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Basic concepts and notation

(V, g) is an n-dimensional, oriented and time-oriented,
Lorentzian manifold with metric tensor g of signature
(−,+, . . . ,+).
∀x ∈ V, the isomorphism between TxV and T ∗xV is denoted by

[ : TxV −→ T ∗xV
v 7−→ v[

and defined by v[(w) = g(v, w), ∀w ∈ TxV.
Its inverse map is denoted by ]. These maps extend naturally
to the tangent and co-tangent bundles.

Definition (Codimension-two (imbedded) submanifold)

A codimension-two submanifold —a “surface” if n = 4—is
(S,Φ), where S is an (n− 2)-dimensional oriented manifold and
Φ : S −→ V is an imbedding.

(S will be identified with its image Φ(S) ⊂ V.)



1st fundamental form and orthogonal splitting

The first fundamental form: h ≡ Φ∗g.
h is assumed to be positive definite on S, so that S is
spacelike.
Then, at any x ∈ S one has the orthogonal decomposition

TxV = TxS ⊕ TxS⊥ .

X(S) (respectively X(S)⊥) will denote the set of smooth
vector fields tangent (resp. orthogonal) to S.
We will often give definitions and properties on X(S), but they
of course have always a previous, more fundamental, version
on each TxS.



Special bases on X(S)⊥. Boost freedom

S having co-dimension 2, there are two independent normal
vector fields on S: two sections on the normal bundle which
are linearly independent at each x ∈ S.
A possible choice is that they constitute an orthonormal (ON)
basis on X(S)⊥. Notation: u,m ∈ X(S)⊥, with

g(m,m) = −g(u, u) = 1, g(u,m) = 0 .

u will be assumed to point to the future
Any two such ON bases are related by a boost:(

u′

m′

)
=

(
coshβ sinhβ
sinhβ coshβ

)(
u
m

)
, β ∈ C∞(S)

(1)



The null normals

Another possible choice, which will be fundamental in our
discussion, is to take two independent normal null vector fields
(and future-pointing say). We will denote these by
k, ` ∈ X(S)⊥, so that

g(`, `) = g(k, k) = 0, g(`, k) = −1

The last of these is a convenient normalization condition
Observe that, to any ON basis {u,m} on X(S)⊥, one can
associate a null basis given by

√
2 ` = u+m and√

2 k = u−m (also ` = u+m and 2k = u−m, etc.)
The boost freedom becomes now simply

` −→ `′ = eβ`, k −→ k′ = e−βk (2)

so that the two independent null directions are uniquely
determined on S.



Volume forms and Hodge dual operators

The canonical volume element (n− 2)-form associated to
(S, h) is denoted by ε̄, while ε is the volume n-form in (V, g).
There is also a volume element 2-form on X(S)⊥, induced by ε
and ε̄ and denoted by ε⊥. The corresponding Hodge dual
operator is written and defined by

?⊥N ≡ (iN ε
⊥)], ∀N ∈ X(S)⊥

The orientations of (V, g) and of (S, h) will be chosen such
that the operator ?⊥ acts on the previous bases as follows

?⊥u = m, ?⊥m = u; ?⊥` = `, ?⊥k = −k.

?⊥N defines the unique normal direction in X(S)⊥ orthogonal
to the normal N ∈ X(S)⊥.



Covariant derivatives

Let ∇ denote the canonical connection in (V, g)

The Levi-Civita connection ∇ on (S, h) can be defined as

∇X Y ≡ (∇X Y )T ∀X,Y ∈ X(S)

The normal connection D acts, in turn, on X(S)⊥

DX : X(S)⊥ −→ X(S)⊥

for X ∈ X(S), and is given by the standard definition

DXN ≡ (∇XN)⊥ , ∀N ∈ X(S)⊥ ∀X ∈ X(S).



The normal connection one-form s

For a fixed ON basis on X(S)⊥, a one-form s ∈ Λ1(S) is
defined by

s(X) ≡ −g(u,DXm) = g(DXu,m) ∀X ∈ X(S)

For
√

2` = u+m and
√

2k = u−m one also has

s(X) ≡ −g(k,DX`) = g(DXk, `) ∀X ∈ X(S)

Therefore, for all X ∈ X(S)

DXu = s(X)m, DXm = s(X)u;

DX` = s(X)`, DXk = −s(X)k

Observe that s is not invariant under boost rotations. It is a
“connection": s′(X) = s(X) +X(β) or simply

s′ = s+ dβ.

ds is thus invariant and well-defined (related to the normal
curvature).



Extrinsic geometry

The basic extrinsic object is the shape tensor (also called
second fundamental form tensor) of S in (V, g):

II : X(S)× X(S) −→ X(S)⊥

defined by

−II(X,Y ) ≡ (∇X Y )⊥ ∀X,Y ∈ X(S)

Observe that

∇X Y = ∇X Y − II(X,Y ) ∀X,Y ∈ X(S)

II contains the information concerning the “shape” of S within
V along all directions normal to S.

Definition (Totally geodesic S)

The submanifold S is called totally geodesic if every geodesic
within (S, h) is a geodesic of the space-time (V, g). Equivalently, if

II = 0



Second fundamental forms

Definition (Second fundamental form relative to N ∈ X(S)⊥)

∀N ∈ X(S)⊥, the second fundamental form of S in (V, g) relative
to N is the 2-covariant symmetric tensor field on S defined by

KN (X,Y ) ≡ g (N, II(X,Y )) , ∀X,Y ∈ X(S) .

The shape tensor decomposes as

II(X,Y ) = −Kk(X,Y ) `−K`(X,Y ) k

in the null basis, or as

II(X,Y ) = −Ku(X,Y ) u+Km(X,Y ) m

in any ON basis, ∀X,Y ∈ X(S).

Observe that these formulae are invariant under the boost freedom.



Weingarten operators

Definition (Weingarten operator relative to N ∈ X(S)⊥)

The Weingarten operator AN : X(S) −→ X(S) associated to
N ∈ X(S)⊥ is defined by

AN (X) ≡ (∇XN)T ∀X ∈ X(S)

(Sometimes AN is denoted by χN in the Physics literature)

Observe that ∇XN = AN (X) +DXN and that

h(AN (X), Y ) = KN (X,Y ), ∀X,Y ∈ X(S)

Therefore, at each x ∈ S, AN |x is a self-adjoint (with respect to h)
linear transformation on TxS. As such, it is always diagonalizable
over R.



The mean curvature vector H

Definition (The mean curvature vector field H)

The mean curvature vector field H ∈ X(S)⊥ is defined as the trace
of the shape tensor with respect to h, or explicitly

H ≡ −(trAk) `− (trA`) k (3)

in a null basis, or

H ≡ −(trAu) u+ (trAm) m (3′)

in ON bases.

Notice that H and

?⊥H = −(trAk) `+ (trA`) k = −(trAu) m+ (trAm) u

are well-defined, they are invariant under the boost gauge freedom,
and actually under arbitrary changes of basis.



The null expansions

Definition (Expansion along N ∈ X(S)⊥)

Each component of H along a particular normal direction

θN ≡ g(H,N) = trAN

is termed “expansion along N ” of S. In particular,

θk ≡ g(H, k) = trAk, θ` ≡ g(H, `) = trA`

are called the null expansions.

Important: Note that the expansions are not invariant under the
boost freedom, e.g. θk′ = e−βθk and θ`′ = eβθ`, however their
signs are invariant.



Another extrinsic vector field G

For each Weingarten operator AN , its trace-free part

ÃN ≡ AN −
θN
n− 2

1 (trÃN = 0)

is called the shear matrix relative to N ∈ X(S)⊥.
The shear scalar —or simply the shear—relative to
N ∈ X(S)⊥ is the non-negative scalar given by

σ2
N ≡ trÃ2

N

We define the vector field G ∈ X(S)⊥ by

G ≡ σk `+ σ` k ( 6= σu u− σmm)!!

G, as well as
?⊥G = σk `− σ` k

are invariant under the boost freedom (2).



Totally umbilical submanifolds

Definition (Totally umbilical points)

A point x ∈ S is said to be totally umbilical if

ÃN |x = 0 ∀N ∈ X(S)⊥.

