{R}$? - ▶ Are there compact embedded H-surfaces in $\mathbb{S}^2 \times \mathbb{R}$ with arbitrary genus if $H \geq \frac{1}{2}$? # Lawson's conjugate technique in \mathbb{R}^3 #### Lawson correspondence There is an isometric conjugation between 0-surfaces in \mathbb{S}^3 and 1-surfaces in \mathbb{R}^3 . #### Steps in the construction: - 1. Choose a geodesic polygon $\widetilde{\Gamma} \subset \mathbb{S}^3$ whose angles are divisors of π . - Make sure that the Plateau problem for Γ has a solution Σ. Meeks-Yau's solution using mean-convex barriers - Consider the conjugate surface Σ in ℝ³. ⇔ Each component of its boundary is a plane curve. - Reflect Σ or Σ to obtain complete surfaces. Schwarz reflection principle for H-surfaces + absence of isolated singularities. Example: As for Lawson's doubly periodic H-surfaces in \mathbb{R}^3 , the fundamental piece Σ looks like this: # Daniel's sister correspondence in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$ #### $\mathbb{E}(\kappa, \tau)$ -spaces Simply-connected homogeneous 3-manifolds with 4-dimensional isometry group are given by a 2-parameter family $\mathbb{E}(\kappa,\tau)$ with $\kappa,\tau\in\mathbb{R}.$ | | $\kappa > 0$ | $\kappa = 0$ | $\kappa < 0$ | |-----------------------------|---|----------------------------|--| | $\tau = 0$
$\tau \neq 0$ | $\mathbb{S}^2 \times \mathbb{R}$ \mathbb{S}^3_b | \mathbb{R}^3
Nil $_3$ | $\begin{array}{l} \mathbb{H}^2 \times \mathbb{R} \\ \widetilde{\mathrm{Sl}}_2(\mathbb{R}) \end{array}$ | - Common framework for Thurston geometries except for IH³ and Sol₃. - $\mathbb{E}(\kappa, \tau)$ admits a Killing submersion over $\mathbb{M}^2(\kappa)$ whose fibers are the integral curves of a unitary Killing vector field. - The constant τ is the bundle curvature and accounts for the integrability of the horizontal distribution. - The notions of *vertical* and *horizontal* are natural in $\mathbb{E}(\kappa, \tau)$. #### Sister correspondence (Daniel, 2007) Let $\epsilon \in \{-1,0,1\}$. There is an isometric conjugation between: - 1. minimal surfaces in $\mathbb{E}(4H^2 + \epsilon, H)$, - 2. *H*-surfaces in $\mathbb{E}(\epsilon,0) = \mathbb{M}^2(\epsilon) \times \mathbb{R}$. They determine each other up to (positive) isometries. #### This yields the following cases: | minimal surface in | gives an H-surface in | | | |----------------------------------|----------------------------------|--------------------------------|----------------| | | $\mathbb{S}^2 \times \mathbb{R}$ | $\mathbb{H}^2\times\mathbb{R}$ | \mathbb{R}^3 | | $S_h^3(4H^2 + \epsilon, H)$ | H > 0 | H > 1/2 | H > 0 | | Nil ₃ | _ | H = 1/2 | _ | | $\widetilde{SL}_2(4H^2-1,H)$ | _ | 0 < H < 1/2 | _ | | $\mathbb{H}^2 \times \mathbb{R}$ | _ | H = 0 | _ | | $\mathbb{S}^2 \times \mathbb{R}$ | H = 0 | _ | _ | | \mathbb{R}^3 | _ | _ | H = 0 | # The conjugate technique in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$ Let $\widetilde{\Sigma} \hookrightarrow \mathbb{E}(4H^2 + \epsilon, H)$ and $\Sigma \hookrightarrow \mathbb{M}^2(\epsilon) \times \mathbb{R}$ be conjugate. - $ightharpoonup \widetilde{\Sigma}$ and Σ are isometric. - ► Their angle function $\nu = \langle N, \xi \rangle = \langle \widetilde{N}, \widetilde{\xi} \rangle$ is the same. - The tangent part of the Killing and the shape operator