On the convergence of minimal graphs

José M. Manzano

uJa"
 Instituto de Matemáticas
 Universidad de Granada

May 12, 2023

Supported by the MICIN/AEI grant PID2019-111531GA-I00, the research project FEDER-UJA Ref. 1380860 and the Ramón y Cajal fellowship RYC2019-027658-I.

based on

- A. Del Prete, J.M. Manzano, B. Nelli. The Jenkins-Serrin problem in 3-manifolds with a Killing vector field. In preparation.
- A.M. Lerma, J.M. Manzano. Compact stable surfaces with constant mean curvature in Killing submersions. Ann. Mat. Pura Appl. 196 (2017), no. 9, 1345-1364.

Killing submersions

Definition

A Killing submersion is a Riemannian submersion $\pi: \mathbb{E} \rightarrow M$, where \mathbb{E} and M are orientable and connected, such that the fibers of π are the integral curves of a nowhere vanishing Killing vector field ξ.

Examples

- Homogeneous 3-manifolds.
- Product manifolds $M \times \mathbb{R}$.
- Warped products $M \times \mu \mathbb{R}$.

Basic features

- $\xi \rightsquigarrow\left\{\Phi_{t}\right\}_{t \in \mathbb{R}}$ vertical translations.
- ξ is determined up to a constant.
- The fibers need not be geodesics.
- If a fiber has finite length, then all fibers have finite length.
- π admits a global section if:
- M is not compact, or
- fibers have infinite length.

Classification ingredients

1. Base surface M.
2. Killing length $\mu=\|\xi\|$

- $\mu \in C^{\infty}(M)$.

3. Bundle curvature $\tau=\frac{1}{\mu}\left\langle\nabla_{e_{1}} \xi, e_{2}\right\rangle$.
$\left\{e_{1}, e_{2}\right\}$ pos. on. basis of $\operatorname{ker}\left(\mathrm{d} \pi_{p}\right)^{\perp}$.

- $\tau \in C^{\infty}(M)$.
- τ does not depend on ξ.
- $\tau \equiv 0 \Leftrightarrow \operatorname{ker}\left(\mathrm{~d} \pi_{p}\right)^{\perp}$ integrable.

Theorem (Lerma-M)
Given $\tau, \mu \in C^{\infty}(M), \mu>0$, and M simply connected, we can recover univocally the Killing submersion if we assume the total space is also simply connected.

Killing graphs and Killing cylinders

Let $\pi: \mathbb{E} \rightarrow M$ be a Killing submersion

- A Killing graph over $\Omega \subset M$ is a smooth section $F: \Omega \rightarrow \pi^{-1}(\Omega) \subset \mathbb{E}$.
Let $\Omega \subset M$ with a smooth zero section $F_{0}: \Omega \rightarrow \mathbb{E}$, then any smooth graph over Ω can be expressed for some $u \in C^{\infty}(\Omega)$ as

$$
F_{u}: \Omega \rightarrow \mathbb{E}, \quad F_{u}(p)=\Phi_{u(p)}\left(F_{0}(p)\right)
$$

Mean curvature:

$$
H=\frac{1}{2 \mu} \operatorname{div}\left(\mu \pi_{*} N\right)=\frac{1}{2 \mu} \operatorname{div}\left(\frac{\mu^{2} G u}{\sqrt{1+\mu^{2}\|G u\|^{2}}}\right)
$$

Generalized gradient: $G u=\nabla u-Z$ with $Z \in \mathfrak{X}(\Omega)$ not depending on u satisfying

$$
\operatorname{div}(J Z)=\frac{-2 \tau}{\mu}
$$

Existence of sections (Lerma-M)

- $\pi: \mathbb{E} \rightarrow M$ admits a global section \Leftrightarrow either M is not compact or $\int_{M} \frac{\tau}{\mu}=0$.
- If $\Omega \subset M$ is precompact, then there is a minimal section over some open subset $\bar{\Omega} \subset U \subset M$.

- A Killing cylinder is the preimage by π of a curve $\Gamma \subset M$.

Mean curvature:

$$
2 H=\kappa_{g}-\left\langle\eta, \frac{1}{\mu} \nabla \mu\right\rangle=\mu \widetilde{\kappa}_{g}
$$

with the μ-metric $\mathrm{ds}_{\mu}^{2}=\mu^{2} \mathrm{~d} s_{M}^{2}$

- $H=0 \Leftrightarrow \mu$-geodesic
- $H \geq 0 \Leftrightarrow \mu$-convex

Corollaries (Del Prete-M-Nelli)

- Open book decompositions by minimal vertical cylinders.
- Local classification of invariant H-surfaces.

Local convergence

Let $\Omega \subset M$ be precompact $\rightsquigarrow \pi^{-1}(\Omega(\delta))$ has bounded geometry:

$$
\left|K_{\mathrm{sec}}^{\mathbb{E}}\right| \leq\left|K_{M}\right|+5 \tau^{2}+2\|\bar{\nabla} \tau\|+\frac{2 \tau}{\mu}\|\bar{\nabla} \mu\|+\left\|\bar{\nabla}^{2} \mu\right\| \leq \Lambda .
$$

Let Σ a the minimal graph given by $u \in \mathcal{C}^{\infty}(\Omega)$.