S is called totally umbilical if every x ∈ S is totally umbilical.
Equivalently,

II(X,Y ) =
1

n− 2
h(X,Y )H, ∀X,Y ∈ X(S)

Result
S is totally umbilical if and only if G = 0.



The Casorati operator and curvature

For any ON basis {ei} in X(S), set by definition

J(X,Y ) ≡
n−2∑
i=1

g (II(ei, X), II(ei, Y )) ∀X,Y ∈ X(S) .

J(X,Y ) is a 2-covariant symmetric tensor field on S.

Then, the Casorati operator

B : X(S)→ X(S)

is simply defined by

g(B(X), Y ) ≡ J(X,Y ) ∀X,Y ∈ X(S) .

One can check that B = −{Ak, A`}.
B is invariant under the boost freedom. Observe furthermore that

trB = g(II, II).

sometimes called the Casorati curvature.



Curvatures

The intrinsic curvature for (S, h) has the usual definition

R(X,Y )Z ≡ ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z, ∀X,Y, Z ∈ X(S)

Similarly, the normal curvature is defined on S by

R⊥(X,Y )N ≡ DXDYN−DYDXN−D[X,Y ]N, ∀N ∈ X(S)⊥

A simple calculation provides

R⊥(X,Y )N = ds(X,Y ) ?⊥N, ∀X,Y ∈ X(S), ∀N ∈ X(S)⊥

This justifies that s characterizes the normal connection and
that ds defines its curvature.



Forms of the Gauss equation
For all X,Y, Z,W ∈ X(S)

R(W,Z,X, Y ) = R(W,Z,X, Y )+g (II(X,Z), II(Y,W ))−g (II(Y,Z), II(X,W ))

where I use the notation

R(W,Z,X, Y ) ≡ g(W,R(X,Y )Z)

and analogously for R.

Ric(X,Y ) +R(`,X, k, Y ) +R(k,X, `, Y ) =

Ric(X,Y ) + J(X,Y )− g(II(X,Y ), H) =

Ric(X,Y ) + J(X,Y )−KH(X,Y )

S(g) + 4Ric(`, k)− 2R(`, k, `, k) = S(h) + trB − g(H,H)

For n = 4, S is 2-dimensional and S(h) is uniquely determined by
its Gaussian curvature K(S) = S(h)/2. The Gauss equation:

2K(S) = S(g) + 4Ric(`, k)− 2R(`, k, `, k) + g(H,H)− trB



Forms of the Codazzi equation

For all X,Y, Z ∈ X(S), for all N ∈ X(S)⊥,

(R(X,Y )Z)⊥ =
(
∇X +DX

)
II(Y, Z)−

(
∇Y +DY

)
II(X,Z)

=
{
−∇XK`(Y,Z)− s(X)Kk(Y, Z)

+∇YK`(X,Z) + s(Y )Kk(X,Z)
}
k

−
{
∇XKk(Y, Z)− s(X)K`(Y,Z)

−∇YKk(X,Z) + s(Y )K`(X,Z)
}
`

(R(X,Y )N)T = −∇X (AN (Y )) +∇Y (AN (X))

−ADY N (X) +ADXN (Y ) +AN ([X,Y ])



Forms of the Ricci equation

For all X,Y ∈ X(S), for all N,M ∈ X(S)⊥

(R(X,Y )N)⊥ = II (X,AN (Y ))− II (Y,AN (X)) +R⊥(X,Y )N

= II (X,AN (Y ))− II (Y,AN (X)) + ds(X,Y ) ?⊥N

R(M,N,X, Y ) = g (AM (AN (Y )) , X)− g (AM (AN (X)) , Y )

+ds(X,Y ) g(?⊥N,M)

= g ([AM , AN ] (Y ), X) + ds(X,Y ) g(?⊥N,M)



The (null and normal) Raychaudhuri equation

Starting at each point x ∈ S one can issue the unique geodesic
with tangent vector `|x at x. This defines a congruence of null
geodesics, orthogonal to a family of codimension two submanifolds
(which include S) whose tangent vector field will still be denoted by
`. Then, one has the Raychaudhuri equation

`(θ`) = −trA2
` − Ric(`, `)

In the Physics literature this is usually written as

`(θ`) = −σ2
` −

θ2
`

n− 2
− Ric(`, `)

Notice: trA2
` ≥ 0, so that if Ric(`, `) ≥ 0 too one knows that θ`

never increases (usually decreases) along the congruence defined by
`. This is the basis of the geodesic focusing in General Relativity
and is fundamental for the singularity theorems.



Raychaudhuri



Curvature and “energy” conditions

Definition (Convergence or energy conditions)

(V, g) is said to satisfy the null convergence condition (NCC)
—also known as the null energy condition (NEC)— if

Ric(k, k) ≥ 0 ∀k ∈ TV such that g(k, k) = 0.

And it satisfies the dominant energy condition (DEC) if

Ein(v, w) ≥ 0 ∀v, w ∈ TV

such that g(v, v) ≤ 0, g(w,w) ≤ 0, and g(v, w) ≤ 0.

Here
Ein ≡ Ric− 1

2
S(g)g

is the Einstein tensor of (V, g). Observe that Ein(k, k) =Ric(k, k)
for all null k ∈ TV.



Extrinsic classification of S

A complete local classification of spacelike surfaces in n = 4
was put forward on (JMMS, CQG 24 (2007) 3091–3124), and its
generalization to arbitrary dimensions was also discussed.
The classification is algebraic and based, at each point, on the
properties of the two null Weingarten operators A` and Ak.
Each Weingarten operator is a self-adjoint matrix which can be
readily classified algebraically according to the signs of their
(real) eigenvalues. This produces 8 different types for each of
A` and Ak, and therefore 64 types of points for generic
spacelike surfaces.
This number increases a lot with the dimension n
The above was not enough and an extra parameter has to be
associated to each point x ∈ S taking into account the relative
orientation of the two null Weingarten operators there.
In n = 4 one can prove that the parameter is simply related to
the commutator

[Ak, A`]



Notation for the causal character of H

Fortunately, we are only interested on the so-called primary
classification, which concerns the causal orientation of H
exclusively (equivalently, the signs of the null expansions).
This part of the classification is independent of n.
A useful symbolic notation denotes the causal orientation of H as
follows (future = upwards, null =45o):

H Causal orientation
↓ past-pointing timelike

↙ or ↘ past-pointing null (∝ ` or k)
← or → spacelike
· vanishes

↗ or ↖ future-pointing null (∝ ` or k)
↑ future-pointing timelike



The future-trapped fauna: H is future on S

Symbol Expansions Type of submanifold
· θ` = θk = 0 stationary or minimal
↑ θ` < 0, θk < 0 f-trapped (TS)

˙ ↘ θ` = 0, θk ≤ 0 marginally f-trapped (MTS)

˙↘

θ` ≤ 0, θk = 0 marginally f-trapped (MTS)↙˙↘↑
θ` ≤ 0, θk ≤ 0 weakly f-trapped (WTS)

There are many other cases such as ↖↑, ↑↗, ↖↑↗, or

↓̇↘

, etc., they
deserve (and have) their own name, but are hardly considered in

the literature.
(Observe also that there are many impossible cases, as H must be

able to change continuously).



Other trapped-type submanifolds

Sometimes, only the sign of one of the expansions is relevant.
This may happen if there is a consistent or intrinsic way of
selecting a particular null normal on S.
In the literature the preferred direction is usually selected —or
declared!— to be “outer”, and then the nomenclature speaks
about “outer trapped" S, no matter whether or not this outer
direction coincides with any particular outer or external part to
the submanifold.
Thus, (marginally) `-trapped submanifolds are usually referred
to as (marginally) outer trapped submanifolds ((M)OTS).
The main possibilities are summarized in the following Table.



