The symmetry group of Lamé’s system and the

associated Guichard nets for conformally flat

hypersurfaces

Jo3o Paulo dos Santos

Universidade de Brasilia

February 21, 2014



, Tenenblat, K. The symmetry group of Lamé’s system
and the associated Guichard nets for conformally flat

hypersurfaces. SIGMA Symmetry, Integrability Geometry,
Methods and Applications (2013), 9, 033.

» Supported by Capes and CNPq.



1. Conformally flat hypersurfaces, Guichard nets in R3 and
Lamé’s system of equations;



1. Conformally flat hypersurfaces, Guichard nets in R3 and
Lamé’s system of equations;
2. The symmetry group of Lamé'’s system and group invariant

solutions;



1. Conformally flat hypersurfaces, Guichard nets in R3 and
Lamé’s system of equations;

2. The symmetry group of Lamé'’s system and group invariant
solutions;

3. The geometry of the Guichard nets in R3 associated to

invariant solutions:



1. Conformally flat hypersurfaces, Guichard nets in R3 and
Lamé’s system of equations;

2. The symmetry group of Lamé'’s system and group invariant
solutions;

3. The geometry of the Guichard nets in R3 associated to

invariant solutions:

4. Conformally flat hypersurfaces associated to invariant

solutions;



1. Conformally flat hypersurfaces, Guichard nets in R3 and
Lamé’s system of equations;

2. The symmetry group of Lamé'’s system and group invariant

solutions;

3. The geometry of the Guichard nets in R3 associated to

invariant solutions:

4. Conformally flat hypersurfaces associated to invariant

solutions;

5. Final remarks and future work;



Conformally flat hypersurfaces
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Conformally flat hypersurfaces

A hypersurface in the euclidean space R” is called conformally flat
if every point has a neighbourhood where the induced metric is
conformal to a flat metric, i.e, to a metric with zero curvature.

» The investigation of conformally flat hypersurfaces has been

of interest for quite some time. The answers to the problem

are strongly related with the dimension of the space:



» Any surface in R3 is conformally flat, since it can be

parametrized by isothermal coordinates.



» Any surface in R3 is conformally flat, since it can be

parametrized by isothermal coordinates.

> For higher dimensional hypersurfaces, E. Cartan in 1917 gave
a complete classification for the conformally flat hypersurfaces
of R”, when n > 5. He proved that such hypersurfaces are
quasi-umbilic, i.e., one of the principal curvatures has

multiplicity at least n — 2.



> In the same paper, Cartan investigated the case n =4 . He
showed that the quasi-umbilic hypersurfaces are conformally

flat, but the converse does not hold.



> In the same paper, Cartan investigated the case n =4 . He
showed that the quasi-umbilic hypersurfaces are conformally
flat, but the converse does not hold.

» Since then, there has been an effort to obtain a complete
classification of conformally hypersurfaces in R*, with three
distinct principal curvatures. The problem is still an open

question.



Lafontaine in 1988 considered hypersurfaces of type
M3 = M? x | C R*. He obtained the following classes of

conformally flat hypersurfaces:



Lafontaine in 1988 considered hypersurfaces of type

M3 = M? x | C R*. He obtained the following classes of

conformally flat hypersurfaces:

a) M3 is a cylinder over a surface, M? c R3, with constant
curvature in R3:

b) M3 is a cone over a surface in the sphere, M?  S3, with
constant curvature;

c) M3 is obtained by rotating a constant curvature surface of the
hyperbolic space, M? C H3 C R*, where H3 is the half space

model.



Hertrich-Jeromin in 1994, established a correspondence between
conformally flat hypersufaces, with three distinct principal
curvatures, and Guichard nets in R3. These are open sets of R3,
with an orthogonal flat metric g = Z?:l /,-2dx,-2, where the
functions /; satisfy the Guichard condition, namely,

-1+ 12=0,

and a system of second order partial differential equations, which is

called Lamé’s system
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For each solution (1, h, i) for the Lamé’s system that satisfy
Guichard condition, Hertrich-Jeromin proved that there exists a
parametrization for a conformally flat hypersurface in R*, with

three distinct principal curvatures, whose induced metric is given by
g = PO L (x)2dx + h(x)%dxE + h(x)?dx3}, (2)

where P(x) is a function that depends on x = (x1, x2, x3).



