The symmetry group of Lamé's system and the associated Guichard nets for conformally flat hypersurfaces

João Paulo dos Santos

Universidade de Brasília
February 21, 2014

- ___ Tenenblat, K. The symmetry group of Lamé's system and the associated Guichard nets for conformally flat hypersurfaces. SIGMA Symmetry, Integrability Geometry, Methods and Applications (2013), 9, 033.
- Supported by Capes and CNPq.

Summary

1．Conformally flat hypersurfaces，Guichard nets in \mathbb{R}^{3} and Lamé＇s system of equations；

Summary

1. Conformally flat hypersurfaces, Guichard nets in \mathbb{R}^{3} and Lamé's system of equations;
2. The symmetry group of Lamé's system and group invariant solutions;

Summary

1. Conformally flat hypersurfaces, Guichard nets in \mathbb{R}^{3} and Lamé's system of equations;
2. The symmetry group of Lamé's system and group invariant solutions;
3. The geometry of the Guichard nets in \mathbb{R}^{3} associated to invariant solutions;

Summary

1. Conformally flat hypersurfaces, Guichard nets in \mathbb{R}^{3} and Lamé's system of equations;
2. The symmetry group of Lamé's system and group invariant solutions;
3. The geometry of the Guichard nets in \mathbb{R}^{3} associated to invariant solutions;
4. Conformally flat hypersurfaces associated to invariant solutions;

Summary

1. Conformally flat hypersurfaces, Guichard nets in \mathbb{R}^{3} and Lamé's system of equations;
2. The symmetry group of Lamé's system and group invariant solutions;
3. The geometry of the Guichard nets in \mathbb{R}^{3} associated to invariant solutions;
4. Conformally flat hypersurfaces associated to invariant solutions;
5. Final remarks and future work;

Conformally flat hypersurfaces

A hypersurface in the euclidean space \mathbb{R}^{n} is called conformally flat if every point has a neighbourhood where the induced metric is conformal to a flat metric, i.e, to a metric with zero curvature.

Conformally flat hypersurfaces

A hypersurface in the euclidean space \mathbb{R}^{n} is called conformally flat if every point has a neighbourhood where the induced metric is conformal to a flat metric, i.e, to a metric with zero curvature.

- The investigation of conformally flat hypersurfaces has been of interest for quite some time. The answers to the problem are strongly related with the dimension of the space:
- Any surface in \mathbb{R}^{3} is conformally flat, since it can be parametrized by isothermal coordinates.
- Any surface in \mathbb{R}^{3} is conformally flat, since it can be parametrized by isothermal coordinates.
- For higher dimensional hypersurfaces, E. Cartan in 1917 gave a complete classification for the conformally flat hypersurfaces of \mathbb{R}^{n}, when $n \geq 5$. He proved that such hypersurfaces are quasi-umbilic, i.e., one of the principal curvatures has multiplicity at least $n-2$.
- In the same paper, Cartan investigated the case $n=4$. He showed that the quasi-umbilic hypersurfaces are conformally flat, but the converse does not hold.
- In the same paper, Cartan investigated the case $n=4$. He showed that the quasi-umbilic hypersurfaces are conformally flat, but the converse does not hold.
- Since then, there has been an effort to obtain a complete classification of conformally hypersurfaces in \mathbb{R}^{4}, with three distinct principal curvatures. The problem is still an open question.

Lafontaine in 1988 considered hypersurfaces of type $M^{3}=M^{2} \times I \subset \mathbb{R}^{4}$. He obtained the following classes of conformally flat hypersurfaces:

Lafontaine in 1988 considered hypersurfaces of type $M^{3}=M^{2} \times I \subset \mathbb{R}^{4}$. He obtained the following classes of conformally flat hypersurfaces:
a) M^{3} is a cylinder over a surface, $M^{2} \subset \mathbb{R}^{3}$, with constant curvature in \mathbb{R}^{3};
b) M^{3} is a cone over a surface in the sphere, $M^{2} \subset \mathbb{S}^{3}$, with constant curvature;
c) M^{3} is obtained by rotating a constant curvature surface of the hyperbolic space, $M^{2} \subset \mathbb{H}^{3} \subset \mathbb{R}^{4}$, where \mathbb{H}^{3} is the half space model.

