On the convergence of minimal graphs

José M. Manzano

Universidad de Jaén

May 12, 2023

Supported by the MICIN/AEI grant PID2019-111531GA-I00, the research project FEDER-UJA Ref. 1380860 and the Ramón y Cajal fellowship RYC2019-027658-I.

based on

• A. Del Prete, J.M. Manzano, B. Nelli. The Jenkins-Serrin problem in 3-manifolds with a Killing vector field. *In preparation*.

• A.M. Lerma, J.M. Manzano. Compact stable surfaces with constant mean curvature in Killing submersions. *Ann. Mat. Pura Appl.* **196** (2017), no. 9, 1345–1364.

Killing submersions

Definition

A Killing submersion is a Riemannian submersion $\pi : \mathbb{E} \to M$, where \mathbb{E} and M are orientable and connected, such that the fibers of π are the integral curves of a nowhere vanishing Killing vector field ξ .

Examples

- Homogeneous 3-manifolds.
- Product manifolds M × R.
- ▶ Warped products $M \times_{\mu} \mathbb{R}$.

Basic features

- ► $\xi \rightsquigarrow \{\Phi_t\}_{t \in \mathbb{R}}$ vertical translations.
- $\blacktriangleright \xi$ is determined up to a constant.
- ▶ The fibers need not be geodesics.

► If a fiber has finite length, then all fibers have finite length.

- $\blacktriangleright \pi$ admits a global section if:
 - M is not compact, or
 - fibers have infinite length.

Classification ingredients

- 1. Base surface M.
- 2. Killing length $\mu = \|\xi\|$

 $- \mu \in C^{\infty}(M).$

3. Bundle curvature $\tau = \frac{1}{\mu} \langle \nabla_{e_1} \xi, e_2 \rangle$.

 $\{e_1, e_2\}$ pos. on. basis of ker $(d\pi_p)^{\perp}$.

- $\tau \in C^{\infty}(M).$
- τ does not depend on ξ .
- $\tau \equiv 0 \Leftrightarrow \ker(\mathrm{d}\pi_p)^{\perp}$ integrable.

Theorem (Lerma–M)

Given $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$, and M simply connected, we can recover univocally the Killing submersion if we assume the total space is also simply connected.

Killing graphs and Killing cylinders

Let $\pi: \mathbb{E} \to M$ be a Killing submersion

► A Killing graph over $\Omega \subset M$ is a smooth section $F : \Omega \to \pi^{-1}(\Omega) \subset \mathbb{E}$.

Let $\Omega \subset M$ with a smooth zero section $F_0 : \Omega \to \mathbb{E}$, then any smooth graph over Ω can be expressed for some $u \in C^{\infty}(\Omega)$ as

$$F_u: \Omega \to \mathbb{E}, \qquad F_u(p) = \Phi_{u(p)}(F_0(p)).$$

Mean curvature:

$$H = \frac{1}{2\mu} \operatorname{div}(\mu \, \pi_* N) = \frac{1}{2\mu} \operatorname{div}\left(\frac{\mu^2 \, G u}{\sqrt{1 + \mu^2 \|G u\|^2}}\right)$$

Generalized gradient: $Gu = \nabla u - Z$ with $Z \in \mathfrak{X}(\Omega)$ not depending on u satisfying

$$\operatorname{div}(JZ) = \frac{-2\tau}{\mu}$$

Existence of sections (Lerma–M)

▶ $\pi : \mathbb{E} \to M$ admits a global section \Leftrightarrow either M is not compact or $\int_M \frac{\pi}{u} = 0$.

▶ If $\Omega \subset M$ is precompact, then there is a minimal section over some open subset $\overline{\Omega} \subset U \subset M$.

A Killing cylinder is the preimage by π of a curve Γ ⊂ M.

Mean curvature:

$$2H = \kappa_g - \langle \eta, \frac{1}{\mu} \nabla \mu \rangle = \mu \, \widetilde{\kappa}_g$$

with the μ -metric $ds_{\mu}^2 = \mu^2 ds_M^2$

- ► $H = 0 \Leftrightarrow \mu$ -geodesic
- ► $H \ge 0 \Leftrightarrow \mu$ -convex

Corollaries (Del Prete-M-Nelli)

 Open book decompositions by minimal vertical cylinders.

► Local classification of invariant *H*-surfaces.

