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Conformally flat hypersurfaces

A hypersurface in the euclidean space Rn is called conformally flat

if every point has a neighbourhood where the induced metric is

conformal to a flat metric, i.e, to a metric with zero curvature.

I The investigation of conformally flat hypersurfaces has been

of interest for quite some time. The answers to the problem

are strongly related with the dimension of the space:
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I Any surface in R3 is conformally flat, since it can be

parametrized by isothermal coordinates.

I For higher dimensional hypersurfaces, E. Cartan in 1917 gave

a complete classification for the conformally flat hypersurfaces

of Rn, when n ≥ 5. He proved that such hypersurfaces are

quasi-umbilic, i.e., one of the principal curvatures has

multiplicity at least n − 2.
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I In the same paper, Cartan investigated the case n = 4 . He

showed that the quasi-umbilic hypersurfaces are conformally

flat, but the converse does not hold.

I Since then, there has been an effort to obtain a complete

classification of conformally hypersurfaces in R4, with three

distinct principal curvatures. The problem is still an open

question.
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Lafontaine in 1988 considered hypersurfaces of type

M3 = M2 × I ⊂ R4. He obtained the following classes of

conformally flat hypersurfaces:

a) M3 is a cylinder over a surface, M2 ⊂ R3, with constant

curvature in R3;

b) M3 is a cone over a surface in the sphere, M2 ⊂ S3, with

constant curvature;

c) M3 is obtained by rotating a constant curvature surface of the

hyperbolic space, M2 ⊂ H3 ⊂ R4, where H3 is the half space

model.
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Hertrich-Jeromin in 1994, established a correspondence between

conformally flat hypersufaces, with three distinct principal

curvatures, and Guichard nets in R3. These are open sets of R3,

with an orthogonal flat metric g =
∑3

i=1 l2
i dx2

i , where the

functions li satisfy the Guichard condition, namely,

l2
1 − l2

2 + l2
3 = 0,

and a system of second order partial differential equations, which is

called Lamé’s system
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For each solution (l1, l2, l3) for the Lamé’s system that satisfy

Guichard condition, Hertrich-Jeromin proved that there exists a

parametrization for a conformally flat hypersurface in R4, with

three distinct principal curvatures, whose induced metric is given by

g = e2P(x)
{

l1(x)2dx2
1 + l2(x)2dx2

2 + l3(x)2dx2
3

}
, (2)

where P(x) is a function that depends on x = (x1, x2, x3).



Our objective is to find solutions of the Lamé’s system, which

satisfy the Guichard condition, in order to obtain an associated

class of conformally flat hypersurface in R4;



The symmetry group of Lamé’s system

A system S of n-th order differential equations in p independent

and q dependent variables is given as a system of m equations

∆r (x , u(n)) = 0, r = 1, . . . ,m, (3)

involving x = (x1, . . . , xp) ∈ X , u = (u1, . . . , uq) ∈ U and the

derivatives u(n) of u with respect to x up to order n.



A symmetry group of the system S is a Lie group of

transformations G acting on X × U of the space of independent

and dependent variables for the system, with the property that

whenever u = f (x) is a solution of S , and whenever

g (̇x , f (x)) = (x̃ , f̃ (x̃)) is defined for g ∈ G , then u = f̃ (x̃) is also a

solution of the system.



A vector field V in the Lie algebra g of the group G is called an

infinitesimal generator.

Consider V as a vector field on X × U, with corresponding

one-parameter group exp(εV), i.e.,

exp(εV) ≡ Ψ(ε, x), (4)

where Ψ is the flow generated by V . In this case, V will be the

infinitesimal generator of the action induced by the flow.
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The symmetry group of a given system of differential equation is

obtained by using the prolongation formula and the infinitesimal

criterion that are describe as follows:

Given a vector field on

X × U,

V =

p∑
i=1

ξi (x , u)
∂

∂xi
+

q∑
α=1

φα(x , u)
∂

∂uα
,

the n-th prolongation of V is the vector field on the corresponding

jet space X × U(n)

pr(n)V = V +

q∑
α=1

∑
J

φJα(x , u(n))
∂

∂uαJ
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The second summation is taken over all (unordered) multi-indices