Hertrich-Jeromin in 1994, established a correspondence between conformally flat hypersufaces, with three distinct principal curvatures, and Guichard nets in \mathbb{R}^{3}. These are open sets of \mathbb{R}^{3}, with an orthogonal flat metric $g=\sum_{i=1}^{3} l_{i}^{2} d x_{i}^{2}$, where the functions I_{i} satisfy the Guichard condition, namely,

$$
I_{1}^{2}-I_{2}^{2}+I_{3}^{2}=0
$$

and a system of second order partial differential equations, which is called Lamé's system

$$
\begin{align*}
\frac{\partial^{2} I_{i}}{\partial x_{j} \partial x_{k}}-\frac{1}{l_{j}} \frac{\partial I_{i}}{\partial x_{j}} \frac{\partial I_{j}}{\partial x_{k}}-\frac{1}{l_{k}} \frac{\partial I_{i}}{\partial x_{k}} \frac{\partial I_{k}}{\partial x_{j}} & =0, \\
\frac{\partial}{\partial x_{j}}\left(\frac{1}{I_{j}} \frac{\partial I_{i}}{\partial x_{j}}\right)+\frac{\partial}{\partial x_{i}}\left(\frac{1}{I_{i}} \frac{\partial I_{j}}{\partial x_{i}}\right)+\frac{1}{l_{k}^{2}} \frac{\partial I_{i}}{\partial x_{k}} \frac{\partial l_{j}}{\partial x_{k}} & =0 . \tag{1}
\end{align*}
$$

For each solution $\left(I_{1}, I_{2}, I_{3}\right)$ for the Lamés system that satisfy Guichard condition, Hertrich-Jeromin proved that there exists a parametrization for a conformally flat hypersurface in \mathbb{R}^{4}, with three distinct principal curvatures, whose induced metric is given by

$$
\begin{equation*}
g=e^{2 P(x)}\left\{I_{1}(x)^{2} d x_{1}^{2}+I_{2}(x)^{2} d x_{2}^{2}+I_{3}(x)^{2} d x_{3}^{2}\right\}, \tag{2}
\end{equation*}
$$

where $P(x)$ is a function that depends on $x=\left(x_{1}, x_{2}, x_{3}\right)$.

Our objective is to find solutions of the Lamé's system, which satisfy the Guichard condition, in order to obtain an associated class of conformally flat hypersurface in \mathbb{R}^{4};

The symmetry group of Lamé's system

A system S of n-th order differential equations in p independent and q dependent variables is given as a system of m equations

$$
\begin{equation*}
\Delta_{r}\left(x, u^{(n)}\right)=0, r=1, \ldots, m \tag{3}
\end{equation*}
$$

involving $x=\left(x_{1}, \ldots, x_{p}\right) \in X, u=\left(u_{1}, \ldots, u_{q}\right) \in U$ and the derivatives $u^{(n)}$ of u with respect to x up to order n.

A symmetry group of the system S is a Lie group of transformations G acting on $X \times U$ of the space of independent and dependent variables for the system, with the property that whenever $u=f(x)$ is a solution of S, and whenever $g(x, f(x))=(\tilde{x}, \tilde{f}(\tilde{x}))$ is defined for $g \in G$, then $u=\tilde{f}(\tilde{x})$ is also a solution of the system.

A vector field V in the Lie algebra \mathfrak{g} of the group G is called an infinitesimal generator.

A vector field V in the Lie algebra \mathfrak{g} of the group G is called an infinitesimal generator.
Consider V as a vector field on $X \times U$, with corresponding one-parameter group $\exp (\varepsilon \mathrm{V})$, i.e.,

$$
\begin{equation*}
\exp (\varepsilon \mathrm{V}) \equiv \Psi(\varepsilon, x) \tag{4}
\end{equation*}
$$

where Ψ is the flow generated by V. In this case, V will be the infinitesimal generator of the action induced by the flow.

The symmetry group of a given system of differential equation is obtained by using the prolongation formula and the infinitesimal criterion that are describe as follows:

The symmetry group of a given system of differential equation is obtained by using the prolongation formula and the infinitesimal criterion that are describe as follows: Given a vector field on $X \times U$,

$$
\mathrm{V}=\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x_{i}}+\sum_{\alpha=1}^{q} \phi_{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}}
$$

The symmetry group of a given system of differential equation is obtained by using the prolongation formula and the infinitesimal criterion that are describe as follows: Given a vector field on $X \times U$,

$$
\mathrm{V}=\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x_{i}}+\sum_{\alpha=1}^{q} \phi_{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}},
$$

the n-th prolongation of V is the vector field on the corresponding jet space $X \times U^{(n)}$

$$
\mathrm{pr}^{(n)} \mathrm{V}=V+\sum_{\alpha=1}^{q} \sum_{J} \phi_{\alpha}^{J}\left(x, u^{(n)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