Our objective is to find solutions of the Lamé’s system, which
satisfy the Guichard condition, in order to obtain an associated

class of conformally flat hypersurface in R%;



The symmetry group of Lamé’s system

A system S of n-th order differential equations in p independent

and g dependent variables is given as a system of m equations
A(x,u™) =0, r=1,...,m, (3)

involving x = (x1,...,%p) € X, u=(u1,...,uq) € U and the
derivatives u(") of u with respect to x up to order n.



A symmetry group of the system S is a Lie group of
transformations G acting on X x U of the space of independent
and dependent variables for the system, with the property that
whenever u = f(x) is a solution of S, and whenever

g(x, f(x)) = (%, (X)) is defined for g € G, then u = f(X) is also a

solution of the system.



A vector field V in the Lie algebra g of the group G is called an

infinitesimal generator.



A vector field V in the Lie algebra g of the group G is called an
infinitesimal generator.
Consider V as a vector field on X x U, with corresponding

one-parameter group exp(eV), i.e.,
exp(=V) = V(= %), (4)

where W is the flow generated by V. In this case, V will be the
infinitesimal generator of the action induced by the flow.



The symmetry group of a given system of differential equation is
obtained by using the prolongation formula and the infinitesimal

criterion that are describe as follows:



The symmetry group of a given system of differential equation is
obtained by using the prolongation formula and the infinitesimal
criterion that are describe as follows: Given a vector field on

X x U,
Ny oI o
V: Z§ (X7 U)ai)q +az:;l¢a(x, U)a?,

i=1



The symmetry group of a given system of differential equation is
obtained by using the prolongation formula and the infinitesimal
criterion that are describe as follows: Given a vector field on

X x U,

P 0 & )
V = Eg (x, u)a—XI —i-azz:lgﬁa(x, U)E)?’

the n-th prolongation of V is the vector field on the corresponding
jet space X x UM

prinV = V+ZZ¢J x, ul"

a=1 J



The second summation is taken over all (unordered) multi-indices
J = (1, k), with 1 < ji < p, 1 < k < n. The coefficient

functions ¢7, of pr(MV/ are given by the following formula:
p .
¢é(X7 u(n)) = DJ <¢a - Z&quii?) s
i=1
ou™ . Ouf
Ox;

o
where uff = — ug; =
D,=D;D;,...D;

ox; '
s

with Df(xu 3X, ;Z J'E)u



Consider a system A, (x,u(™) =0, r =1,...,/. Then the set of
all vectors fields V on M such that

prMV[A, (x,u™)] =0, whenever A,(x,u()=0, (5)

is a Lie algebra of infinitesimal generators of a symmetry group for
the system. Conversely, all the connected symmetry groups can be

determined by considering this criterion.



» Since the prolongation formula is given in terms of & and ¢,
and the partial derivatives with respect to both x and u, the
infinitesimal criterion provides a system of partial differential
equations for the coefficients &' and ¢, of V, called the

determining equations.



» Since the prolongation formula is given in terms of & and ¢,
and the partial derivatives with respect to both x and u, the
infinitesimal criterion provides a system of partial differential
equations for the coefficients ¢/ and ¢, of V, called the
determining equations.

» By solving these equations, we obtain the vector field V that
determines a Lie algebra g. The symmetry group G is
obtained by exponentiating the Lie algebra.



From now on, we consider the following notation for the

derivatives of a function f = f(xg,...,Xs)
of O*f
fy ;== and fyx := .
o Ox; and Toxix 0x;0x;

With this notation, Lamé’s system (1) is given by

po gl kg
1% X /-
J

I =0, (6)
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where i, j and k are distinct indices in the set {1, 2, 3}.



We will also consider the following notation,

1 if s=1lors=3
£s = ’ 8
y {—1 if s=2. (8)

We can now rewrite Guichard condition as

8,'/,-2 + EJ'/J-Z + Ek/lf =0.



Next, we introduce auxiliary functions in order to reduce the sytem
of second order differential equations (6) and (7), into a first order

one. Consider the functions h;;, with i # j, given by
li x; — hijl; = 0.
With these functions, we rewrite (6) and (7) as

hij . — hikhgj = 0,
h,:,',xj + hj,"X,. + h,'khjk = 0.