The “outer” trapped fauna

Symbol Expansions Type of submanifold

←↖↑ θ` < 0 half converging, or `-trapped (OTS)

˙↙
↗

θ` = 0 null dual or marginally `-trapped (MOTS)

←

↙˙↘↑
↙ θ` ≤ 0 weakly `-trapped (WOTS)

Important studies concerning these submanifolds, and in particular
MOTS, have been carried out recently with relevant results for
Numerical Relativity, Mathematical Relativity, and black holes (−→
Parte II)



Miscellaneous submanifolds

Symbol Expansions Type of submanifold
→ or ← θ`θk < 0 untrapped

↙
˙ ↘→ or ←

↙
˙↘ θ` ≥ 0, θk ≤ 0 or θ` ≤ 0, θk ≥ 0 weakly untrapped

↓↘→ θ` > 0 half diverging or `-untrapped
←

↙˙↘↑
↙

θ` ≥ 0 weakly `-untrapped

↙˙↘↑
↙↓↘ θ`θk ≥ 0 B-submanifolds↙˙↘

↙↘ θ`θk = 0 null B-submanifolds

↙
˙ ↘ θ`θk = 0 and θ` ≥ 0, θk ≤ 0 null untrapped or GAH



Some comments of possible interest

The last type of submanifold shown, Generalized Apparent
Horizon, was proposed as a viable replacement for marginally
trapped submanifolds in a new version of the Penrose
inequality (Bray & Khuri, arXiv:0905.2622 (math.DG) ).
However, this version cannot hold as a recent counterexample
has been found (Carrasco & Mars CQG 27 (2010) 062001).
B-submanifolds are characterized by

H ∧ (?⊥H)(= g(H,H)ε̄/2) = −f2ε̄

the null B-submanifolds are characterized simply by

H ∧ (?⊥H) = 0



Some examples: TSs

Trapped submanifolds are easily constructed in flat space-time

ds2 = −dt2 + dx2
1 + · · ·+ dx2

n−1

One must simply let the surface “bend down” in time. An example
is provided by

S : {x2 = const., et0−t = coshx1}.
These are non-compact. (They are also non-complete, but a
complete example is given by t0 − t =

√
k2 + x2

1 with t0 < k.).



Some examples: TSs, MTSs, MOTSs, MSs

Consider the simple case of 3-dimensional Minkowski space-time.
Now, a codimension-two submanifold is simply a spacelike curve.

It will be trapped if its normal vector is timelike.
A MOTS is any spacelike curve in some null plane. It will be a
MTS if the curve is concave.
Observe that TSs and MTSs can never be closed.
MOTS cannot be closed either. However, if the topology of
space is changed to a cylinder, then there are closed MOTS in
suitable null planes (but no MTS or TSs).



Spherically symmetric spacetimes

ds2 = gab(x
c)dxadxb + r2(xc)dΩ2

Here dΩ2 is the round metric on the (n− 2)-sphere and
det(gab) < 0.
The mean curvature vector of any round sphere xb =consts. reads

H[ =
dr

r

Define the standard “mass function”

2m(xa) ≡ rn−3 (1− g(dr, dr))

then these round (n− 2)-spheres are (marginally) trapped if
2m/rn−3 is (equal to) less than 1.



Many examples

For many other interesting examples, do not miss I. Bengtsson’s
contribution (arXiv:1112.5318) to the book

“New Horizons” (S. Hayward, ed., World Scientific, in press)

He is the author of the previous (and forthcoming) hand drawings.

One can also check my own chapter in that book.



MOTS versus MTS

The closed trapped-type submanifolds are the only ones of
relevance in Physics. They are usually formed in gravitational
collapse and are the hallmark of the formation of Black Holes.
From now on, we will concentrate on closed (=compact
without boundary) submanifolds.
The above shows a fundamental difference between (M)OTS
and (M)TS, when they are closed.
Actually, there is a general conjecture (Eardley, Phys. Rev. D 54 (1996)

4862) that the Event Horizon (EH) of black-hole spacetimes is
the boundary of the region with OTSs. This was proven for
some particular cases (Ben-Dov, Phys. Rev. D 75 (2007) 064007).
Nevertheless, this cannot be the case for TS: the EH will rarely
be the boundary of the region with TSs. And there is general
proof of this fact (Bengtsson and JMMS, Phys. Rev. D 83 (2011) 044012 ).



Flat (Minkowski) spacetime conformal diagram

J +

i0

J −

r
=

0

i+

i−



The event horizon

In a general situation when the asymptotic region is "Minkowskian"
(called asymptotically flat), that is, with J ± and i0, one can
define the region from where J + cannot be reached by any causal
means.

The Event Horizon EH
The boundary of the past of J +.

By definition, this is always a null hypersurface.



Example: Schwarzschild’s solution (n = 4) in
“Eddington-Finkelstein” advanced coordinates

Schwarzchild (in units with G = c = 1)

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dΩ2

m = M is constant: the total mass, and v is advanced (null) time.

From the above we know that the round spheres —defined by
constant values of v and r— are trapped if and only if r < 2M . If
r = 2M they are “marginally trapped”

The Event Horizon, apparent 3-horizon AH and boundary B

AH = EH = B : r − 2M = 0



A Penrose, or conformal, diagram

B
=
EH

=
AH

r
=
2M

r = 0 singularity

J +

i0

J −

v
= −∞

i+

i−

T



S in a spacelike hypersurface?

In the recent literature there has been a general trend to
consider the “outer” cases only, forgetting about the other null
expansion.
It is unclear whether this is just due to the difficulties in
controlling the sign of the second null expansion, or it has
some physical relevance. (Wait for Parte II, however).
A possible relevant question related with these issues was
raised in (Mars & JMMS, CQG 20 (2003) L293), as to whether or not there
can be any closed B-submanifolds in Minkowski spacetime.
It is now known that there cannot be closed codimension-two
B-submanifolds imbedded in spacelike hypersurfaces of
Minkowski spacetime (Khuri CQG 26 (2009) 078001).
However, there are known examples of imbedded submanifolds
in flat spacetime which cannot be imbedded in any spacelike
hypersurface (Kossowski, Proc. AMS 117 (1993) 813–818).
Thus the question remains alive...



OTS versus TS once again

And this question, as well as the general problem of “outer” or
not, has more relevance that one might think at first.
This stems from the fact that the “outer” property is
meaningful only if the submanifold is actually the boundary of
some spacelike hypersurface.
A dramatic example has been presented by Bengtsson (based
on Ben-Dov’s construction).



Spacetime “tubes” of closed M(O)TSs

The EH in Schwarzschild space-time is an example of a (null)
hypersurface foliated by MTSs. In general, the hypersurface defined
in spherical symmetry by AH ≡ {2m = rn−3} has that property
(sometimes called the apparent (n− 1)-horizon). This leads to

Definition (Marginally (outer) trapped tube, M(O)TT)

A M(O)TT is a hypersurface foliated by closed marginally (outer)
f-trapped surfaces.
If the MTT is spacelike, it is called a dynamical horizon (DH).

In general EH is not an MTT.
It is known that in DHs the foliation by MTS is unique (Ashtekar &
Galloway, Adv. Theor. Math. Phys. 9 (2005) 1).

However, MTTs are not unique!



Variation of volume/area and H

The mean curvature vector is related to possible variations of
volume (area) on S along normal directions.
To be precise, let ξ ∈ X(V) be defined on a neighbourhood of
S, and let {ϕτ}τ∈I⊂R be its flow. Sτ ≡ ϕτ (S) is a family of
submanifolds in V, with corresponding imbeddings Φτ : S → V
given by Φτ = ϕτ ◦ Φ. Observe that S0 = S.
Denoting by ε̄τ their associated canonical volume element
(n− 2)-forms, it is a matter of simple calculation to get

dε̄τ
dτ

∣∣∣∣
τ=0

=
1

2
trh [Φ∗(£ξ g)] ε̄ =

(
δ(Φ∗ξ[) + g(ξ,H)

)
ε̄

where δ is the codifferential on S.

dVτ
dτ

∣∣∣∣
τ=0

=

∫
S

(
δ(Φ∗ξ[) + g(ξ,H)

)
ε̄

where Vτ =
∫
Sτ
ε̄τ is the volume of Sτ .



Minimal submanifolds

Theorem (Minimal/Maximal submanifolds)

Among the set of all submanifolds without boundary (or with a
fixed boundary under appropriate restrictions) those of extremal
volume must have H = 0.

Observe that for the case of closed S the integral of δ(Φ∗ξ[)
vanishes (and there is no loss of generality in assuming ξ of
compact support).