The second summation is taken over all (unordered) multi-indices $J=\left(j_{1}, \ldots, j_{k}\right)$, with $1 \leq j_{k} \leq p, 1 \leq k \leq n$. The coefficient functions ϕ_{α}^{J} of $\mathrm{pr}^{(n)} V$ are given by the following formula:

$$
\phi_{\alpha}^{J}\left(x, u^{(n)}\right)=D_{J}\left(\phi_{\alpha}-\sum_{i=1}^{p} \xi^{i} u_{J, i}^{\alpha},\right)
$$

where $u_{i}^{\alpha}=\frac{\partial u^{\alpha}}{\partial x_{i}}, u_{J, i}^{\alpha}=\frac{\partial u_{J}^{\alpha}}{\partial x_{i}}$ and D_{J} is given by total derivatives

$$
D_{J}=D_{j_{1}} D_{j_{2}} \ldots D_{j_{k}}
$$

with $D_{i} f\left(x, u^{(n)}\right)=\frac{\partial f}{\partial x_{i}}+\sum_{\alpha_{1}}^{p} \sum_{J} u_{J, i}^{\alpha} \frac{\partial f}{\partial u_{J}^{\alpha}}$.

Consider a system $\Delta_{r}\left(x, u^{(n)}\right)=0, r=1, \ldots, l$. Then the set of all vectors fields V on M such that

$$
\begin{equation*}
\mathrm{pr}^{(n)} \mathrm{V}\left[\Delta_{r}\left(x, u^{(n)}\right)\right]=0, \quad \text { whenever } \quad \Delta_{r}\left(x, u^{(n)}\right)=0 \tag{5}
\end{equation*}
$$

is a Lie algebra of infinitesimal generators of a symmetry group for the system. Conversely, all the connected symmetry groups can be determined by considering this criterion.

- Since the prolongation formula is given in terms of ξ^{i} and ϕ_{α} and the partial derivatives with respect to both x and u, the infinitesimal criterion provides a system of partial differential equations for the coefficients ξ^{i} and ϕ_{α} of V , called the determining equations.
- Since the prolongation formula is given in terms of ξ^{i} and ϕ_{α} and the partial derivatives with respect to both x and u, the infinitesimal criterion provides a system of partial differential equations for the coefficients ξ^{i} and ϕ_{α} of V , called the determining equations.
- By solving these equations, we obtain the vector field V that determines a Lie algebra \mathfrak{g}. The symmetry group G is obtained by exponentiating the Lie algebra.

From now on, we consider the following notation for the derivatives of a function $f=f\left(x_{1}, \ldots, x_{n}\right)$

$$
f_{, x_{i}}:=\frac{\partial f}{\partial x_{i}} \text { and } f_{, x_{i} x_{j}}:=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

With this notation, Lamé's system (1) is given by

$$
\begin{array}{r}
I_{i, x_{j} x_{k}}-\frac{I_{i, x_{j}} I_{j, x_{k}}}{I_{j}}-\frac{I_{i, x_{k}} I_{k, x_{j}}}{I_{k}}=0 \\
\left(\frac{I_{i, x_{j}}}{I_{j}}\right)_{, x_{j}}+\left(\frac{I_{j, x_{i}}}{I_{i}}\right)_{, x_{i}}+\frac{I_{i, x_{k}} I_{j, x_{k}}}{I_{k}^{2}}=0, \tag{7}
\end{array}
$$

where i, j and k are distinct indices in the set $\{1,2,3\}$.

We will also consider the following notation,

$$
\varepsilon_{s}=\left\{\begin{array}{rll}
1 & \text { if } & s=1 \text { or } s=3 \tag{8}\\
-1 & \text { if } & s=2
\end{array}\right.
$$

We can now rewrite Guichard condition as

$$
\varepsilon_{i} l_{i}^{2}+\varepsilon_{j} l_{j}^{2}+\left.\varepsilon_{k}\right|_{k} ^{2}=0
$$

Next, we introduce auxiliary functions in order to reduce the sytem of second order differential equations (6) and (7), into a first order one. Consider the functions $h_{i j}$, with $i \neq j$, given by

$$
I_{i, x_{j}}-h_{i j} I_{j}=0 .
$$

With these functions, we rewrite (6) and (7) as

$$
\begin{aligned}
h_{i j, x_{k}}-h_{i k} h_{k j} & =0, \\
h_{i j, x_{j}}+h_{j i, x_{i}}+h_{i k} h_{j k} & =0 .
\end{aligned}
$$

