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Killing submersions

Definition

A Killing submersion is a Riemannian submersion π : E → M, where E and M are
orientable and connected, such that the fibers of π are the integral curves of a
nowhere vanishing Killing vector field ξ.

Examples

▶ Homogeneous 3-manifolds.
▶ Product manifolds M × R.
▶ Warped products M ×µ R.

Basic features

▶ ξ ⇝ {Φt}t∈R vertical translations.

▶ ξ is determined up to a constant.

▶ The fibers need not be geodesics.

▶ If a fiber has finite length, then all
fibers have finite length.

▶ π admits a global section if:

– M is not compact, or

– fibers have infinite length.

Classification ingredients

1. Base surface M.

2. Killing length µ = ∥ξ∥
– µ ∈ C∞(M).

3. Bundle curvature τ = 1
µ ⟨∇e1 ξ, e2⟩.

{e1, e2} pos. on. basis of ker(dπp)⊥.

– τ ∈ C∞(M).
– τ does not depend on ξ.
– τ ≡ 0 ⇔ ker(dπp)⊥ integrable.

Theorem (Lerma–M)

Given τ, µ ∈ C∞(M), µ > 0, and M simply
connected, we can recover univocally the
Killing submersion if we assume the total
space is also simply connected.



Killing graphs and Killing cylinders

Let π : E → M be a Killing submersion

▶ A Killing graph over Ω ⊂ M is a smooth
section F : Ω → π−1(Ω) ⊂ E.

Let Ω ⊂ M with a smooth zero section F0 : Ω → E,
then any smooth graph over Ω can be expressed for
some u ∈ C∞(Ω) as

Fu : Ω → E, Fu(p) = Φu(p)(F0(p)).
▶ A Killing cylinder is the preimage

by π of a curve Γ ⊂ M.

Mean curvature:

H =
1

2µ
div(µ π∗N) =

1
2µ

div

(
µ2 Gu√

1 + µ2∥Gu∥2

)

Generalized gradient: Gu = ∇u − Z with Z ∈ X(Ω)
not depending on u satisfying

div(JZ) =
−2τ

µ

Mean curvature:

2H = κg − ⟨η, 1
µ∇µ⟩ = µ κ̃g

with the µ-metric ds2
µ = µ2ds2

M

▶ H = 0 ⇔ µ-geodesic

▶ H ≥ 0 ⇔ µ-convex

Existence of sections (Lerma–M)

▶ π : E → M admits a global section ⇔ either M
is not compact or

∫
M

τ
µ = 0.

▶ If Ω ⊂ M is precompact, then there is a minimal
section over some open subset Ω ⊂ U ⊂ M.

Corollaries (Del Prete–M–Nelli)

▶ Open book decompositions by
minimal vertical cylinders.

▶ Local classification of invariant
H-surfaces.



Local convergence

Let Ω ⊂ M be precompact ⇝ π−1(Ω(δ)) has bounded geometry:

|KE
sec| ≤ |KM |+ 5τ2 + 2∥∇τ∥+ 2τ

µ ∥∇µ∥+ ∥∇2µ∥ ≤ Λ.

Let Σ a the minimal graph given by u ∈ C∞(Ω).

Rosenberg–Souam–Toubiana

▶ Gradient estimates:

∥Gu∥ ≤ C(C1, C2, Λ)

if |u1| ≤ C1 and dM(·, ∂Σ) ≥ C2.

▶ Curvature estimates:

|A| ≤ C(δ2Λ)

min{dM(·, ∂Σ), π
2Λ , δ} .

▶ Uniform graph lemma: each q ∈ Σ has a ball of
uniform radius that admits harmonic coordinates.

– expE
q (D(ρ)) ⊃ BΣ(q, ρ0) Euclidean graph of f .

– | f (v)| ≤ M|v|2 for all v ∈ D(ρ) (Pérez–Ros).

M, ρ, ρ0 depend on dM(·, ∂Σ) and the geometry.

Bounded gradients

Let {un} be minimal graphs in Ω such
that ∥Gun(p)∥ ≤ M for all n.

{un − un(p)} C∞
→
sub

u∞ in B(p, R)

R depends on M, d(p, ∂Ω) and the
geometry.

Unbounded gradients

Let {un} be minimal graphs in Ω such
that ∥Gun(p)∥ → +∞.

{un − un(p)} C∞
→
sub

ball of a
minimal cylinder

(converge as surfaces, not as graphs).



Divergence lines

Let Σn(p) = Φ−un(p)Σun

Definition

A divergence line is a maximal
µ-geodesic L ⊂ Ω such that
Σn(p) subconverges locally to
π−1(L) around some p ∈ L.

Mazet–Rodŕıguez–Rosenberg

Σn(p) subconverges to π−1(L)
on all compact subsets
K ⊂ π−1(L).

There are many possible configurations of µ-geodesics, but our goal is to check
that divergence lines cannot behave too weirdly.

We will assume hereafter that Ω has piecewise regular boundary consisting of
µ-convex arcs or closed curves, possibly µ-geodesic.