Using Guichard condition, there are other relations involving the
derivatives of /; and hj;. Taking the derivative of Guichard

condition with respect to x;, we have
€ilix; + €jhjili + exhgil =0,

for i, j, k distinct. The derivatives of the above equation with

respect to x; leads to

6,'/7,'1'7)(,. + 5jhji,xj + Ekhk,'hkj =0.



Therefore, we summarize the last six equations in the following

system of first order partial differential equations, equivalent to

Lamé’s system, that we call Lamé’s system of first order

eil? +¢jlF + ekl =0,

lix; — hijl; =0,

€ilix +€jhjili + exhiilk = 0,
hij x, — hichij =0,

hij x; + hji x; + hikhjx = 0,
eihijx; + €jhjix; + exhiihig = 0.

—
—
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Theorem 1
Let V be the infinitesimal generator of the symmetry group of
Lamé'’s system of first order (9)-(14), given by

3 3
. o .

V= "(x,1, h)=— "(x, 1, h ’f I, h)
SUCTIEAS ST SR
i=1 i=1 ij=1,i#j

(15)

Then the functions &', n' and ¢V are given by

gi = ax;+ aj,
n = dj (16)
¢U = _ahfj7

where a, ¢, a; € R, x = (x1,x2,x3), | = (h, h,3) and h the
off-diagonal 3 x 3 matrix given by h;;.



As a result of exponentiating V, we obtain the symmetry group of
Lamé's system.
Corollary 1

The symmetry group of Lamé’s system (9)-(14) is given by the
following transformations:

1. translation in the independent variables: X; = x; + v;;

2. dilation in the independent variables: X; = Ax;;

3. dilation in the dependent variables: 7, = pl; and hN,-j = )\_1h,-j,'
where v; € R and A\, p € R\ {0}.



Group invariant solutions

» The knowledge of all the infinitesimal generators V of the
symmetry group of a system of differential equations, allows
one to reduce the system to another one with a reduced

number of variables.

» Specifically, if the system has p independent variables and a
symmetry subgroup is considered, where the orbits are
s-dimensional, then the reduced system for the solutions

invariant under this subgroup will depend on p — s variables.



We start with the subgroup of translations. The basic invariant of

this group is given by
§ = aix1 + axxo + aszxz, (17)

where (a1, a2, a3) is a non zero vector. We will consider solutions
I; such that
li(x1, %2, x3) = 1i(§), 1< i <3, (18)

where £ is given by (17).



Theorem 2 5

Let I5(§), s=1, 2, 3, where §{ = Zasxs, be a solution of Lamé’s
s=1
system (9)-(14), such that Is is not constant for all s. Then there

exist c; € R\ {0}, such that,

lie = cilly, 1, j, k distinct, (19)
ca—o+c=0, (20)
a3crcs + ascics + ajcic = 0. (21)



Moreover, the functions I;(§) are given by

A A
2 2 2

fe—ae-a)(E-2) (8- 20). @
B==(7-= 23
2 Cl( C2), ( )

G —C 2 A
2= ? — 24
= (1 Q_q), (24)

where X € R.



Theorem 3

3
Let Is(§), s =1, 2, 3, where = Zasxs, be a solution of Lamé’s
s=1

system (9)-(14). Suppose that only one of the functions Is is
constant. Then one of the following occur:
a) h = A1, b = A1cosh(bg + &), I3 = Aisinh(b€ + &), where
& = aoxp + a3xs, a%—l—a% #0and b, eR
b) h =Xz, h = Aacosp(§), = Aasinp(E), where
€ =oa1x +azxs, a2 + a% = 0 and o is one of the following:

b.1) ©(&) = bE + &, if af # a3, where &, b € R;

b.2) ¢ is any function of £, if a2 = a3;

C) =2X3, h=2M\3 COSh(bé~ +§0), h = A3 sinh(b§ + fo), where
&= a1x1 + axo, a% —i—oc% #0 and b, & € R.



Next, we consider the solutions invariant under the subgroup
involving translations and dilations. In this case, the basic invariant
is given by 311 4 3 - ax

1X1 2X2 3X3
T byxs + boxa + baxs’ (25)

where the vectors (a1, a2, a3z) and (b1, ba, b3) are linearly

independent.