rotate $\frac{\pi}{2}$ degrees in Σ with respect to $\widetilde{\Sigma}$. #### Boundary behavior (— & Torralbo, 2012), (Plehnert, 2014) - (a) A horizontal geodesic $\widetilde{\gamma}\subset\widetilde{\Sigma}$ corresponds to a planar line of symmetry $\gamma\subset\Sigma$ contained in a vertical plane $\mathbb{M}^1(\epsilon)\times\mathbb{R}$. - (b) A vertical geodesic $\widetilde{\gamma}\subset\widetilde{\Sigma}$ corresponds to a planar line of symmetry $\gamma\subset\Sigma$ contained in a horizontal slice $\mathbb{M}^2(\epsilon)\times\{t_0\}$. Hence Σ can be completed by succesive mirror symmetries. ▶ If θ is the angle between the normal to Σ and a constant reference along $\tilde{\gamma}$, the geodesic curvature κ_g of γ in $\mathbb{M}^2 \times \{t_0\}$ verifies $\kappa_g = 2H - \theta'.$ #### An easy but surprising example: Minimal helicoids in Berger spheres $\mathbb{E}(4H^2 + \epsilon, H)$. # Compact H-surfaces with arbitrary genus in $\mathbb{S}^2 \times \mathbb{R}$ #### Theorem (— & Torralbo, 2019) Given 0 < H < 1/2 and $g \ge 0$, there is a compact embedded H-surface in $\mathbb{S}^2 \times \mathbb{R}$ with genus g. It is invariant under a dihedral group of symmetries of \mathbb{S}^2 . #### Steps in the construction - 1. Find the points in which $\nu=0$ and $\nu=-1$ by comparing with umbrellas and Hopf tori. - 2. Fit the length $\ell=\frac{\pi}{2}$ via continuity. - Embeddedness follows from estimates of the curvature of the boundary (convex circles). ### Horizontal Delaunay surfaces 1. Solution of the Plateau problem We will consider the local model for the Berger spheres $$\left[\mathbb{R}^{3}, \frac{dx^{2}+dy^{2}}{(1+\frac{4H^{2}+\epsilon}{4}(x^{2}+y^{2}))^{2}} + \left(dz + \frac{H(xdy-xdy)}{1+\frac{4H^{2}+\epsilon}{4}(x^{2}+y^{2})}\right)^{2}\right].$$ Boundary: $\widetilde{\Gamma}_{\lambda} = \widetilde{h}_0 \cup \widetilde{h}_1 \cup \widetilde{h}_2 \cup \widetilde{v}$. Solution of the Plateau problem: $\widetilde{\Sigma}_{\lambda}$ - Mean convex body with the helicoid and the cylinder as barriers. - $ightharpoonup \widetilde{\Sigma}_{\lambda}$ is a graph if and only if $0 \le \lambda \le \frac{\pi}{2}$. - $ightharpoonup \widetilde{\Gamma}_{\lambda}$ is not a Nitsche graph if $\lambda > \frac{\pi}{2}$. #### Uniqueness of solution: $$\widetilde{X} = -y\partial_x + x\partial_y + \frac{2H}{4H^2 + \kappa}\partial_z$$ giving rise to a Killing submersion structure inside the cylinder. Understanding the model is crucial. ### Horizontal Delaunay surfaces 2. Analysis of the angle function #### The case $0 \le \lambda \le \frac{1}{2}$ - Vertical points ($\nu = 0$): \widetilde{v} - ► Horizontal points $(\nu = -1)$: $\widetilde{2}$ and $\widetilde{3}$ #### The case $\lambda > \frac{1}{2}$ - Vertical points $(\nu = 0)$: $\widetilde{v} \cup \widetilde{\delta}$ - ightharpoonup Horizontal points ($u = \pm 1$): $\widetilde{2}$ and $\widetilde{3}$ Analysis of vertical points: the zeroes of ν and $\nabla \nu$ can be captured by looking at the intersection with a tangent Clifford cylinder: - $\nu = 0 \implies$ at least 2 curves in the intersection. - $\nu = \nabla \nu = 0 \implies$ at least 3 curves in the intersection. # Horizontal Delaunay surfaces 3. Depiction of the conjugate surfaces The case $\lambda = 0$: equivariant H-tori #### The case $0 < \lambda < \frac{\pi}{2}$: *H*-unduloids The case $\lambda = \frac{\pi}{2}$: equivariant *H*-spheres #### The case $\lambda > \frac{\pi}{2}$: *H*-nodoids #### Monotonicity properties - The signed lengths ℓ_0 , ℓ_1 , ℓ_2 of the projections depend monotonically on λ . - The signed heights μ_1 , μ_2 of the points 2 and 3 depend monotonically on λ . - ► The lengths of h_0 and v are equal and coincide with those of vertical Delaunay H-surfaces (not depending on λ). #### Embeddedness If the boundary $\widetilde{\Gamma}_{\lambda}$ projects one-to-one to \mathbb{H}^2 , then the fundamental piece is embedded by maximum principle. However, it is hard to control the curve \widetilde{v} . ### Horizontal Delaunay surfaces 4. Embeddedness #### Embeddedness of the fundamental annulus - ightharpoonup The initial minimal surface is a graph in the direction of \widetilde{X} . - $\widetilde{u} = \langle \widetilde{X}, \widetilde{N} \rangle \text{ lies in the kernel of the common stability operator and extends to the fundamental annulus } A_{\lambda} \text{ giving } \lambda_1(A_{\lambda}) = 0.$ - Let X be the Killing vector field in $\mathbb{M}^2(\epsilon) \times \mathbb{R}$ coming from translations along the axis Γ , so $u = \langle X, N \rangle$ vanishes on ∂A_λ . - ▶ Hence, $u = a_{\lambda} \widetilde{u}$ has sign and A_{λ} is a X-multigraph. #### The unduloids do not go over the north pole if $H > \frac{1}{2}$ - If $H > \frac{1}{2}$, the sphere $(\lambda = \frac{\pi}{2})$ does not go over the north pole. Then neither do the curves \widetilde{h}_1 and \widetilde{h}_2 by monotonicity. - If an interior point goes over the north pole, then u = 0 at that point (contradiction). #### Moduli space We obtain a family of examples in terms of 2-parameters - H > 0: the value of the mean curvature. - m > 1: a half of the number of fundamental pieces we need to complete the equator of S². Each point of the dotted horizontal lines represents an embedded H-torus with dihedral symmetry group D_m . - The picture looks like that of invariant Delaunay surfaces in S³. - ► The limit of tangent ½-spheres shows up again. ### Horizontal Delaunay surfaces 5. The case of $\mathbb{H}^2 \times \mathbb{R}$ #### Theorem (— & Torralbo, 2020) For each $H>\frac{1}{2}$, there is a 1-parameter family $\overline{\Sigma}_{\lambda}$, $\lambda>0$, of H-surfaces lying at bounded distance from a horizontal geodesic Γ : - If $\lambda = 0$, then $\overline{\Sigma}_{\lambda}$ is an *H*-cylinder invariant by hyperbolic translations. - If $0 < \lambda < \frac{\pi}{2}$, then $\overline{\Sigma}_{\lambda}$ is a properly embedded *H*-unduloid. - If $\lambda = \frac{\pi}{2}$, then $\overline{\Sigma}_{\lambda}$ is a rotationally invariant *H*-sphere. - If $\lambda > \frac{\pi}{2}$, then $\overline{\Sigma}_{\lambda}$ is a proper (non-Alexandrov-embedded) *H*-nodoid. #### Theorem (— & Torralbo, 2020) There are no properly immersed H-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ at bounded distance from a horizontal geodesic with $H \leq \frac{1}{2}$. Sketch. There is a foliation $C_H = \overline{\Sigma}_0$ of $(\mathbb{H}^2 \times \mathbb{R}) - \Gamma$ by the H-cylinders with $\frac{1}{2} < H < \infty$. Apply Mazet's halfspace theorem. ### Thanks for your attention... ... and cite us if you liked it.