It should also be noted that ?⊥H always defines a direction of no
volume/area variation for arbitrary closed S.



Minimal hypersurfaces in Riemannian manifolds

Assume for a moment that S is a compact minimal hypersurface in
a Riemannian manifold (V, g̃). Then the notion of stability, related
to the second variation of volume/area, is fundamental.
Let m be the unit normal of S in V , and set ψ ≡ g̃(ξ,m). A
classical result informs us that, in this case,

d2Vτ
dτ2

∣∣∣∣
τ=0

=

∮
S
ψL0ψ ε̄

where L0 is an elliptic operator on S given by

L0ψ = −∆Sψ −
(
Ricg̃(m,m) + tr(κ2)

)
Here, ∆S is the Laplacian in S and κ is its Weingarten operator.
A similar operator will be defined for MOTS and its
consequences will be of fundamental relevance.



Stability of minimal hypersurfaces

The stability operator L0 is self-adjoint with respect to the L2

product <,> with volume form ε̄:

〈ψ, φ〉 =

∮
S
ψφε̄

and therefore its spectrum is real.
Furthermore, the spectrum realizes its infimum λ0, called the
principal eigenvalue, from where one gets easily

d2Vτ
dτ2

∣∣∣∣
τ=0

=

∮
S
ψL0ψ ε̄ ≥ λ0

∮
S
ψ2ε̄

It follows that S is stable if and only if λ0 ≥ 0, and strictly
stable if and only if λ0 > 0.



An equivalent characterization of minimal stability

By noting that L0ψ = dHτ
dτ

∣∣
τ=0

where Hτ denotes the mean
curvature of Sτ in (V, g̃), one has the following equivalent
characterization of (strict) stability :

Lemma
A minimal hypersurface S in a Riemannian background is (strictly)
stable if and only if ∃ψ ≥ 0 such that ψ 6≡ 0 and dHτ

dτ

∣∣
τ=0
≥ 0

( dHτdτ
∣∣
τ=0

> 0).

Proof. Let φ0 > 0 such that Lφ0 = λ0φ0.
⇐= If λ0 ≥ 0, then choose ψ = φ0.
=⇒ Conversely, if ∃ψ ≥ 0 with dHτ

dτ

∣∣
τ=0
≥ 0 , then

0 ≤
〈
φ0,

dHτ
dτ

∣∣∣∣
τ=0

〉
= 〈φ0, L0ψ〉 = 〈L0φ0, ψ〉 = λ0 〈φ0, ψ〉

and as ψ 6≡ 0 implies that 〈φ0, ψ〉 > 0 one obtains λ0 ≥ 0 (and
λ0 > 0 if dHτ

dτ

∣∣
τ=0

> 0).



Submanifolds and vector fields

Recall
1

2
trh [Φ∗(£ξ g)] = δ(Φ∗ξ[) + g(ξ,H)

1 If S is minimal, integrating the formula for closed S∮
S
trh [Φ∗(£ξ g)] ε̄ = 0 .

Observe that this relation must be satisfied for all ξ ∈ X(V).
Therefore, closed minimal submanifolds are very rare.

2 If ξ is a Killing vector, integrating again for closed S∮
S
g(ξ,H)ε̄ = 0 .

Therefore, if the Killing vector ξ is timelike on S, then S
cannot be weakly trapped, unless it is minimal (M Mars and JMMS,

CQG 20 (2003) L293).



Submanifolds and vector fields

Lemma
ξ future-pointing on R ⊂ V
S ⊂ R a closed submanifold with trh [Φ∗(£ξ g)] ≥ 0.
Then, S cannot be weakly f-trapped
(unless g(ξ,H) = 0 and trh [Φ∗(£ξ g)] = 0.)

Proof.
Integrating for closed S∮

S
g(ξ,H) =

1

2

∮
S
trh [Φ∗(£ξ g)] ≥ 0

=⇒ H cannot be future pointing all over S
(unless g(ξ,H) = trh [Φ∗(£ξ g)] = 0.)



Integrable ξ

Assume that ξ is orthogonal to an integrable distribution

ξ[ ∧ dξ[ = 0.

In other words, locally there exist functions F and t such that
ξ[ = −Fdt, hence t =const. is a family of hypersurfaces orthogonal
to ξ (called the level hypersurfaces.)

Theorem (No minimum of t)

ξ future-pointing and hypersurface-orthogonal on R ⊂ V
S a f-trapped surface
Then, S cannot have a local minimum of t at any point q ∈ R
where trh [Φ∗(£ξ g)] |q ≥ 0.



Proof.
Let q ∈ S ∩R be a point where S has a local extreme of t.
Noting that Φ∗ξ[ = −F̄ d(Φ∗t) with F̄ ≡ Φ∗F > 0 (as ξ is
future), we have Φ∗ξ[|q = 0.
An elementary calculation leads then to:

δ
(

Φ∗ξ[
)∣∣∣
q

= δ
(
−F̄ d(Φ∗t)

)∣∣
q

= −F̄∆S(Φ∗t)
∣∣
q

Introducing this in the main formula

F̄∆S(Φ∗t)
∣∣
q

= −1

2
trh [Φ∗(£ξ g)] + g(ξ,H)

∣∣∣∣
q

≤ g(ξ,H)|q

Hess(Φ∗t)|q cannot be positive (semi)-definite.



Remarks

1 S does not need to be compact, nor contained in R.
2 It is enough to assume trh [Φ∗(£ξ g)] |q ≥ 0 only at the local

extremes of t on S.
3 A positive semi-definite Hess(Φ∗t)|q is also excluded.
4 The theorem holds true for WTSs with the only exception of

Hess(Φ∗t)|q = 0 and trh [Φ∗(£ξ g)] |q = 0 and g(ξ,H)|q = 0

If ξ|q is timelike, the last of these implies that H|q = 0.
5 Letting aside this exceptional possibility, t always decreases at

least along one tangent direction in TqS. Starting from any
point x ∈ S ∩R one can always follow a connected path along
S ∩R with decreasing t.



A fundamental property

Result (Bengtsson and JMMS, Phys. Rev. D 83 (2011) 044012 )

No f-trapped surface (closed or not) can touch a spacelike
hypersurface to its past at a single point if the latter has a positive
semi-definite second fundamental form.

Proof. Exercise



The intuitive idea



MOTS and vector fields

Related results, for the case of MOTS, have been obtained (Carrasco &

Mars CQG 25 (2008) 055011; ibid. 26 (2009) 175002 )



Variation of the volume/area for MOTS

As for the minimal case, MOTS are also critical points for the
volume/area functional for variations along the the null
direction with vanishing expansion. This follows from the
general formula with ξ = `:

dε̄τ
dτ

∣∣∣∣
τ=0

=
(
δ(Φ∗`[) + g(`,H)

)
ε̄ = 0

together with the fact that ` ∈ X(S)⊥ and that H ∝ `.
Actually, this vanishes pointwise.
Note, however, that the second variation is given by the
Raychaudhuri equation

d2Vτ
dτ2

∣∣∣∣
τ=0

= −
∫
S

(
trA2

` + Ric(`, `)
)
ε̄

so that if NCC holds, this is always non-positive (meaning that
MOTS are unstable with respect to the volume/area
functional). Observe that if one uses the boost freedom, the
result is algebraic in eβ .



Variation of the vanishing expansion

Nevertheless, as we saw the second variation for minimal
hypersurfaces is directly related to the first variation of H, so
that one can ask whether a similar alternative can be pursued
for MOTS: they are defined by θ` = 0, so what about the
variation of θ`?
This was first derived in (R.P.A.C. Newman, CQG 4 (1987) 277-290 ) , and
later improved and computed in full generality in
(Andersson-Mars-Simon , Adv. Theor. Math. Phys. 12 (2008) 853 ).
A key point here is that S has codimension two hence, as the
variations along eβ` are algebraic, there will be just one
differential operator ruling all variations.



The stability operator of Andersson-Mars-Simon

Let S be a MOTS with θ` = 0, ergo H = −θk`.
Choose N ∈ X(S)⊥ such that g(N, `) = 1, that is

N = −k +
1

2
g(N,N)` .