Local convergence

Let $\Omega \subset M$ be precompact $\rightsquigarrow \pi^{-1}(\Omega(\delta))$ has bounded geometry:

$$|K_{\text{sec}}^{\mathbb{E}}| \le |K_M| + 5\tau^2 + 2\|\overline{\nabla}\tau\| + \frac{2\tau}{\mu}\|\overline{\nabla}\mu\| + \|\overline{\nabla}^2\mu\| \le \Lambda.$$

Let Σ a the minimal graph given by $u \in \mathcal{C}^{\infty}(\Omega)$.

Rosenberg-Souam-Toubiana

Gradient estimates:

 $\|Gu\| \leq C(C_1, C_2, \Lambda)$

- if $|u_1| \leq C_1$ and $d_M(\cdot, \partial \Sigma) \geq C_2$.
- Curvature estimates:

$$|A| \leq \frac{C(\delta^2 \Lambda)}{\min\{d_M(\cdot, \partial \Sigma), \frac{\pi}{2\Lambda}, \delta\}}$$

▶ Uniform graph lemma: each $q \in \Sigma$ has a ball of uniform radius that admits harmonic coordinates.

 $- \exp_q^{\mathbb{E}}(D(\rho)) \supset B_{\Sigma}(q, \rho_0)$ Euclidean graph of f.

 $- |f(v)| \le M |v|^2 \text{ for all } v \in D(\rho) \text{ (Pérez-Ros)}.$ $M, \rho, \rho_0 \text{ depend on } d_M(\cdot, \partial \Sigma) \text{ and the geometry.}$

Bounded gradients

Let $\{u_n\}$ be minimal graphs in Ω such that $||Gu_n(p)|| \le M$ for all n.

$$\{u_n - u_n(p)\} \xrightarrow[]{\mathcal{C}^{\infty}}{sub} u_{\infty} \text{ in } B(p, R)$$

R depends on $M,\,d(p,\partial\Omega)$ and the geometry.

Unbounded gradients

Let $\{u_n\}$ be minimal graphs in Ω such that $||Gu_n(p)|| \to +\infty$.

 $\{u_n - u_n(p)\} \xrightarrow{\mathcal{C}^{\infty}}_{\text{sub}} \text{ minimal cylinder}$

(converge as surfaces, not as graphs).

Divergence lines

Let
$$\Sigma_n(p) = \Phi_{-u_n(p)} \Sigma_{u_n}$$

Definition

A divergence line is a maximal μ -geodesic $L \subset \Omega$ such that $\Sigma_n(p)$ subconverges locally to $\pi^{-1}(L)$ around some $p \in L$.

Mazet-Rodríguez-Rosenberg $\Sigma_n(p)$ subconverges to $\pi^{-1}(L)$ on all compact subsets $K \subset \pi^{-1}(L)$.

There are many possible configurations of μ -geodesics, but our goal is to check that divergence lines cannot behave too weirdly.

We will assume hereafter that Ω has piecewise regular boundary consisting of μ -convex arcs or closed curves, possibly μ -geodesic.

Divergence lines are properly embedded

No self-intersections:

No interior accumulations:

minor changes.

Divergence levels

Assumption: all divergence lines are disjoint and let \mathcal{D} be their union. Ω_0 : connected component of $\Omega - \mathcal{D}$

L: divergence line in $\partial\Omega_0$ such that $\pm\eta_L$ exterior to Ω_0

Mazet-Rodríguez-Rosenberg

A subsequence $u_{\sigma(n)}-u_{\sigma(n)}(p_0)$, $p_0\in\Omega_0$,

- converges in Ω₀,
- diverges to $\pm \infty$ in L with

 $\lim_{n \to \infty} \operatorname{Flux}(u_{\sigma(n)}, L) = \pm \operatorname{Length}_{\mu}(L),$

diverges to ±∞ in the adjacent component Ω₁ (if any).

In the picture, we say that Ω_1 (resp. Ω_2) lies at a lower (resp. higher) divergence level than Ω_0 .

These configurations are not okay:

Mazet–Rodríguez–Rosenberg: the assumption is not restrictive if there are countably many divergence lines.

Lemma (Del Prete-M-Nelli)

Let $C \subset \partial \Omega$ be a μ -convex arc and $p \in C$. Let $u_n \in \mathcal{C}^{\infty}(\Omega) \cap \mathcal{C}^0(\Omega \cup C)$ be minimal graphs.

If $\{u_n|_C - u_n(p)\} \to f \in \mathcal{C}^0(C)$ uniformly, then no divergence line ends at p.

We will assume this property (locally on each component of $\partial\Omega$) hereafter, so divergence lines either connect two vertices or they are closed curves.