Using Guichard condition, there are other relations involving the derivatives of I_{i} and $h_{i j}$. Taking the derivative of Guichard condition with respect to x_{i}, we have

$$
\varepsilon_{i} I_{i, x_{i}}+\varepsilon_{j} h_{j i} I_{j}+\varepsilon_{k} h_{k i} I_{k}=0
$$

for i, j, k distinct. The derivatives of the above equation with respect to x_{j} leads to

$$
\varepsilon_{i} h_{i j, x_{i}}+\varepsilon_{j} h_{j i, x_{j}}+\varepsilon_{k} h_{k i} h_{k j}=0
$$

Therefore, we summarize the last six equations in the following system of first order partial differential equations, equivalent to Lamé's system, that we call Lamé's system of first order

$$
\begin{align*}
& \varepsilon_{i} l_{i}^{2}+\varepsilon_{j} l_{j}^{2}+\varepsilon_{k} l_{k}^{2}=0, \tag{9}\\
& l_{i, x_{j}}-h_{i j} l_{j}=0, \tag{10}\\
& \varepsilon_{i} l_{i, x_{i}}+\varepsilon_{j} h_{j i} l_{j}+\varepsilon_{k} h_{k i} l_{k}=0, \tag{11}\\
& h_{i j, x_{k}}-h_{i k} h_{k j}=0, \tag{12}\\
& h_{i j, x_{j}}+h_{j i, x_{i}}+h_{i k} h_{j k}=0, \tag{13}\\
& \varepsilon_{i} h_{i j, x_{i}}+\varepsilon_{j} h_{j i, x_{j}}+\varepsilon_{k} h_{k i} h_{k j}=0 . \tag{14}
\end{align*}
$$

Theorem 1

Let V be the infinitesimal generator of the symmetry group of Lamé's system of first order (9)-(14), given by

$$
\begin{equation*}
V=\sum_{i=1}^{3} \xi^{i}(x, l, h) \frac{\partial}{\partial x_{i}}+\sum_{i=1}^{3} \eta^{i}(x, l, h) \frac{\partial}{\partial l_{i}}+\sum_{i, j=1, i \neq j}^{3} \phi^{i j}(x, l, h) \frac{\partial}{\partial h_{i j}} . \tag{15}
\end{equation*}
$$

Then the functions ξ^{i}, η^{i} and $\phi^{i j}$ are given by

$$
\begin{align*}
\xi^{i} & =a x_{i}+a_{i} \\
\eta^{i} & =c l_{i} \tag{16}\\
\phi^{i j} & =-a h_{i j},
\end{align*}
$$

where $a, c, a_{i} \in \mathbb{R}, x=\left(x_{1}, x_{2}, x_{3}\right), I=\left(I_{1}, l_{2}, l_{3}\right)$ and h the off-diagonal 3×3 matrix given by $h_{i j}$.

As a result of exponentiating V, we obtain the symmetry group of Lamé's system.

Corollary 1

The symmetry group of Lamé's system (9)-(14) is given by the following transformations:

1. translation in the independent variables: $\tilde{x}_{i}=x_{i}+v_{i}$;
2. dilation in the independent variables: $\tilde{x}_{i}=\lambda x_{i}$;
3. dilation in the dependent variables: $\tilde{I}_{i}=\rho l_{i}$ and $\tilde{h}_{i j}=\lambda^{-1} h_{i j}$; where $v_{i} \in \mathbb{R}$ and $\lambda, \rho \in \mathbb{R} \backslash\{0\}$.

Group invariant solutions

- The knowledge of all the infinitesimal generators V of the symmetry group of a system of differential equations, allows one to reduce the system to another one with a reduced number of variables.
- Specifically, if the system has p independent variables and a symmetry subgroup is considered, where the orbits are s-dimensional, then the reduced system for the solutions invariant under this subgroup will depend on $p-s$ variables.

We start with the subgroup of translations. The basic invariant of this group is given by

$$
\begin{equation*}
\xi=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}, \tag{17}
\end{equation*}
$$

where $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is a non zero vector. We will consider solutions I_{i} such that

$$
\begin{equation*}
l_{i}\left(x_{1}, x_{2}, x_{3}\right)=I_{i}(\xi), 1 \leq i \leq 3, \tag{18}
\end{equation*}
$$

where ξ is given by (17).