Observe that the causal orientation of N is unrestricted.
(Warning: Mars usually uses v instead of N . This should not
lead to any confusion)
Let fN where f ∈ C∞(S) be the variation vector field. Then,
the variation δfNθ` ≡ dθ`,τ/dτ |τ=0 is

δfNθ` = −∆Sf + 2∇s]f

+f

(
1

2
S(h) + δs− h(s], s])− 1

2
g(N,N) trA2

` − Ein(`, ?⊥N)

)
This formula is valid for all possible normal directions except
for ` itself. In that case the variation is given by the
Raychaudhuri equation.



Scheme for the variation direction

S

`k

N

N

N



Stability of MOTS

Definition (A-M-S stability of MOTS)

A MOTS S is said to be (strictly) stable along a non-timelike
direction N ∈ X(S)⊥ if there exists a non-identically-vanishing
f ≥ 0 such that δfNθ` ≥ 0 (and δfNθ` 6≡ 0).

It arises the question of whether one can characterize the stability
by means of a principal eigenvalue. To that end

Definition (A-M-S stability operator for MOTS)

The stability operator LN along a normal direction N ∈ X(S)⊥ for
a MOTS S is defined by δfNθ` ≡ LNf , that is

LNf = −∆Sf + 2∇s]f

+f

(
1

2
S(h) + δs− h(s], s])− 1

2
g(N,N) trA2

` − Ein(`, ?⊥N)

)



The principal eigenvalue

A difficulty is that LN is not self-adjoint with respect to any
sesquilinear product on C∞(S) in general.
This is due to the presence of the term ∇s]f . The cases where
such a product exists are given by an exact one-form s. (Recall
that by using the boost freedom s is defined up to the addition
of an exact one-form dβ).
Nevertheless, one can prove using the results in (Donsker & Varadhan

Commun. Pure Appl. Math. 29 (1976) 591Ð621; Berestycki, Nirenberg & Varadhan, C.R. Acad.

Sci. Paris 317 Série I (1993) 51Ð56; Andersson-Mars-Simon 2008 )
1 for each N , LN has a real principal eigenvalue λN such that

any other (complex) eigenvalue λ satisfies Re(λ) > λN .
2 The principal eigenfunction φN is unique (up to a constant

factor) and it does not vanish on S: thus, it can be chosen to
be strictly positive.

3 The formal adjoint operator L†
N ≡ LN − 4∇s] − 2δs with

respect to the L2 product in (S, h) has the same principal
eigenvalue λN .



Stability in terms of λN

The above is enough to prove, along the same lines as in the case
of minimal hypersurfaces, that

Result (Andersson-Mars-Simon 2008)

A MOTS S is (strictly) stable along a non-timelike normal direction
N ∈ X(S)⊥ if and only if the principal eigenvalue of LN is
non-negative (positive).

Result (e.g. Jaramillo, Reiris & Dain, Phys. rev. D 84 (2011) 121503 )

If the NCC holds, and if a MOTS S is not stable along the null
direction −k, then it cannot be stable along any spacelike normal
direction N ∈ X(S)⊥.

Proof. It is easily seen that δfNθ` = δ−fkθ` + g(N,N)δf`θ`/2 so
that if ∃f ≥ 0 such that δfNθ` ≥ 0 with g(N,N) > 0, and as
δf`θ` ≤ 0, one gets δ−fkθ` ≥ 0.



Spherically symmetric spacetimes n = 4

In advanced coordinates

ds2 = −e2α

(
1− 2m(v, r)

r

)
dv2 + 2eαdvdr + r2dΩ2

For each round sphere S ≡ {u, v} =consts., the future null
normals are

k = −e−α∂r, ` = ∂v +
1

2

(
1− 2m

r

)
eα∂r

Their mean curvature vector Hsph:

Hsph =
2

r

(
e−α∂v +

(
1− 2m

r

)
∂r

)
.

The null expansions:

θsph` =
eα

r

(
1− 2m

r

)
, θsphk = −2e−α

r
.



Some properties of AH

Recall: AH : r − 2m(r, v) = 0 (⇔ θsph` = 0)
One can prove (Bengtsson & JMMS 2011) that AH is actually the only
spherically symmetric MTT : the only hypersurface foliated by
MTSs —be they round spheres or not.
AH can be timelike, null or spacelike depending on the sign of

∂m

∂v

(
1− 2

∂m

∂r

)∣∣∣∣
AH

In particular, AH is null (in fact it is an isolated horizon) on
any open region where m = m(r). This isolated horizon
portion of AH, if non-empty, is characterized also by:

AH(iso) ≡ AH ∩ {Ein(`, `) = 0}

Recall that Ein(`, `) = Ric(`, `).



A dynamical situation with non-empty AHiso\EH
r

=
0

r = 0 singularity i+

J +

i0

J −

v
=

0

v
=
v
3v

=
v
2

EH

AH
=
EH

v
=
v
1

AH
AH

(i
so
) AH

flat

Schwarzschild

red?

red?red?



The Kodama vector field (H Kodama, Prog. Theor. Phys. 63 (1980) 1217)

Recall that ?⊥Hsph is a direction of no area-variation for the round
spheres. In the space-time this defines a vector field

?⊥Hsph ≡ ξ = e−α∂v

ξ is hypersurface orthogonal, with the level function t defined
by

ξ[ = −Fdt = dr − eα
(

1− 2m(v, r)

r

)
dv

Its norm is

g(ξ, ξ) = −
(

1− 2m(v, r)

r

)
,

so that ξ is future-pointing timelike on the region {r > 2m},
and future-pointing null at AH = {r = 2m}.



ξ has the necessary properties

Let q ∈ S ∩ {r ≥ 2m} be a point where S has a local extreme
of t, or belonging to an open portion of S ∩ {t = t0} for some
constant t0.
it is enough to show that on any such point

trh[Φ∗(£ξg)]|q ≥ 0.

The Lie derivative can be easily computed

£ξg = eα
2

r

∂m

∂v
`⊗ `− ∂α

∂r

(
dr ⊗ ξ[ + ξ[ ⊗ dr

)
Then, given that Φ∗ξ[|q = 0 we obtain

trh[Φ∗(£ξg)]|q = eα
2

r

∂m

∂v
h(Φ∗`[,Φ∗`[)

∣∣∣∣
q

≥ 0

provided that ∂m/∂v (q) ≥ 0.



ξ restricts the location of TSs

It follows that:

Theorem (The location of TSs in spherical symmetry)
1 No closed (future) TS can be fully contained in the region
{r ≥ 2m} (where ξ is future pointing).

2 All closed (future) WTSs must intersect the region {r ≤ 2m}.
3 All closed (future) TSs must intersect the region {r < 2m}

(where ξ is spacelike).
4 All closed (future) WTSs other than the MTS round spheres

with r = 2m must intersect the region {r < 2m}.



The stability operator at work

Let ς ⊂ AH be any MT round sphere with r = rς =const.
The variation along a normal direction fN simplifies
drastically in this case, given the marginal character of ς and
its spherical symmetry. In fact it is straightforward to check
that A` = 0 (i.e., shear-free too) and that s = 0. In other
words, most of the terms in the variation formula vanish and
the variation of the zero null expansion is given by

δfNθ
sph
` = −∆ςf + f

(
1

r2
ς

− Ein(`, ?⊥N)

)
(4)

Recall that ?⊥N is the following vector field orthogonal to ς
and N :

?⊥N = k +
1

2
g(N,N)`,

so that Ein(`, ?⊥N) = Ein(`, k) + 1
2g(N,N)Ein(`, `).



Remark: selecting f =constant (4) informs us that the vector
N such that 1/r2

ς − Ein(`, ?⊥N) = 0 produces no variation on
θsph` , meaning that N is tangent to the AH simply leading to
other MT round spheres on AH.
Let us call such a vector field M , so that

1

r2
ς

− Ein(`, k)− 1

2
g(M,M)Ein(`, `)

∣∣∣∣
ς

= 0 (5)

together with

M = − `+
1

2
g(M,M)k

∣∣∣∣
ς

characterizes AH\AHiso, since M is the unique spherically
symmetric direction tangent to it.
The exceptional isolated-horizon portion AHiso has the null `
as its tangent vector field.