Divergence lines are properly embedded

No self-intersections: No interior accumulations:

The same applies in the boundary with
minor changes.



Divergence levels

Assumption: all divergence lines are disjoint and let D be their union.
Ω0: connected component of Ω −D
L: divergence line in ∂Ω0 such that ±ηL exterior to Ω0

Mazet–Rodŕıguez–Rosenberg

A subsequence uσ(n) − uσ(n)(p0), p0 ∈ Ω0,

▶ converges in Ω0,

▶ diverges to ±∞ in L with

lim
n→∞

Flux(uσ(n), L) = ±Lengthµ(L),

▶ diverges to ±∞ in the adjacent
component Ω1 (if any).

In the picture, we say that Ω1 (resp.
Ω2) lies at a lower (resp. higher)
divergence level than Ω0.

These configurations are not okay:

Mazet–Rodŕıguez–Rosenberg: the
assumption is not restrictive if there
are countably many divergence lines.



Preventing divergence lines from touching the interior of the arcs

Lemma (Del Prete–M–Nelli)

Let C ⊂ ∂Ω be a µ-convex arc and p ∈ C. Let
un ∈ C∞(Ω) ∩ C0(Ω ∪ C) be minimal graphs.

If {un|C − un(p)} → f ∈ C0(C) uniformly,
then no divergence line ends at p.

We will assume this property (locally
on each component of ∂Ω) hereafter,
so divergence lines either connect two
vertices or they are closed curves.

It doesn’t solve the countability issue:



Isotopy classes of divergence lines

Lemma (Del Prete–M–Nelli)

▶ The limit of divergence lines (as µ-geodesics) is
again a divergence line.

▶ Isotopy classes are closed under limits.

Lemma (Del Prete–M–Nelli)

We can assume all divergence lines are disjoint
after considering a subsequence.

Let I be an isotopy class of divergence lines not
isotopic to any boundary component:

▶ I admits a linear order with maximum and
minimum elements L±.

▶ The union of I lies in a region RI , where
there is no other divergence lines.

▶ All lines in I have the same µ-length.

▶ The normals ηL point in the same direction.

▶ There are neighboring components Ω±.

Each component of Ω −D is an inscribed polygon.
There are finitely many regions Ωi and RIj ⇝ Divergence levels apply!



The Jenkins–Serrin problem

Ω ⊂ M precompact with piecewise
regular boundary consisting of
µ-geodesic open arcs or simple closed
curves A1, . . . , Ar, B1, . . . , Bs and
regular curves C1, . . . , Cm which are
µ-convex with respect to the inner
conormal to Ω. The finite set V ⊂ ∂Ω
of endpoints of these curves is the
corner set of Ω.

We are looking for

u ∈ C∞(Ω) ∩ C0(Ω ∪ (∪Ci))

with limit values:

▶ fi ∈ C0(Ci) on each Ci
▶ +∞ on each Ai,

▶ −∞ on each Bi.

We will assume necessarily that no two
Ai or two Bi meet at a convex corner.

For an inscribed µ-polygon P ⊂ Ω:

α(P) = Lengthµ((∪Ai) ∩ P),

β(P) = Lengthµ((∪Bi) ∩ P),

γ(P) = Lengthµ(P).

Theorem (Del Prete–M–Nelli)

Case {Ci} ̸= ∅. There is solution iff

2α(P) < γ(P) and 2β(P) < γ(P)

for every inscribed µ-polygon P .

Case {Ci} = ∅. There is solution iff

2α(P) < γ(P) and 2β(P) < γ(P)

for every inscribed µ-polygon P ̸= ∂Ω
and α(∂Ω) = β(∂Ω).



Existence of solutions

Consider a sequence of minimal graphs

un =


n on ∪ Ai,
−n on ∪ Bi,
fi truncated at ±n on Ci.

(We employ the Perron process)

Lemma (Del Prete–M–Nelli)

No divergence line of {un} is isotopic
to any Ai or Bi.Moreover,

lim
n→∞

Flux(un, Ai) = Lengthµ(Ai),

lim
n→∞

Flux(un, Bi) = −Lengthµ(Bi).

(We use the JS-conditions)

The structure of the set of the
divergence lines is finally clear!

Lemma (Del Prete–M–Nelli)

{un} subconverges in all Ω under the
JS-conditions.

By contradiction, if there were
divergence lines, then follow the arrows
to a maximally high component of
Ω − (D ∪ (∪RI )):

highest level

Such a component Ω0 ̸= Ω must
contain some of the Ai or Bi, so that
P = ∂Ω0 contradicts the JS-conditions.



We’re running out of time...

The rest of our work

1. The limit achieves the right boundary values:
– Continuous values fi on Ci.
– Asymptotic values ±∞.

Barriers: small Scherk graphs + annuli

2. Uniqueness (up to
vertical translations if
∪Ci = ∅).

Ex.1: New minimal surfaces in R3

Can they be continued analytically?

Ex.2: A wild Scherk graph in Nil3



Gracias por venir...

... y citadnos si os ha gustado.


	Killing submersions
	Divergence lines
	The Jenkins–Serrin problem