J = (j1, . . . , jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n. The coefficient

functions φJα of pr(n)V are given by the following formula:

φJα(x , u(n)) = DJ

(
φα −

p∑
i=1

ξiuαJ,i ,

)
,

where uαi =
∂uα

∂xi
, uαJ,i =

∂uαJ
∂xi

and DJ is given by total derivatives

DJ = Dj1Dj2 . . .Djk ,

with Di f (x , u(n)) =
∂f

∂xi
+

p∑
α1

∑
J

uαJ,i
∂f

∂uαJ
.



Consider a system ∆r (x , u(n)) = 0, r = 1, . . . , l . Then the set of

all vectors fields V on M such that

pr(n)V[∆r (x , u(n))] = 0, whenever ∆r (x , u(n)) = 0, (5)

is a Lie algebra of infinitesimal generators of a symmetry group for

the system. Conversely, all the connected symmetry groups can be

determined by considering this criterion.



I Since the prolongation formula is given in terms of ξi and φα

and the partial derivatives with respect to both x and u, the

infinitesimal criterion provides a system of partial differential

equations for the coefficients ξi and φα of V, called the

determining equations.

I By solving these equations, we obtain the vector field V that

determines a Lie algebra g. The symmetry group G is

obtained by exponentiating the Lie algebra.
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From now on, we consider the following notation for the

derivatives of a function f = f (x1, . . . , xn)

f,xi :=
∂f

∂xi
and f,xixj :=

∂2f

∂xi∂xj
.

With this notation, Lamé’s system (1) is given by

li ,xjxk −
li ,xj lj ,xk

lj
−

li ,xk lk,xj
lk

= 0, (6)(
li ,xj
lj

)
,xj

+

(
lj ,xi
li

)
,xi

+
li ,xk lj ,xk

l2
k

= 0, (7)

where i , j and k are distinct indices in the set {1, 2, 3}.



We will also consider the following notation,

εs =

{
1 if s = 1 or s = 3,

−1 if s = 2.
(8)

We can now rewrite Guichard condition as

εi l
2
i + εj l

2
j + εk l2

k = 0.



Next, we introduce auxiliary functions in order to reduce the sytem

of second order differential equations (6) and (7), into a first order

one. Consider the functions hij , with i 6= j , given by

li ,xj − hij lj = 0.

With these functions, we rewrite (6) and (7) as

hij ,xk − hikhkj = 0,

hij ,xj + hji ,xi + hikhjk = 0.



Using Guichard condition, there are other relations involving the

derivatives of li and hij . Taking the derivative of Guichard

condition with respect to xi , we have

εi li ,xi + εjhji lj + εkhki lk = 0,

for i , j , k distinct. The derivatives of the above equation with

respect to xj leads to

εihij ,xi + εjhji ,xj + εkhkihkj = 0.



Therefore, we summarize the last six equations in the following

system of first order partial differential equations, equivalent to

Lamé’s system, that we call Lamé’s system of first order

εi l
2
i + εj l

2
j + εk l2

k = 0, (9)

li ,xj − hij lj = 0, (10)

εi li ,xi + εjhji lj + εkhki lk = 0, (11)

hij ,xk − hikhkj = 0, (12)

hij ,xj + hji ,xi + hikhjk = 0, (13)

εihij ,xi + εjhji ,xj + εkhkihkj = 0. (14)



Theorem 1

Let V be the infinitesimal generator of the symmetry group of

Lamé’s system of first order (9)-(14), given by

V =
3∑

i=1

ξi (x , l , h)
∂

∂xi
+

3∑
i=1

ηi (x , l , h)
∂

∂li
+

3∑
i ,j=1, i 6=j

φij(x , l , h)
∂

∂hij
.

(15)

Then the functions ξi , ηi and φij are given by

ξi = axi + ai ,

ηi = cli ,

φij = −ahij ,

(16)

where a, c , ai ∈ R, x = (x1, x2, x3), l = (l1, l2, l3) and h the

off-diagonal 3× 3 matrix given by hij .