A helpful picture

`k

AH
AHM

N

N



Perturbations on AHiso

Assume that Ein(`, `) = 0 holds on a region so that we are
dealing with AHiso. This can be seen to be equivalent to the
condition ∂m/∂v = 0. From the variation formula (4) we
deduce that

δfNθ
sph
` = −∆ςf + f

(
1

r2
ς

− Ein(`, k)|ς
)

so that the perturbed expansion is independent of the direction
of deformation N .
One can check that Ein(`, k)|ς = (2/r2

ς )∂m/∂r|ς and the
previous relation can be rewritten as

∆ςf − f
1

r2
ς

(
1− 2

∂m

∂r

∣∣∣∣
ς

)
= −δfNθsph` . (6)

Notice that the term in round brackets will generally be
positive —for instance if m = const. or if AHiso is related to
an asymptotically flat end, because then r − 2m(r) changes
from negative to positive values.



Perturbations on AHiso

Eq.(6) can be seen as an equation Lf = −δfNθ+ where
L = ∆ς − (1/r2

ς )(1− 2∂m/∂r|ς) is an elliptic operator on ς,
and thus it is adapted for direct application of the maximum
principle. In particular, if δfNθ

sph
` is non-positive everywhere it

follows that f must be negative everywhere on ς.
Combining this with the known fact that arbitrary
perturbations along the null generator ` of the isolated horizon
AHiso produce MTS we obtain the following theorem.

Theorem

On any isolated-horizon portion AHiso of AH arbitrary deformations
of its round spheres lead to MTS. Moreover, if AHiso is such that
1 ≥ 2∂m/∂r, any other possible perturbation leading to WTS has
f < 0, so that the deformed surfaces lie strictly outside the region
{r > 2m}.



Deformations on AH\AHiso

Consider now the parts of AH with Ein(`, `) = Ric(`, `) > 0.
From the helpful figure we deduce that the perturbation
along fN will enter into the region with f-trapped round
spheres at points with

f(g(N,N)− g(M,M)) > 0.

For easy control of these signs we note that

Ein(`, `)f(g(N,N)− g(M,M)) = −2(∆ςf + δfNθ
sph
` ). (7)

An interesting conclusion arises by integrating on ς

Ein(`, `)

∮
ς
f(g(N,N)− g(M,M)) = −2

∮
ς
δfNθ

sph
`

from where we deduce the following facts:



Ein(`, `)

∮
ς
f(g(N,N)− g(M,M)) = −2

∮
ς
δfNθ

sph
`

the deformed surface can be f-trapped only if
f(g(N,N)− g(M,M)) is positive somewhere. Hence, a
f-trapped surface (obtained in this way) must lie at least
partially in the region {r < 2m}. This, of course, complies
with the general result shown above.
and it can be untrapped only if f(g(N,N)− g(M,M) is
somewhere negative.
if the deformed surface lies entirely within {r > 2m} —so that
f(g(N,N)− g(M,M)) < 0 everywhere —, then δfNθ

sph
`

must be positive somewhere.
if the deformed surface lies entirely in {r < 2m}, then
δfNθ

sph
` must be negative somewhere.



TSs entering {r > 2m}

In order to construct examples of TSs which lie partly in
{r > 2m}, let us consider perturbations such that

g(N,N)− g(M,M) > 0.

For this choice the deformed surface enters the region
{r < 2m} at points with f > 0. We introduce a constant a0

and aim for f-trapped surfaces for which

Ein(`, `) a0(g(N,N)− g(M,M)) + 2δfNθ
sph
` = 0.

By our assumptions this implies that δfNθ
sph
` < 0 if a0 > 0, so

that the deformed surface will be f-trapped.
Now set f ≡ a0 + f̃ for some as yet undetermined function f̃ .
Equation (7) becomes

Ein(`, `)f̃(g(N,N)− g(M,M)) + 2∆ς f̃ = 0. (8)



TSs entering {r > 2m}
We conclude that our aim (with our assumptions) requires that

1

2
Ein(`, `) (g(N,N)− g(M,M)) = −∆ς f̃

f̃
> 0. (9)

This is a (mild) restriction on the function f̃ . A simple solution
is to choose f̃ to be an eigenfunction of the Laplacian ∆ς , say

f̃ = clPl

for a fixed l ∈ N and constant cl (Pl = Legendre polynomials).
Then, on using ∆ςPl = − l(l+1)

r2ς
Pl the deformation direction N

is determined by

g(N,N)− g(M,M) =
2

Ein(`, `)

l(l + 1)

r2
ς

> 0

and the variation of the expansion then reads

δfNθ
sph
` = −a0

l(l + 1)

r2
ς

< 0 (for a0 > 0)



As the other expansion θk was initially negative, by choosing a
very small deformation we can always achieve that the
deformed ς is f-trapped.
It only remains to check that f realizes all signs, so that the
deformed surface criss-crosses AH. Given that

f = a0 + clPl

it is enough to adjust the constant cl to achieve this goal. For
instance, the choice cl < −a0 < 0 will do, so that f has the
sign of a0 at the region where Pl ≤ 0, and the opposite sign
around the north pole of ς where Pl > 0.
Thus, we have proven the following theorem.

Theorem

In arbitrary spherically symmetric spacetimes there are closed
f-trapped surfaces (topological spheres) penetrating both sides of
AH at any region where Ein(`, `)|AH > 0.



MTTs are not unique

We remark that the previous reasoning is independent of the
causal character of AH, which can be spacelike, null or
timelike. The only restriction is that Ein(`, `) > 0.
The non-uniqueness of dynamical horizons and MTTs can be
addressed now. The perturbation argument tells us that there
are f-trapped surfaces penetrating into both sides of
AH\AHiso.
We also know that there are untrapped round spheres lying
just outside it.
If AH is spacelike this means that we can find a spacelike
hypersurface having such an outer trapped sphere as its inner
boundary and an untrapped round sphere as its outer
boundary, and such that it contains a path connecting the
boundaries and lying entirely outside AH (that is, inside
{r > 2m}).



Many MTTs weaving each other

There is a theorem (L. Andersson & J. Metzger, Commun. Math. Phys. 290 (2009)

941 −→ Parte II) that ensures that a spacelike hypersurface
with such boundaries necessarily contains a MOTS.
By construction such a MOTS has a part lying inside
{r > 2m}, and we know that it must penetrate inside
{r < 2m}.
Moreover, generically such a MOTS ‘evolves’ into a MOTT (L.
Andersson, M. Mars & W. Simon 2005 and 2008 −→ Parte II).
As long as we stay sufficiently close to AH all the MOTS in
the argument will be inner trapped as well. Thus we have
obtained:

Corollary

In arbitrary spherically symmetric spacetimes there are MTTs
penetrating both sides of the spherical MTT AH at any region
where Ein(`, `)|AH > 0.



How much must a TS lie inside {r < 2m}?

As another application of the AMS stability operator, we
wonder how small the fraction of any closed f-trapped surface
that extends outside {r < 2m} can be made.
With the assumptions above this means that we must produce
a C2 function f̃ defined on the sphere and

1 obeying the inequality (9),
2 positive only in a region that we can make arbitrarily small.

If we choose a sufficiently small constant a0 the last
requirement implies that the region where the surface extends
outside {r > 2m} can be made arbitrarily small.
To find such a function it is convenient to introduce
stereographic coordinates {ρ, ϕ} on the sphere, so that the
Laplacian takes the form

∆ς = Ω−1

(
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
ϕ

)
, Ω =

4r2
ς

(1 + ρ2)2
.



An explicit solution to the problem

A solution to the problem as stated is the axially symmetric
function

f̃(ρ) =


c1

(
e

1
2a

(2a−ρ2) − 1
)

ρ2 < 4a

8c1a
e

1
ρ2
− c1(1 + e−1) ρ2 > 4a .

(10)

This function is C2 (and can be further smoothed if
necessary), and it is positive only if ρ2 < 2a, that is on a disk
surrounding the origin (the pole) whose size can be chosen at
will.
The function obeys

−∆ς f̃

f̃
=


Ω−1

a2
2a−x2

1−e−
1
2a (2c−ρ2)

ρ2 < 4a

32aΩ−1

ρ4
ρ2

(e+1)ρ2−8a
, ρ2 > 4a .