Theorem 2
Let $I_{s}(\xi), s=1,2,3$, where $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$, be a solution of Lamé's system (9)-(14), such that I_{s} is not constant for all s. Then there exist $c_{s} \in \mathbb{R} \backslash\{0\}$, such that,

$$
\begin{array}{r}
l_{i, \xi}=c_{i} l_{k} l_{j}, \quad i, j, k \text { distinct }, \\
c_{1}-c_{2}+c_{3}=0, \\
\alpha_{1}^{2} c_{2} c_{3}+\alpha_{2}^{2} c_{1} c_{3}+\alpha_{3}^{2} c_{1} c_{2}=0 \tag{21}
\end{array}
$$

Moreover, the functions $l_{i}(\xi)$ are given by

$$
\begin{array}{r}
l_{1, \xi}^{2}=c_{2}\left(c_{2}-c_{1}\right)\left(l_{1}^{2}-\frac{\lambda}{c_{2}}\right)\left(l_{1}^{2}-\frac{\lambda}{c_{2}-c_{1}}\right), \\
l_{2}^{2}=\frac{c_{2}}{c_{1}}\left(l_{1}^{2}-\frac{\lambda}{c_{2}}\right), \\
l_{3}^{2}=\frac{c_{2}-c_{1}}{c_{1}}\left(l_{1}^{2}-\frac{\lambda}{c_{2}-c_{1}}\right), \tag{24}
\end{array}
$$

where $\lambda \in \mathbb{R}$.

Theorem 3

Let $I_{s}(\xi), s=1,2,3$, where $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$, be a solution of Lamé's system (9)-(14). Suppose that only one of the functions I_{s} is constant. Then one of the following occur:
a) $I_{1}=\lambda_{1}, I_{2}=\lambda_{1} \cosh \left(b \xi+\xi_{0}\right), I_{3}=\lambda_{1} \sinh \left(b \xi+\xi_{0}\right)$, where $\xi=\alpha_{2} x_{2}+\alpha_{3} x_{3}, \alpha_{2}^{2}+\alpha_{3}^{2} \neq 0$ and $b, \xi_{0} \in \mathbb{R} ;$
b) $I_{2}=\lambda_{2}, I_{1}=\lambda_{2} \cos \varphi(\xi), I_{3}=\lambda_{2} \sin \varphi(\xi)$, where $\xi=\alpha_{1} x_{1}+\alpha_{3} x_{3}, \alpha_{1}^{2}+\alpha_{3}^{2} \neq 0$ and φ is one of the following:
b.1) $\varphi(\xi)=b \xi+\xi_{0}$, if $\alpha_{1}^{2} \neq \alpha_{3}^{2}$, where $\xi_{0}, b \in \mathbb{R}$;
b.2) φ is any function of ξ, if $\alpha_{1}^{2}=\alpha_{3}^{2}$;
c) $I_{3}=\lambda_{3}, I_{2}=\lambda_{3} \cosh \left(b \xi+\xi_{0}\right), I_{1}=\lambda_{3} \sinh \left(b \xi+\xi_{0}\right)$, where $\xi=\alpha_{1} x_{1}+\alpha_{2} x_{2}, \alpha_{1}^{2}+\alpha_{2}^{2} \neq 0$ and $b, \xi_{0} \in \mathbb{R}$.

Next, we consider the solutions invariant under the subgroup involving translations and dilations. In this case, the basic invariant is given by

$$
\begin{equation*}
\eta=\frac{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}}{b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}}, \tag{25}
\end{equation*}
$$

where the vectors $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ are linearly independent.

Theorem 4
Let $l_{i}(\eta)$, with η given by (25), be a solution of Lamé's system invariant under the subgroup involving translations and dilations. Suppose that $\left(a_{s}, b_{s}\right) \neq(0,0), \forall s$, then the solutions $l_{i}(\eta)$ are constant.