It doesn't solve the countability issue:

Isotopy classes of divergence lines

Lemma (Del Prete-M-Nelli)

▶ The limit of divergence lines (as μ -geodesics) is again a divergence line.

Isotopy classes are closed under limits.

Lemma (Del Prete-M-Nelli)

We can assume all divergence lines are disjoint after considering a subsequence.

Let ${\mathcal I}$ be an isotopy class of divergence lines not isotopic to any boundary component:

- *I* admits a linear order with maximum and minimum elements L_±.
- ► The union of *I* lies in a region *R*_{*I*}, where there is no other divergence lines.
- All lines in \mathcal{I} have the same μ -length.
- The normals η_L point in the same direction.
- There are neighboring components Ω_{\pm} .

Each component of $\Omega - D$ is an inscribed polygon. There are finitely many regions Ω_i and $R_{\mathcal{I}_i} \rightsquigarrow$ Divergence levels apply!

The Jenkins-Serrin problem

 $\Omega \subset M$ precompact with piecewise regular boundary consisting of μ -geodesic open arcs or simple closed curves $A_1, \ldots, A_r, B_1, \ldots, B_s$ and regular curves C_1, \ldots, C_m which are μ -convex with respect to the inner conormal to Ω . The finite set $V \subset \partial \Omega$ of endpoints of these curves is the corner set of Ω .

We are looking for

 $u \in \mathcal{C}^{\infty}(\Omega) \cap \mathcal{C}^{0}(\Omega \cup (\cup C_{i}))$

with limit values:

- ▶ $f_i \in C^0(C_i)$ on each C_i
- ▶ $+\infty$ on each A_i ,
- ▶ $-\infty$ on each B_i .

We will assume necessarily that no two A_i or two B_i meet at a convex corner.

For an inscribed μ -polygon $\mathcal{P} \subset \Omega$: $\alpha(\mathcal{P}) = \text{Length}_{\mu}((\cup A_i) \cap \mathcal{P}),$ $\beta(\mathcal{P}) = \text{Length}_{\mu}((\cup B_i) \cap \mathcal{P}),$ $\gamma(\mathcal{P}) = \text{Length}_{\mu}(\mathcal{P}).$

Theorem (Del Prete–M–Nelli) Case $\{C_i\} \neq \emptyset$. There is solution iff $2\alpha(\mathcal{P}) < \gamma(\mathcal{P})$ and $2\beta(\mathcal{P}) < \gamma(\mathcal{P})$ for every inscribed μ -polygon \mathcal{P} . Case $\{C_i\} = \emptyset$. There is solution iff $2\alpha(\mathcal{P}) < \gamma(\mathcal{P})$ and $2\beta(\mathcal{P}) < \gamma(\mathcal{P})$ for every inscribed μ -polygon $\mathcal{P} \neq \partial\Omega$ and $\alpha(\partial\Omega) = \beta(\partial\Omega)$.

Existence of solutions

Consider a sequence of minimal graphs

$$u_n = \begin{cases} n & \text{on } \cup A_i, \\ -n & \text{on } \cup B_i, \\ f_i \text{ truncated at } \pm n & \text{on } C_i. \end{cases}$$

(We employ the Perron process)

Lemma (Del Prete-M-Nelli)

No divergence line of $\{u_n\}$ is isotopic to any A_i or B_i . Moreover,

 $\lim_{n \to \infty} \operatorname{Flux}(u_n, A_i) = \operatorname{Length}_{\mu}(A_i),$ $\lim_{n \to \infty} \operatorname{Flux}(u_n, B_i) = -\operatorname{Length}_{\mu}(B_i).$

(We use the JS-conditions)

The structure of the set of the divergence lines is finally clear!

Lemma (Del Prete-M-Nelli)

 $\{u_n\}$ subconverges in all Ω under the JS-conditions.

By contradiction, if there were divergence lines, then follow the arrows to a maximally high component of $\Omega - (\mathcal{D} \cup (\cup R_{\mathcal{I}}))$:

Such a component $\Omega_0 \neq \Omega$ must contain some of the A_i or B_i , so that $\mathcal{P} = \partial \Omega_0$ contradicts the JS-conditions.

The rest of our work

- 1. The limit achieves the right boundary values:
 - Continuous values f_i on C_i .
 - Asymptotic values $\pm\infty$.

Barriers: small Scherk graphs + annuli

2. Uniqueness (up to vertical translations if $\cup C_i = \emptyset$).

Ex.1: New minimal surfaces in \mathbb{R}^3

Can they be continued analytically?

Ex.2: A wild Scherk graph in Nil_3

Gracias por venir...

... y citadnos si os ha gustado.