This is always larger than zero.



A surprising theorem

Thus we have proven the following important result.

Theorem (Bengtsson & JMMS 2001)

In spherically symmetric spacetimes, there are closed f-trapped
surfaces (topological spheres) penetrating both sides of the
apparent 3-horizon AH\AHiso with arbitrarily small portions outside
the region {r > 2m}.



The future-trapped region T and its boundary B

The future-trapped region T

is defined as the set of points x ∈ V such that x lies on a closed
(future) TS.

This is a space-time concept, not to be confused with the trapped
region within spacelike hypersurfaces, to be discussed in Parte II,
which is defined as the union of the interiors of all MOTS in the
given hypersurface.

The boundary B

We denote by B the boundary of the future trapped region T :

B ≡ ∂T

One of the mysteries concerning closed TSs is: where is B? But
this is another story....



T and B are invariant by the isometry group

Result
If G is the group of isometries of the spacetime (V, g), then T is
invariant under the action of G, and the transitivity surfaces of G,
relative to points of B, remain in B.

Result (T and B in spherical symmetry)

In arbitrary spherically symmetric spacetimes, T and B have
spherical symmetry.

Result

In arbitrary spherically symmetric spacetimes, B (if not empty) is a
spherically symmetric hypersurface without boundary.



Simple example: de Sitter spacetime. B = ∅
χ

=
0

J +

χ
=
π

J −

T



Non-locality and clairvoyance of TSs

Closed TSs are clairvoyant , highly non-local objects. They
cross MTTs and even enter flat portions of the space-time.
In conjunction with the non-uniqueness of MTTs, this poses a
fundamental puzzle for the physics of black holes.
Although several solutions can be pursued, the most natural
and popular one is trying to define a preferred dynamical
horizon or MTT. Hitherto, though, there has been no good
definition for that.
We have put forward a novel strategy. The idea is based on
the simple question:
what part of the spacetime is absolutely indispensable for the
existence of the black hole?
Surely enough, any flat region is certainly not essential for the
existence of the black hole.
What is?



The Core of the trapped region

Definition
A region Z is called the core of the f-trapped region T if it is a
minimal closed connected set that needs to be removed from the
spacetime in order to get rid of all closed f-trapped surfaces in T ,
and such that any point on the boundary ∂Z is connected to
B = ∂T in the closure of the remainder.

Here, “minimal" means that there is no other set Z ′ with the
same properties and properly contained in Z .
The final technical condition states that the excised space-time
(V\Z , g) has the property that ∀x ∈ V\Z ∪ ∂Z there is
continuous curve γ ⊂ V\Z ∪ ∂Z joining x and B (γ can
have zero length if B ∩ ∂Z 6= ∅).
This is needed because one could identify a particular
removable region, excise it, but then put back a tiny isolated
portion to make it smaller. However, this is not what one
wants to cover with the definition.



Z ⊂ T . Example: RW, p = 0 and Λ = 0.

γ = 2π, big crunch

γ = 0, big bang

so
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Cores are not unique.

This example also proves that Z is not unique: one can
choose any other region Z equivalent to the chosen one by
moving all its points by the group of symmetries on each
homogeneous slice.
Actually this kind of non-uniqueness is rather trivial, and is due
to the existence of a high degree of symmetry.
Nevertheless, even in less symmetric cases the uniqueness of
the cores Z cannot be assumed beforehand. Actually, we have
proven that it does not hold in general (see below).



Cores in spherical symmetry

Result (Bengtsson & JMMS , 2011 )

The region Z ≡ {r ≤ 2m} is a core.

Proof.
From the result using the Kodama ξ every closed TS must
intersect Z : removing it all possible TSs are short-circuited.
Is it minimal? Observe that ∂Z = AH = {r = 2m}. Take any
Z ′ ⊂ Z such that from every x ∈ ∂Z ′ there is a curve to the
nearest part of the boundary B: all these curves must
therefore cross AH. Thus, Z \Z ′ always contains an open
region around AH with {r < 2m}.
But then, the surprising theorem ensures that there are closed
TSs fully contained in V\Z ′, so that Z ′ cannot be a core.

Corollary ( AH is the boundary of a core)

The spherical MTTs given by AH = {r = 2m} are boundaries of a
core of T .



Z = {r ≤ 2m} are unique respecting the symmetry

Result
In spherically symmetric spacetimes, Z = {r ≤ 2m} are the only
spherically symmetric cores of T . Therefore, ∂Z = AH are the

only spherically symmetric boundaries of a core.

Proof. Suppose there were another spherically symmetric core Z ′.
Obviously Z ′ could not be a proper subset of Z , nor vice versa,
because both are cores. Thus Z \Z ′ 6= ∅ and this set would be
spherically symmetric. However, every round sphere in Z is
f-trapped, and therefore there would be f-trapped round spheres
having no intersection with Z ′, contradicting the hypothesis that
Z ′ was a core of the trapped region.



Non-spherically symmetric cores

Proposition
There exist non-spherically-symmetric cores of the f-trapped region
in spherically symmetric spacetimes.

Proof. For simplicity, consider the case with a spacelike AH. From
previous results we know that there are non-spherically symmetric
MTTs interweaving AH. Choose any of these, say T , so that T lies
partly to the future of AH (and partly to its past). From a theorem
in (Ashtekar & Galloway, 2005 ) no WTS can be fully contained in the past
domain of dependence of T . Thus, removing J+(T ) from V
eliminates all closed TSs, and there must be a subset of J+(T )
which is a core of T . This new core will never include those parts
of the spacetime which are to the future of AH but to the past of
h. Thus, this core is not Z , and due to the previous Result, it
cannot be spherically symmetric.



Is there anything special about Z : {r ≤ 2m}?

Still, the identified core Z = {r ≤ 2m} might be unique in
the sense that its boundary ∂Z = AH is an MTT.
This would happen, for instance, if any dynamical horizon T
other than AH is such that its causal future J+(T ) is not a
core —the core being a proper subset of J+(T ).
Then AH would be selected as the unique MTT which is the
boundary of a core of the f-trapped region T .
Whether or not this happens is a very interesting open
question.
It should be observed that the concept of core is global, and
requires full knowledge of the future. However, AH is local and
can be defined and identified by observing just around it. How
can then AH = ∂Z ?



Back to the general case

The question arises of whether the previous results for
spherically symmetric spacetimes can be translated to the
general case.
To start with, the existence of a MOTT through any given
strictly stable MOTS was proven in (Andersson-Mars-Simon 2005 ).
If NCC holds, then the MOTT is non-timelike.
The MOTT is constructed in the mentioned article according
to a given reference foliation by spacelike hypersurfaces, and it
depends on the foliation.
Thus, there are many MOTTs which contain any given strictly
stable MOTS.
I am going to consider the properties of these many MOTTs
from another viewpoint, using the stability operators in
different normal directions (and non-necessarily spacelike).



Characterization of the many MOTTs through a
given MOTS

Recall the stability operator:

LNf = −∆Sf + 2∇s]f

+f

(
1

2
S(h) + δs− h(s], s])− 1

2
g(N,N) trA2

` − Ein(`, ?⊥N)

)
Recall also: ?⊥N = k + 1

2g(N,N)`
Combining them:

LNf = −∆Sf + 2∇s]f

+f

(
1

2
S(h) + δs− h(s], s])− Ein(`, k)− 1

2
g(N,N)W

)
with

W ≡ Ein(`, `) + trA2
`

We assume that W 6= 0, which will happen in general unless
we are in an isolated horizon (null hypersurface).



Considering the different operators

Let z ∈ C∞(S) and set

Lzf = −∆Sf + 2∇s]f + zf .

Lz has a principal real eigenvalue λz —which depends on z—
and the corresponding eigenfunction φz > 0.
The variation of θ` = 0 along the direction φzN becomes

LNφz
φz

= λz−z+
1

2
S(h)+δs−h(s], s])−Ein(`, k)−1

2
g(N,N)W

Thus, whenever W 6= 0 on S, one can choose for any z a
variation vector Mz = −k + ` g(Mz,Mz)/2 with

g(Mz,Mz)

2
=

1

W

(
λz − z +

1

2
S(h) + δs− h(s], s])− Ein(`, k)

)
(11)

such that LMzφz = δφzMz θ` = 0.
Observe that Mz depends on the chosen function z.