Theorem 5

Let $l_{i}(\eta)$, with η given by (25), be a solution of Lamé's system invariant under the subgroup involving translations and dilations. Suppose that one of the pairs $\left(a_{s}, b_{s}\right)=(0,0)$. Then one of the following occur:
a) If $\left(a_{1}, b_{1}\right)=(0,0)$ then
$I_{1}=\lambda_{1}, I_{2}=\lambda_{1} \cosh \varphi(\eta), I_{3}=\lambda_{1} \sinh \varphi(\eta)$, where
$\eta=\frac{a_{2} x_{2}+a_{3} x_{3}}{b_{2} x_{2}+b_{3} x_{3}}$ and φ is given by
$\varphi(\eta)=\frac{C_{0}}{a_{2} b_{3}-a_{3} b_{2}} \arctan \left[\frac{b_{2}^{2}+b_{3}^{2}}{a_{3} b_{2}-a_{2} b_{3}}\left(\eta-\frac{a_{2} b_{2}+a_{3} b_{3}}{b_{2}^{2}+b_{3}^{2}}\right)\right]_{(26)}+C_{1}$,
where $C_{0}, C_{1} \in \mathbb{R}$.
b) If $\left(a_{2}, b_{2}\right)=(0,0)$ then
$I_{2}=\lambda_{2}, I_{1}=\lambda_{2} \cos \varphi(\eta), I_{3}=\lambda_{2} \sin \varphi(\eta)$, where
$\eta=\frac{a_{1} x_{1}+a_{3} x_{3}}{b_{1} x_{1}+b_{3} x_{3}}$ and φ is given as follows:
b.1) if $b_{1}=b_{3}=b$, then

$$
\begin{equation*}
\varphi(\eta)=\frac{D_{0}}{2 b\left(a_{3}-a_{1}\right)} \log \left(2 b \eta-a_{1}-a_{3}\right)+D_{1}, \tag{27}
\end{equation*}
$$

where $D_{0}, D_{1} \in \mathbb{R}$;
b.2) if $b_{1} \neq b_{3}$, then

$$
\begin{equation*}
\varphi(\eta)=\frac{D_{2}}{2\left(a_{1} b_{3}-a_{3} b_{1}\right)} \log \left[\frac{\left(b_{3}+b_{1}\right) \eta-\left(a_{3}+a_{1}\right)}{\left(b_{3}-b_{1}\right) \eta-\left(a_{3}-a_{1}\right)}\right]+D_{3}, \tag{28}
\end{equation*}
$$

where $D_{2}, D_{3} \in \mathbb{R}$.
c) If $\left(a_{3}, b_{3}\right)=(0,0)$, then
$I_{3}=\lambda_{3}, I_{2}=\lambda_{3} \cosh \varphi(\eta), I_{1}=\lambda_{3} \sinh \varphi(\eta)$, with
$\eta=\frac{a_{1} x_{1}+a_{2} x_{2}}{b_{1} x_{1}+b_{2} x_{2}}$ and φ is given by
$\varphi(\eta)=\frac{E_{0}}{a_{2} b_{1}-a_{1} b_{2}} \arctan \left[\frac{b_{2}^{2}+b_{1}^{2}}{a_{2} b_{1}-a_{1} b_{2}}\left(\eta-\frac{a_{2} b_{2}+a_{1} b_{1}}{b_{2}^{2}+b_{1}^{2}}\right)\right]+E_{1}$,
where $E_{0}, E_{1} \in \mathbb{R}$.

Geometry of the associated Guichard nets in \mathbb{R}^{3}

Definition 1

Let M^{n} be a Riemannian manifold and let $f: M \rightarrow \mathbb{R}$ be a differentiable function. The level submanifolds of f are said to be geodesically parallel if $|\operatorname{grad} f|$ is a non zero constant, along each level submanifold.

Theorem 6

Let $(U, g), U \subset \mathbb{R}^{3}$, be a Riemannian manifold with coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ and metric $g=\sum_{s=1}^{3} l_{s}^{2}(\xi) d x_{i}^{2}$, where $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$. Then the level surfaces

$$
P_{\xi_{0}}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in U ; \sum_{s=1}^{3} \alpha_{s} x_{s}=\xi_{0}\right\}, \text { where } \xi_{1}<\xi_{0}<\xi_{2}
$$

endowed with the induced metric are geodesically parallel.
Moreover, each level surface has zero Gaussian curvature and constant mean curvature (depending on ξ_{0}).