As a result of exponentiating V , we obtain the symmetry group of

Lamé’s system.

Corollary 1

The symmetry group of Lamé’s system (9)-(14) is given by the

following transformations:

1. translation in the independent variables: x̃i = xi + vi ;

2. dilation in the independent variables: x̃i = λxi ;

3. dilation in the dependent variables: l̃i = ρli and h̃ij = λ−1hij ;

where vi ∈ R and λ, ρ ∈ R \ {0}.



Group invariant solutions

I The knowledge of all the infinitesimal generators V of the

symmetry group of a system of differential equations, allows

one to reduce the system to another one with a reduced

number of variables.

I Specifically, if the system has p independent variables and a

symmetry subgroup is considered, where the orbits are

s-dimensional, then the reduced system for the solutions

invariant under this subgroup will depend on p − s variables.



We start with the subgroup of translations. The basic invariant of

this group is given by

ξ = α1x1 + α2x2 + α3x3, (17)

where (α1, α2, α3) is a non zero vector. We will consider solutions

li such that

li (x1, x2, x3) = li (ξ), 1 ≤ i ≤ 3, (18)

where ξ is given by (17).



Theorem 2

Let ls(ξ), s = 1, 2, 3, where ξ =
3∑

s=1

αsxs , be a solution of Lamé’s

system (9)-(14), such that ls is not constant for all s. Then there

exist cs ∈ R \ {0}, such that,

li ,ξ = ci lk lj , i , j , k distinct, (19)

c1 − c2 + c3 = 0, (20)

α2
1c2c3 + α2

2c1c3 + α2
3c1c2 = 0. (21)



Moreover, the functions li (ξ) are given by

l2
1,ξ = c2(c2 − c1)

(
l2
1 −

λ

c2

)(
l2
1 −

λ

c2 − c1

)
, (22)

l2
2 =

c2

c1

(
l2
1 −

λ

c2

)
, (23)

l2
3 =

c2 − c1

c1

(
l2
1 −

λ

c2 − c1

)
, (24)

where λ ∈ R.



Theorem 3

Let ls(ξ), s = 1, 2, 3, where ξ =
3∑

s=1

αsxs , be a solution of Lamé’s

system (9)-(14). Suppose that only one of the functions ls is

constant. Then one of the following occur:

a) l1 = λ1, l2 = λ1 cosh(bξ + ξ0), l3 = λ1 sinh(bξ + ξ0), where

ξ = α2x2 + α3x3, α2
2 + α2

3 6= 0 and b, ξ0 ∈ R ;

b) l2 = λ2, l1 = λ2 cosϕ(ξ), l3 = λ2 sinϕ(ξ), where

ξ = α1x1 + α3x3, α2
1 + α2

3 6= 0 and ϕ is one of the following:

b.1) ϕ(ξ) = bξ + ξ0, if α2
1 6= α2

3, where ξ0, b ∈ R;

b.2) ϕ is any function of ξ, if α2
1 = α2

3;

c) l3 = λ3, l2 = λ3 cosh(bξ + ξ0), l1 = λ3 sinh(bξ + ξ0), where

ξ = α1x1 + α2x2, α2
1 + α2

2 6= 0 and b, ξ0 ∈ R.



Next, we consider the solutions invariant under the subgroup

involving translations and dilations. In this case, the basic invariant

is given by

η =
a1x1 + a2x2 + a3x3

b1x1 + b2x2 + b3x3
, (25)

where the vectors (a1, a2, a3) and (b1, b2, b3) are linearly

independent.



Theorem 4

Let li (η), with η given by (25), be a solution of Lamé’s system

invariant under the subgroup involving translations and dilations.

Suppose that (as , bs) 6= (0, 0), ∀s, then the solutions li (η) are

constant.



Theorem 5

Let li (η), with η given by (25), be a solution of Lamé’s system

invariant under the subgroup involving translations and dilations.