Local definition of MOTTs

The general variation along Mz reads

δfMz θ` = −∆Sf + 2∇s]f + f(z − λz) = (Lz − λz)f (12)

so that the stability operator LMz of S along Mz is simply
Lz − λz which obviously has a vanishing principal eigenvalue.
This leads to stability of the original MOTS along Mz if the
vector Mz is spacelike for some choice of z.
The directions Mz define locally MOTTs including the given
MOTS S (due to a result to be discussed in Parte II).
These MOTTs will generically be different for different z. In
fact, given that ∀z1, z2 ∈ C∞(S)

Mz1 −Mz2 =
1

W
(λz1 − z1 − λz2 + z2) `

one can easily prove that

Mz1 = Mz2 ⇐⇒ z1 − z2 = const.



The stability operator along −k

Notice that the stability operator L−k corresponds to the
choice

z = ẑ ≡ 1

2
S(h) + δs− h(s], s])− Ein(`, k)

so that
g(Mẑ,Mẑ) =

λẑ
W

where λẑ = λ−k is the principal eigenvalue.
Strict stability along −k implies that λẑ = λ−k > 0, ergo Mz

is spacelike —recovering the previous result of existence of
spacelike stability directions whenever strict stability along k
holds.



A formula for the principal eigenvalue

By using ∇s]f = δ(fs)− fδs, one deduces for any given z,∮
S
Lzf =

∮
S

(
2∇s]f + zf

)
=

∮
S

(z − 2δs) f

in particular for the principal eigenfunction

λz

∮
S
φz =

∮
S

(z − 2δs)φz

This provides
1 a formula for the principal eigenvalue

λz =

∮
S

(z − 2δs)φz∮
S
φz

. (13)

2 bounds for λz

min
S

(z − 2δs) ≤ λz ≤ max
S

(z − 2δs) . (14)

3 and that λz − (z − 2δs) must vanish somewhere on S for all
z ∈ C∞(S).



A formula for the principal eigenvalue

For each z ∈ C∞(S) rewrite δfNθ` = LNf using (11) so that

W

2
f (g(N,N)− g(Mz,Mz)) = (Lz − λz)f − δfNθ` (15)

Note that

f(N −Mz) = (f/2) (g(N,N)− g(Mz,Mz)) `

hence fN points into the zone with OTSs —that is, the region
towards which ` points in— if f (g(N,N)− g(Mz,Mz)) > 0.
The situation is clear from the helpful figure.
From (15) becomes evident that deformations along any N
with the principal eigenfunction φz are such that the deformed
submanifold becomes outer trapped (untrapped) if N points
above (below) Mz.



A distinguished MOTTs

The problem with the stability of MOTS and the local
construction of MOTTs is that we have little control on the
principal eigenvalue.
This is how I have tried to get around this problem: Consider
the particular function

z = 2δs

This defines what I guess can lead to a preferred M(O)TT,
being a natural candidate for boundary of a core.
For such a choice let L denote the corresponding operator
L = L2δs, µ its principal eigenvalue, and φ > 0 the
corresponding eigenfunction. Observe that

Lf = −∆Sf + 2δ(fs) = −δ (df − 2fs) .

The principal eigenvalue µ vanishes. Indeed, this follows
immediately from either (13) or (14). Also from∮

S
Lf = 0 ∀f ,=⇒

∮
S
Lφ = µ

∮
S
φ = 0



A distinguished MOTTs

For this particular choice of z, (15) reduces to
W

2
f (g(N,N)− g(M,M)) = L(f)− δfNθ` (16)

where now the vector M = −k + g(M,M)
2 ` is defined by

g(M,M)

2
=

1

W

(
1

2
S(h)− δs− h(s], s])− Ein(`, k)

)
as follows from (11).
For any other direction Mz defining a local M(O)TT

W

2
(g(Mz,Mz)− g(M,M)) = λz − (z − 2δs)

Result
The local M(O)TT defined by the direction M is such that any
other nearby local M(O)TT must interweave it with non-trivial
intersections to both of its sides, that is to say, the vector Mz −M
changes sign on any of its M(O)TSs.



Integrating (16) on S we get

1

2

∮
S
Wf(g(N,N)− g(M,M)) = −

∮
S
δfNθ`

from (16), deformations using cφ with constant c lead to outer
untrapped surfaces if c(nµnµ −mµm

µ) < 0 everywhere and to
outer f-trapped surfaces if c(nµnµ −mµm

µ) > 0 everywhere.
the deformed surface can be (outer) f-trapped only if
f(g(N,N)− g(M,M) is positive somewhere (meaning that
N points there into the region with (O)TS).
and it can be (outer) untrapped only if
f(g(N,N)− g(M,M)) is somewhere negative (meaning that
N points there outside the region with (O)TS).
if the deformed surface has f(g(N,N)− g(M,M)) < 0
everywhere then δfNθ` must be positive somewhere.
if the deformed surface has f(g(N,N)− g(M,M)) > 0
everywhere then δfNθ` must be negative somewhere.



What about Cores?

We try to follow the same steps as in the spherically
symmetric case.
Thus, the idea is to start with a function

f = a0φ+ f̃

for a constant a0 > 0 so that, as φ > 0 has eigenvalue µ = 0,
(16) becomes

W

2
(a0φ+ f̃) (g(N,N)− g(M,M)) = Lf̃ − δfNθ`

This can be split into two parts:
W

2
a0φ (g(N,N)− g(M,M)) = −δfNθ` (17)

W

2
f̃ (g(N,N)− g(M,M)) = Lf̃ (18)

This would certainly be useful if L has more real eigenvalues,
and leads to the analysis of the condition Lf̃/f̃ > 0 for some
function f̃ .



What about Cores?

Eq.(17) tells us that δfNθ` < 0 whenever N points “above” M
if a0 > 0 is chosen.
Therefore, using (18) the problem one needs to solve can be
reformulated as follows:

A mathematical problem

Is there a function f̃ on S such that
1 L(f̃)/f̃ ≥ ε > 0,

2 f̃ changes sign on S,

3 f̃ is positive in a region as small as desired?

To prove that there are future-trapped surfaces penetrating
both sides of the MTT it is enough to comply with points 1
and 2 only.



The case when L has real eigenvalues

Result
If the operator L has any real eigenvalue other than the principal
one µ = 0, then the conditions 1 and 2 do hold for the
corresponding real eigenfunction. This leads to the existence of
closed OTSs penetrating both sides of the local M(O)TT.

Proof. Any real eigenvalue is strictly positive (as µ = 0). Hence,
the corresponding eigenfunction must change sign on S, because
integration of Lψ = λψ on S implies

∮
ψ = 0.

However, even if there are no other real eigenvalues the result
might hold.



Some open mathematical problems

In order to attack the mathematical problem in full, one can
follow several routes.
One possibility is to use the Hodge decomposition theorem on
the compact S:

s = dσ + δF + Υ

where σ ∈ C∞(S), F ∈ Λ2S and Υ ∈ ΛS with dΥ = 0 and
δΥ = 0.
For n = 4, one has F = ε̄Ψ for some function Ψ ∈ C∞(S), so
that

s = dσ + ?̄dΨ + Υ

Thus, the two functions σ and Ψ encode all the information of
the normal connection s for any simply connected S.



Conformal transformations in n = 4

As a final, probably useful, remark, let us consider conformal
transformations on S. Define

h̃ ≡ Ωh

for some positive function Ω.
One can prove that

L̃(f) =
1

Ω
L(f) .

It follows that the principal eigenfunction φ is also an
eigenfunction, with vanishing eigenvalue, of L̃, as any solution
to L(f) = 0 is also a solution to L̃(f) = 0, and viceversa.
This result, together with the fact that any simply-connected
compact surface (S, h) is globally conformal to the round
sphere, allows one to reformulate the mathematical problem in
the round sphere (where σ and Ψ are two given data).



Parte II

Marc Mars
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