Theorem 7

Let $(U, g), U \subset \mathbb{R}^{3}$, be a Riemannian manifold, with coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ and metric $g=\sum_{s=1}^{3} l_{s}^{2}(\xi) d x_{i}^{2}$, with $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$. Then each coordinate surface of $U \subset \mathbb{R}^{3}, x_{i}=$ constant, endowed with the induced metric, has constant Gaussian curvature K_{i}. Moreover,

$$
\begin{equation*}
K_{1}+K_{2}+K_{3}=0 . \tag{30}
\end{equation*}
$$

Conformally flat hypersurfaces

By Guichard condition, any conformally flat hypersurface in \mathbb{R}^{4} has a local parametrization where the induced metric is given by

$$
\begin{equation*}
g=e^{2 P(x)}\left\{\sin ^{2} \varphi(x) d x_{1}^{2}+d x_{2}^{2}+\cos ^{2} \varphi(x) d x_{3}^{2}\right\} \tag{31}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$, or

$$
\begin{equation*}
g=e^{2 \tilde{P}(x)}\left\{\sinh ^{2} \tilde{\varphi}(x) d x_{1}^{2}+\cosh ^{2} \tilde{\varphi}(x) d x_{2}^{2}+d x_{3}^{2}\right\} \tag{32}
\end{equation*}
$$

- Suyama proved in 2005 that φ is a conformal invariant and he classified the hypersurfaces conformal to the products given by Lafontaine as the hypersurfaces where φ depends only on two variables;
- Hertrich-Jeromin and Suyama classified in 2007 the hypersurfaces where φ has two vanishing mixed derivatives, namely:
- These conformally flat hypersurfaces are associated to the so called cyclic Guichard nets, which are characterized by $\varphi_{, x_{1} x_{2}}=\varphi_{, x_{2} x_{3}}=0$, when g is of the form (31) and by $\varphi_{, x_{1} x_{3}}=\varphi_{, x_{2} x_{3}}=0$, when g is given by (32).
- Conformally flat hypersurfaces are given by means of linear Weingarten surfaces in space forms.
- Moreover, the authors showed that all the known cases of conformally flat hypersurfaces, at that time, are associated to cyclic Guichard nets.

Theorem 8

Let M^{3} be a conformally flat hypersurface in \mathbb{R}^{4}, associated to a solution of Lamé's system $l_{i}\left(x_{1}, x_{2}, x_{3}\right)=l_{i}(\xi)$, with $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$ and $\alpha_{s} \neq 0$, for all s, given in terms of elliptic functions by (22)-(24). Then its first fundamental form g is given by

$$
\begin{equation*}
g=e^{2 P(x)}\left\{\cos ^{2} \varphi(\xi)\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}+\sin ^{2} \varphi(\xi)\left(d x_{3}\right)^{2}\right\} \tag{33}
\end{equation*}
$$

where φ satisfies,

$$
\begin{equation*}
\varphi_{, \xi}^{2}=c\left(a \cos ^{2} \varphi-b\right) \tag{34}
\end{equation*}
$$

or g is given by

$$
\begin{equation*}
g=e^{2 \tilde{P}(x)}\left\{\sinh ^{2} \tilde{\varphi}(\xi)\left(d x_{1}\right)^{2}+\cosh ^{2} \tilde{\varphi}(\xi)\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}\right\} \tag{35}
\end{equation*}
$$

where $\tilde{\varphi}$ satisfies

$$
\begin{equation*}
\tilde{\varphi}_{, \xi}^{2}=c\left(b \cosh ^{2} \tilde{\varphi}-b\right) . \tag{36}
\end{equation*}
$$

where $a, b, c \in \mathbb{R} \backslash\{0\}, P(x)$ and $\tilde{P}(x)$ are differentiable functions. In both cases, $\xi \in I \subset \mathbb{R}$, where I is an open interval such that g is positive definite.

Corollary 2

Let $M^{3} \subset \mathbb{R}^{4}$ be a conformally flat hypersurface associated to the solutions of Lamé's system $l_{i}(\xi)$ with $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$ and $\alpha_{s} \neq 0$ for all s, given in terms of elliptic functions by (22)-(24). Then the associated Guichard net of M^{3} is not cyclic.

Corollary 2

Let $M^{3} \subset \mathbb{R}^{4}$ be a conformally flat hypersurface associated to the solutions of Lamé's system $l_{i}(\xi)$ with $\xi=\sum_{s=1}^{3} \alpha_{s} x_{s}$ and $\alpha_{s} \neq 0$ for all s, given in terms of elliptic functions by (22)-(24). Then the associated Guichard net of M^{3} is not cyclic.