Suppose that one of the pairs (as , bs) = (0, 0). Then one of the

following occur:

a) If (a1, b1) = (0, 0) then

l1 = λ1, l2 = λ1 coshϕ(η), l3 = λ1 sinhϕ(η), where

η =
a2x2 + a3x3

b2x2 + b3x3
and ϕ is given by

ϕ(η) =
C0

a2b3 − a3b2
arctan

[
b2

2 + b2
3

a3b2 − a2b3

(
η − a2b2 + a3b3

b2
2 + b2

3

)]
+C1,

(26)

where C0, C1 ∈ R.



b) If (a2, b2) = (0, 0) then

l2 = λ2, l1 = λ2 cosϕ(η), l3 = λ2 sinϕ(η), where

η =
a1x1 + a3x3

b1x1 + b3x3
and ϕ is given as follows:

b.1) if b1 = b3 = b, then

ϕ(η) =
D0

2b(a3 − a1)
log (2bη − a1 − a3) + D1, (27)

where D0, D1 ∈ R;

b.2) if b1 6= b3, then

ϕ(η) =
D2

2(a1b3 − a3b1)
log

[
(b3 + b1)η − (a3 + a1)

(b3 − b1)η − (a3 − a1)

]
+ D3,

(28)

where D2, D3 ∈ R.



c) If (a3, b3) = (0, 0), then

l3 = λ3, l2 = λ3 coshϕ(η), l1 = λ3 sinhϕ(η), with

η =
a1x1 + a2x2

b1x1 + b2x2
and ϕ is given by

ϕ(η) =
E0

a2b1 − a1b2
arctan

[
b2

2 + b2
1

a2b1 − a1b2

(
η − a2b2 + a1b1

b2
2 + b2

1

)]
+E1,

(29)

where E0, E1 ∈ R.



Geometry of the associated Guichard nets in R3

Definition 1

Let Mn be a Riemannian manifold and let f : M → R be a

differentiable function. The level submanifolds of f are said to be

geodesically parallel if |gradf | is a non zero constant, along each

level submanifold.



Theorem 6

Let (U, g), U ⊂ R3, be a Riemannian manifold with coordinates

(x1, x2, x3) and metric g =
3∑

s=1

l2
s (ξ)dx2

i , where ξ =
3∑

s=1

αsxs . Then

the level surfaces

Pξ0 =

{
(x1, x2, x3) ∈ U;

3∑
s=1

αsxs = ξ0

}
, where ξ1 < ξ0 < ξ2,

endowed with the induced metric are geodesically parallel.

Moreover, each level surface has zero Gaussian curvature and

constant mean curvature (depending on ξ0).



Theorem 7

Let (U, g), U ⊂ R3, be a Riemannian manifold, with coordinates

(x1, x2, x3) and metric g =
3∑

s=1

l2
s (ξ)dx2

i , with ξ =
3∑

s=1

αsxs . Then

each coordinate surface of U ⊂ R3, xi =constant, endowed with

the induced metric, has constant Gaussian curvature Ki . Moreover,

K1 + K2 + K3 = 0. (30)



Conformally flat hypersurfaces

By Guichard condition, any conformally flat hypersurface in R4 has

a local parametrization where the induced metric is given by

g = e2P(x)
{

sin2 ϕ(x)dx2
1 + dx2

2 + cos2 ϕ(x)dx2
3

}
, (31)

where x = (x1, x2, x3), or

g = e2P̃(x)
{

sinh2 ϕ̃(x)dx2
1 + cosh2 ϕ̃(x)dx2

2 + dx2
3

}
. (32)



I Suyama proved in 2005 that ϕ is a conformal invariant and he

classified the hypersurfaces conformal to the products given

by Lafontaine as the hypersurfaces where ϕ depends only on

two variables;

I Hertrich-Jeromin and Suyama classified in 2007 the

hypersurfaces where ϕ has two vanishing mixed derivatives,

namely:



I These conformally flat hypersurfaces are associated to the so

called cyclic Guichard nets, which are characterized by

ϕ,x1x2 = ϕ,x2x3 = 0, when g is of the form (31) and by

ϕ,x1x3 = ϕ,x2x3 = 0, when g is given by (32).