Rosenberg-Souam-Toubiana

- Gradient estimates:

$$
\|G u\| \leq C\left(C_{1}, C_{2}, \Lambda\right)
$$

if $\left|u_{1}\right| \leq C_{1}$ and $d_{M}(\cdot, \partial \Sigma) \geq C_{2}$.

- Curvature estimates:

$$
|A| \leq \frac{C\left(\delta^{2} \Lambda\right)}{\min \left\{d_{M}(\cdot, \partial \Sigma), \frac{\pi}{2 \Lambda}, \delta\right\}}
$$

- Uniform graph lemma: each $q \in \Sigma$ has a ball of uniform radius that admits harmonic coordinates.
- $\exp _{q}^{\mathbb{E}}(D(\rho)) \supset B_{\Sigma}\left(q, \rho_{0}\right)$ Euclidean graph of f.
- $|f(v)| \leq M|v|^{2}$ for all $v \in D(\rho)$ (Pérez-Ros). M, ρ, ρ_{0} depend on $d_{M}(\cdot, \partial \Sigma)$ and the geometry.

Bounded gradients

Let $\left\{u_{n}\right\}$ be minimal graphs in Ω such that $\left\|G u_{n}(p)\right\| \leq M$ for all n.

$$
\left\{u_{n}-u_{n}(p)\right\} \xrightarrow[\text { sub }]{\stackrel{C^{\infty}}{\rightarrow}} u_{\infty} \text { in } B(p, R)
$$

R depends on $M, d(p, \partial \Omega)$ and the geometry.

Unbounded gradients

Let $\left\{u_{n}\right\}$ be minimal graphs in Ω such that $\left\|G u_{n}(p)\right\| \rightarrow+\infty$.

$$
\left\{u_{n}-u_{n}(p)\right\} \underset{\text { sub }}{\stackrel{\mathcal{C}^{\infty}}{\rightarrow}} \begin{gathered}
\text { ball of a } \\
\text { minimal cylinder }
\end{gathered}
$$

(converge as surfaces, not as graphs).

Divergence lines

$$
\text { Let } \Sigma_{n}(p)=\Phi_{-u_{n}(p)} \Sigma_{u_{n}}
$$

Definition

A divergence line is a maximal μ-geodesic $L \subset \Omega$ such that $\Sigma_{n}(p)$ subconverges locally to $\pi^{-1}(L)$ around some $p \in L$.

Mazet-Rodríguez-Rosenberg

$\Sigma_{n}(p)$ subconverges to $\pi^{-1}(L)$
on all compact subsets
$K \subset \pi^{-1}(L)$.

There are many possible configurations of μ-geodesics, but our goal is to check that divergence lines cannot behave too weirdly.

We will assume hereafter that Ω has piecewise regular boundary consisting of μ-convex arcs or closed curves, possibly μ-geodesic.

Divergence lines are properly embedded

No self-intersections:

$$
\eta_{L}=\lim _{n \rightarrow \infty} \frac{\nabla u_{n}}{\left\|\nabla u_{n}\right\|}
$$

No interior accumulations:

The same applies in the boundary with minor changes.

Divergence levels

Assumption: all divergence lines are disjoint and let \mathcal{D} be their union.
Ω_{0} : connected component of $\Omega-\mathcal{D}$
L : divergence line in $\partial \Omega_{0}$ such that $\pm \eta_{L}$ exterior to Ω_{0}

Mazet-Rodríguez-Rosenberg

A subsequence $u_{\sigma(n)}-u_{\sigma(n)}\left(p_{0}\right), p_{0} \in \Omega_{0}$,
\Rightarrow converges in Ω_{0},

- diverges to $\pm \infty$ in L with

$$
\lim _{n \rightarrow \infty} \operatorname{Flux}\left(u_{\sigma(n)}, L\right)= \pm \text { Length }_{\mu}(L)
$$

\Rightarrow diverges to $\pm \infty$ in the adjacent component Ω_{1} (if any).

In the picture, we say that Ω_{1} (resp.
Ω_{2}) lies at a lower (resp. higher) divergence level than Ω_{0}.

These configurations are not okay:

Mazet-Rodríguez-Rosenberg: the assumption is not restrictive if there are countably many divergence lines.

Preventing divergence lines from touching the interior of the arcs

Lemma (Del Prete-M-Nelli)

Let $C \subset \partial \Omega$ be a μ-convex arc and $p \in C$. Let $u_{n} \in \mathcal{C}^{\infty}(\Omega) \cap \mathcal{C}^{0}(\Omega \cup C)$ be minimal graphs.

If $\left\{\left.u_{n}\right|_{C}-u_{n}(p)\right\} \rightarrow f \in \mathcal{C}^{0}(C)$ uniformly, then no divergence line ends at p.

We will assume this property (locally on each component of $\partial \Omega$) hereafter, so divergence lines either connect two vertices or they are closed curves.