Theorem 4

Let I;(n), with n given by (25), be a solution of Lamé’s system
invariant under the subgroup involving translations and dilations.
Suppose that (as, bs) # (0,0), Vs, then the solutions li(n) are
constant.



Theorem 5

Let I;(n), with  given by (25), be a solution of Lamé’s system
invariant under the subgroup involving translations and dilations.
Suppose that one of the pairs (as, bs) = (0,0). Then one of the
following occur:

a) If (a1, b1) = (0, 0) then

lh = A1, b = A1 coshp(n), = A1sinhg(n), where
arxy + azxs

_ A0 a3 e o b
n boxo 1 baxs and o is given by
G b% + bg axby + asbs
= ——arct — C
(P(77) arbz — azby arctan |:a3b2 — arbs g bg + b% +o
(26)

where Cp, C; € R.



b) If (a2, b2) = (0, 0) then
/2 = /\27 /1 = )\2 Cos (,0(7]), /3 = )\2 sin go(n), where
_a1x1 + azx3
K bix1 + b3xs
b.1) if by = b3 = b, then

and @ is given as follows:

e(n) = (a3 — 1) log (2bn — a1 —a3) + D1, (27)

where Dy, D; € R;
b.2) if by # bs, then

B D> (b3+b1)777(a3+31)
go(n) o 2(31b3 — a3b1) Iog (b3 — bl)?’] — (33 — 81)

where D27 D; € R.



c) If (a3, b3) = (0, 0), then

s = A3, b = A3cosh¢(n), h = Azsinhp(n), with
aixy + axxo

= and o is given b
1 bix1 + baxo vee Y

Eo
= arct
o(n) Py — arctan [

b%—i—b% B arby + a1bg E
arby — a1 bs b% + b% b

(29)
where Eg, E; € R.



Geometry of the associated Guichard nets in R3

Definition 1
Let M™ be a Riemannian manifold and let f : M — R be a

differentiable function. The level submanifolds of f are said to be
geodesically parallel if |gradf| is a non zero constant, along each

level submanifold.



Theorem 6
Let (U,g), U C R3, be a Riemannian manifold with coordinates

3 3
(x1, X2, x3) and metric g = Z 12(€)dx?, where £ = Z asxs. Then
s=1 s=1
the level surfaces

s=1

3
Pey = {(X1,X27X3) € U;Zasxs = 50} , where §1 < & < &2,

endowed with the induced metric are geodesically parallel.
Moreover, each level surface has zero Gaussian curvature and

constant mean curvature (depending on &g ).



Theorem 7

Let (U,g), U C R3, be a Riemannian manifold, with coordinates
3 3

(x1,x2,x3) and metric g = Z 12(€)dx?, with & = Z asxs. Then

s=1 s=1
each coordinate surface of U C R3, x; =constant, endowed with

the induced metric, has constant Gaussian curvature K;. Moreover,

Ki+ Ky + K3 =0. (30)



Conformally flat hypersurfaces

By Guichard condition, any conformally flat hypersurface in R* has

a local parametrization where the induced metric is given by
g = 2P {sin o(x)dx? + dx3 + cos® p(x dx3} (31)
where x = (x1, x2, x3), or

g = 2P {sinh2 B(x)dx? + cosh? G(x)dx3 + dx3} (32)



» Suyama proved in 2005 that ¢ is a conformal invariant and he
classified the hypersurfaces conformal to the products given
by Lafontaine as the hypersurfaces where ¢ depends only on
two variables;

» Hertrich-Jeromin and Suyama classified in 2007 the

hypersurfaces where ¢ has two vanishing mixed derivatives,
namely:



» These conformally flat hypersurfaces are associated to the so
called cyclic Guichard nets, which are characterized by
©xxo = Pxoxs = 0, when g is of the form (31) and by
©xaxs = Poxs = 0, when g is given by (32).

» Conformally flat hypersurfaces are given by means of linear

Weingarten surfaces in space forms.

» Moreover, the authors showed that all the known cases of
conformally flat hypersurfaces, at that time, are associated to

cyclic Guichard nets.