I Conformally flat hypersurfaces are given by means of linear

Weingarten surfaces in space forms.

I Moreover, the authors showed that all the known cases of

conformally flat hypersurfaces, at that time, are associated to

cyclic Guichard nets.



Theorem 8

Let M3 be a conformally flat hypersurface in R4, associated to a

solution of Lamé’s system li (x1, x2, x3) = li (ξ), with ξ =
3∑

s=1

αsxs

and αs 6= 0, for all s, given in terms of elliptic functions by

(22)-(24). Then its first fundamental form g is given by

g = e2P(x)
{

cos2 ϕ(ξ)(dx1)2 + (dx2)2 + sin2 ϕ(ξ)(dx3)2
}
, (33)

where ϕ satisfies,

ϕ2
,ξ = c(a cos2 ϕ− b), (34)



or g is given by

g = e2P̃(x)
{

sinh2 ϕ̃(ξ)(dx1)2 + cosh2 ϕ̃(ξ)(dx2)2 + (dx3)2
}

(35)

where ϕ̃ satisfies

ϕ̃2
,ξ = c(b cosh2 ϕ̃− b). (36)

where a, b, c ∈ R \ {0}, P(x) and P̃(x) are differentiable

functions. In both cases, ξ ∈ I ⊂ R, where I is an open interval

such that g is positive definite.



Corollary 2

Let M3 ⊂ R4 be a conformally flat hypersurface associated to the

solutions of Lamé’s system li (ξ) with ξ =
3∑

s=1

αsxs and αs 6= 0 for

all s, given in terms of elliptic functions by (22)-(24). Then the

associated Guichard net of M3 is not cyclic.
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I When ξ = α1x1 + α2x2, the associated conformally flat

hypersurfaces is conformal to the product M2 × I , where M2

is a flat surface in the hyperbolic 3-space.

I When ξ = α1x1 + α3x3, the associated conformally flat

hypersurfaces is conformal to the product M2 × I , where M2

is a flat surface in the standard 3-sphere.

I Explicit parametrizations are given by means of solutions of

Klein-Gordon equation

F (x1, xi )− bα1αiF,x1xi (x1, xi ) = 0,

where i = 2, 3
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I An explicit parametrization for the general case is still

unknown;

I it is related to solutions of the following partial differential

equation:

F +F,x1x1−F,x2x2 +F,x3x3−β12F,x1x2−β13F,x1x3−β23F,x2x3 = 0,

where

β12 =

(
α2

1 − α2
2 − α2

3

α1α2

)
,

β13 =

(
α2

1 + α2
2 + α2

3

α1α3

)
,

β23 =

(
α2

3 − α2
1 − α2

2

α2α2

)
.



Final remarks and future work

I Hertrich-Jeromin and Suyama have considered recently (2013)

non-cyclic Guichard nets where the coordinates surfaces have

constant Gaussian curvature. They call these nets

Bianchi-type Guichard nets.

I The geometry of the flat surfaces in H3 related to the case

ξ = α1x1 + α2x2 was studied in a joint work with Martinez

and Tenenblat (Pacific J. Math., V. 264, N.1, 2013);

I The geometry of the flat surfaces in S3 related to the case

ξ = α2x2 + α3x3 is a work in progress.
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Invariant solutions under dilations:

I a system of partial differential equations in two variables that

provides a new class class of conformally flat hypersurfaces;

I possibility of hidden symmetries;

These solutions are being investigated it will appear in a future

work.



A complete description of the solutions of Lamé’s system

∂2li
∂xj∂xk

− 1

lj

∂li
∂xj

∂lj
∂xk
− 1

lk

∂li
∂xk

∂lk
∂xj

= 0,

∂

∂xj

(
1

lj

∂li
∂xj

)
+

∂

∂xi

(
1

li

∂lj
∂xi

)
+

1

l2
k

∂li
∂xk

∂lj
∂xk

= 0,

with the Guichard condition l2
1 − l2

2 + l2
3 = 0, is still unknown, as

well as the correspondent conformally flat hypersurfaces.