- When $\xi=\alpha_{1} x_{1}+\alpha_{2} x_{2}$, the associated conformally flat hypersurfaces is conformal to the product $M^{2} \times I$, where M^{2} is a flat surface in the hyperbolic 3-space.
- When $\xi=\alpha_{1} x_{1}+\alpha_{2} x_{2}$, the associated conformally flat hypersurfaces is conformal to the product $M^{2} \times I$, where M^{2} is a flat surface in the hyperbolic 3-space.
- When $\xi=\alpha_{1} x_{1}+\alpha_{3} x_{3}$, the associated conformally flat hypersurfaces is conformal to the product $M^{2} \times I$, where M^{2} is a flat surface in the standard 3-sphere.
- When $\xi=\alpha_{1} x_{1}+\alpha_{2} x_{2}$, the associated conformally flat hypersurfaces is conformal to the product $M^{2} \times I$, where M^{2} is a flat surface in the hyperbolic 3-space.
- When $\xi=\alpha_{1} x_{1}+\alpha_{3} x_{3}$, the associated conformally flat hypersurfaces is conformal to the product $M^{2} \times I$, where M^{2} is a flat surface in the standard 3-sphere.
- Explicit parametrizations are given by means of solutions of Klein-Gordon equation

$$
F\left(x_{1}, x_{i}\right)-b \alpha_{1} \alpha_{i} F_{, x_{1} x_{i}}\left(x_{1}, x_{i}\right)=0
$$

where $i=2,3$

- An explicit parametrization for the general case is still unknown;
- it is related to solutions of the following partial differential equation:

$$
F+F_{, x_{1} x_{1}}-F_{, x_{2} x_{2}}+F_{, x_{3} x_{3}}-\beta_{12} F_{, x_{1} x_{2}}-\beta_{13} F_{, x_{1} x_{3}}-\beta_{23} F_{, x_{2} x_{3}}=0,
$$

where

$$
\begin{aligned}
& \beta_{12}=\left(\frac{\alpha_{1}^{2}-\alpha_{2}^{2}-\alpha_{3}^{2}}{\alpha_{1} \alpha_{2}}\right), \\
& \beta_{13}=\left(\frac{\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}}{\alpha_{1} \alpha_{3}}\right), \\
& \beta_{23}=\left(\frac{\alpha_{3}^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}}{\alpha_{2} \alpha_{2}}\right) .
\end{aligned}
$$

Final remarks and future work

- Hertrich-Jeromin and Suyama have considered recently (2013) non-cyclic Guichard nets where the coordinates surfaces have constant Gaussian curvature. They call these nets Bianchi-type Guichard nets.

Final remarks and future work

- Hertrich-Jeromin and Suyama have considered recently (2013) non-cyclic Guichard nets where the coordinates surfaces have constant Gaussian curvature. They call these nets Bianchi-type Guichard nets.
- The geometry of the flat surfaces in \mathbb{H}^{3} related to the case $\xi=\alpha_{1} x_{1}+\alpha_{2} x_{2}$ was studied in a joint work with Martinez and Tenenblat (Pacific J. Math., V. 264, N.1, 2013);
- The geometry of the flat surfaces in \mathbb{S}^{3} related to the case $\xi=\alpha_{2} x_{2}+\alpha_{3} x_{3}$ is a work in progress.

Invariant solutions under dilations:

- a system of partial differential equations in two variables that provides a new class class of conformally flat hypersurfaces;
- possibility of hidden symmetries;

These solutions are being investigated it will appear in a future work.

A complete description of the solutions of Lamé's system

$$
\begin{aligned}
\frac{\partial^{2} l_{i}}{\partial x_{j} \partial x_{k}}-\frac{1}{l_{j}} \frac{\partial I_{i}}{\partial x_{j}} \frac{\partial I_{j}}{\partial x_{k}}-\frac{1}{l_{k}} \frac{\partial l_{i}}{\partial x_{k}} \frac{\partial l_{k}}{\partial x_{j}} & =0, \\
\frac{\partial}{\partial x_{j}}\left(\frac{1}{l_{j}} \frac{\partial I_{i}}{\partial x_{j}}\right)+\frac{\partial}{\partial x_{i}}\left(\frac{1}{l_{i}} \frac{\partial I_{j}}{\partial x_{i}}\right)+\frac{1}{l_{k}^{2}} \frac{\partial l_{i}}{\partial x_{k}} \frac{\partial l_{j}}{\partial x_{k}} & =0,
\end{aligned}
$$

with the Guichard condition $I_{1}^{2}-I_{2}^{2}+l_{3}^{2}=0$, is still unknown, as well as the correspondent conformally flat hypersurfaces.