Theorem 8

Let M3 be a conformally flat hypersurface in R*, associated to a
3
solution of Lamé’s system li(x1,x2,x3) = l;(§), with £ = Z Qs Xs
s=1

and as # 0, for all s, given in terms of elliptic functions b;/
(22)-(24). Then its first fundamental form g is given by

g = €27 {cos? p(€)(dx1)? + (dxz)? + sin? p(€)(dx3)?},  (33)

where ¢ satisfies,
go?g = c(acos® p — b), (34)



or g is given by
g = 2P0 Lsinh? 3(€)(dx1)? + cosh? 3(€)(dx2)? + (dx3)?}  (35)
where @ satisfies
g?p?g = ¢(bcosh® @ — b). (36)

where a, b, c € R\ {0}, P(x) and P(x) are differentiable
functions. In both cases, £ € | C R, where | is an open interval

such that g is positive definite.



Corollary 2
Let M3® C R* be a conformally flat hypersurface associated to the

3
solutions of Lamé’s system [;(§) with & = Z asxs and as # 0 for

s=1
all s, given in terms of elliptic functions by (22)-(24). Then the

associated Guichard net of M3 is not cyclic.



Corollary 2
Let M3® C R* be a conformally flat hypersurface associated to the

3
solutions of Lamé’s system [;(§) with & = Z asxs and as # 0 for

s=1
all s, given in terms of elliptic functions by (22)-(24). Then the

associated Guichard net of M3 is not cyclic.



» When £ = a1x1 + apxp, the associated conformally flat
hypersurfaces is conformal to the product M? x [, where M?

is a flat surface in the hyperbolic 3-space.



» When £ = a1x1 + apxp, the associated conformally flat
hypersurfaces is conformal to the product M? x [, where M?

is a flat surface in the hyperbolic 3-space.

» When £ = a1x1 + asxs, the associated conformally flat
hypersurfaces is conformal to the product M? x I, where M?
is a flat surface in the standard 3-sphere.



When £ = a1x1 + apxp, the associated conformally flat
hypersurfaces is conformal to the product M? x [, where M?

is a flat surface in the hyperbolic 3-space.

When £ = a1x; + asxs, the associated conformally flat
hypersurfaces is conformal to the product M? x I, where M?
is a flat surface in the standard 3-sphere.

Explicit parametrizations are given by means of solutions of
Klein-Gordon equation

F(x1, i) — barciF xx(x1, i) = 0,

where i = 2, 3



» An explicit parametrization for the general case is still

unknown;

> it is related to solutions of the following partial differential

equation:
F+ F,X1X1 - F,X2X2 + F,X3X3 - 512 I:,X1X2 - ﬁ13 F,X1X3 _/823 F,X2X3 = 0’
02— a2 — a2
1612 - - |>»
Q10
a% + oz% + oz%
613 = - |>»

2 2
_ (3T T X
P23 =

where



Final remarks and future work

» Hertrich-Jeromin and Suyama have considered recently (2013)
non-cyclic Guichard nets where the coordinates surfaces have
constant Gaussian curvature. They call these nets

Bianchi-type Guichard nets.



Final remarks and future work

» Hertrich-Jeromin and Suyama have considered recently (2013)
non-cyclic Guichard nets where the coordinates surfaces have
constant Gaussian curvature. They call these nets
Bianchi-type Guichard nets.

» The geometry of the flat surfaces in H3 related to the case
& = a1x1 4+ apxp was studied in a joint work with Martinez
and Tenenblat (Pacific J. Math., V. 264, N.1, 2013);

» The geometry of the flat surfaces in S3 related to the case

& = apxo 4+ aizxsz is a work in progress.



Invariant solutions under dilations:

> a system of partial differential equations in two variables that

provides a new class class of conformally flat hypersurfaces;
» possibility of hidden symmetries;

These solutions are being investigated it will appear in a future

work.



A complete description of the solutions of Lamé’s system

P dokop 1ohok _
OxiOxi  l;0x; Oxk I Oxk Ox;

o (10l o (10} 1 0l; 0l;
it )+ (752 )+ 572> = 0,
ox; \ I; Ox; ox; \ I} Ox; I Oxi Oxi
with the Guichard condition /12 - /22 + /32 =0, is still unknown, as

well as the correspondent conformally flat hypersurfaces.