It doesn't solve the countability issue:

Isotopy classes of divergence lines

Lemma (Del Prete-M-Nelli)

- The limit of divergence lines (as μ-geodesics) is again a divergence line.
- Isotopy classes are closed under limits.

Lemma (Del Prete-M-Nelli)
We can assume all divergence lines are disjoint after considering a subsequence.

Let \mathcal{I} be an isotopy class of divergence lines not isotopic to any boundary component:

- \mathcal{I} admits a linear order with maximum and minimum elements $L_{ \pm}$.
- The union of \mathcal{I} lies in a region $R_{\mathcal{I}}$, where there is no other divergence lines.
- All lines in \mathcal{I} have the same μ-length.
- The normals η_{L} point in the same direction.

$>$ There are neighboring components $\Omega_{ \pm}$.
Each component of $\Omega-\mathcal{D}$ is an inscribed polygon. There are finitely many regions Ω_{i} and $R_{\mathcal{I}_{j}} \rightsquigarrow$ Divergence levels apply!

The Jenkins-Serrin problem

$\Omega \subset M$ precompact with piecewise regular boundary consisting of μ-geodesic open arcs or simple closed curves $A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{s}$ and regular curves C_{1}, \ldots, C_{m} which are μ-convex with respect to the inner conormal to Ω. The finite set $V \subset \partial \Omega$ of endpoints of these curves is the corner set of Ω.

We are looking for

$$
u \in \mathcal{C}^{\infty}(\Omega) \cap \mathcal{C}^{0}\left(\Omega \cup\left(\cup C_{i}\right)\right)
$$

with limit values:

- $f_{i} \in \mathcal{C}^{0}\left(C_{i}\right)$ on each C_{i}
- $+\infty$ on each A_{i},
$--\infty$ on each B_{i}.
We will assume necessarily that no two A_{i} or two B_{i} meet at a convex corner.

For an inscribed μ-polygon $\mathcal{P} \subset \Omega$:

$$
\begin{aligned}
& \alpha(\mathcal{P})=\operatorname{Length}_{\mu}\left(\left(\cup A_{i}\right) \cap \mathcal{P}\right) \\
& \beta(\mathcal{P})=\operatorname{Length}_{\mu}\left(\left(\cup B_{i}\right) \cap \mathcal{P}\right) \\
& \gamma(\mathcal{P})=\operatorname{Length}_{\mu}(\mathcal{P})
\end{aligned}
$$

Theorem (Del Prete-M-Nelli)

Case $\left\{C_{i}\right\} \neq \varnothing$. There is solution iff
$2 \alpha(\mathcal{P})<\gamma(\mathcal{P}) \quad$ and $\quad 2 \beta(\mathcal{P})<\gamma(\mathcal{P})$
for every inscribed μ-polygon \mathcal{P}.
Case $\left\{C_{i}\right\}=\varnothing$. There is solution iff
$2 \alpha(\mathcal{P})<\gamma(\mathcal{P}) \quad$ and $\quad 2 \beta(\mathcal{P})<\gamma(\mathcal{P})$
for every inscribed μ-polygon $\mathcal{P} \neq \partial \Omega$ and $\alpha(\partial \Omega)=\beta(\partial \Omega)$.

Existence of solutions

Consider a sequence of minimal graphs

$$
u_{n}= \begin{cases}n & \text { on } \cup A_{i} \\ -n & \text { on } \cup B_{i}, \\ f_{i} \text { truncated at } \pm n & \text { on } C_{i} .\end{cases}
$$

(We employ the Perron process)

Lemma (Del Prete-M-Nelli)

No divergence line of $\left\{u_{n}\right\}$ is isotopic to any A_{i} or B_{i}. Moreover,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Flux}\left(u_{n}, A_{i}\right) & =\operatorname{Length}_{\mu}\left(A_{i}\right), \\
\lim _{n \rightarrow \infty} \operatorname{Flux}\left(u_{n}, B_{i}\right) & =-\operatorname{Length}_{\mu}\left(B_{i}\right) .
\end{aligned}
$$

(We use the JS-conditions)

The structure of the set of the divergence lines is finally clear!

Lemma (Del Prete-M-Nelli)
$\left\{u_{n}\right\}$ subconverges in all Ω under the JS-conditions.

By contradiction, if there were divergence lines, then follow the arrows to a maximally high component of $\Omega-\left(\mathcal{D} \cup\left(\cup R_{\mathcal{I}}\right)\right)$:

Such a component $\Omega_{0} \neq \Omega$ must contain some of the A_{i} or B_{i}, so that $\mathcal{P}=\partial \Omega_{0}$ contradicts the JS-conditions.

We're running out of time...

The rest of our work

1. The limit achieves the right boundary values:

- Continuous values f_{i} on C_{i}.
- Asymptotic values $\pm \infty$.

Barriers: small Scherk graphs + annuli
2. Uniqueness (up to vertical translations if $\cup C_{i}=\varnothing$).

Ex.1: New minimal surfaces in \mathbb{R}^{3}

Can they be continued analytically?

Ex.2: A wild Scherk graph in Nil_{3}

Gracias por venir...

... y citadnos si os ha gustado.

