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Motivation.

Surfaces in 4-spaces :

(M, or, [g ]) : 4-dim. oriented mfd. with conformal str. [g ]
Σ : oriented surface
f : Σ → M : immersion

are investigated very well.

In particular,

“conformal properties and invariant”

are focused on, e.g.,

Willmore functional, twistor holomorphic immersion, etc.
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Motivation.

Since (or, [g ]) = quaternion structure, it is interesting to study

(M,Q) : quaternion mfd. with quaternion str. Q,
Σ : oriented surface,
f : Σ → M : immersion (of a certain kind)

as one of generalized settings.

• extrinsic invariants and properties w.r.t. quaternion str. Q are
our interest.

• If dimM = 4, then Q = (or, [g ]), and hence, such invariants are
conformal ones.
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In this talk, we consider

one candidate for quaternion object of the Willmore func. is
introduced.

relation to twistorical object,

lower bound,

critical points (corresponding to Willmore immersion)
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Quaternion manifolds and twistor spaces.

Quaternion manifolds and twistor spaces.

Definition 2.1

(M,Q) : quaternion mfd.
: ⇐⇒

(i) Q ⊂ End(TM) with rankQ = 3,
(ii) Q is locally spaned by sections I1, I2, I3 with H-relations,
(iii) ∃∇ : a torsion free affine connection s.t. ∇Γ(Q) ⊂ Γ(Q).

• ∇ is called a quaternion connection (q-conn.).
• quaternion connection is not unique.
• (I1, I2, I3) is called a admissible frame.
We set

dimM = 4n
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Quaternion manifolds and twistor spaces.

Zx := {J ∈ Qx | J2 = −id}
Z :=

∪
x∈M

Zx

πtw : Z → M : bundle projection

On Z, we can define an almost complex str. IZ∇ as follows:
(i) decompose TZ = H⊕ V
(ii) define on each space by

(IZ∇ )J(X ) = (J(p∗(X )))hJ

for all X ∈ HJ at J ∈ Z(M̃) and

(IZ∇ )J(Y ) = J (Y )

for all Y ∈ VJ at J ∈ Z(M̃).
• ( · )h stands for the horizontal lift
• J is the standard complex structure on each fiber (∼= S2)
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Quaternion manifolds and twistor spaces.

Lemma 2.2

If connections ∇1 and ∇2 are q-connections, then IZ∇1 = IZ∇2 .

Then we are allowed to write IZ for IZ∇ with no confusions in
quaternion geometry.

Lemma 2.3

IZ(= IZ∇ ) is always integrable if n ≥ 2. When n = 1, IZ is
integrable iff Q = (or, [g ]) is anti-self-dual (ADS).

Definition 2.4

We call (Z(M), IZ) the twistor space of M.
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We consider

(M,Q) : quaternion mfd.
Σ : oriented surface
f : Σ → M : immersion

Definition 3.1

f is inclusive
: ⇐⇒

f∗x(TxΣ) is contained in real 4-dim. quaternion subspace of
Tf (x)M for each x ∈ Σ.
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Inclusive immersions.

• If f is inclusive, then there exists unique I1 : Σ → Z s.t.
(i) I1(f∗(TΣ)) ⊂ f∗(TΣ) (so the complex str. I on Σ is induced)
(ii) the induced cpx. str. I is compatible with the orientation of Σ.

• We call I1 : Σ → Z the natural twistor lift of f .

Remark 3.2

When n = 1, that is Q = (or, [g ]), then any immersions are
inclusive and f ∗g is compatible with I . Therefore, when n = 1,

inclusive immersion=conformal immersion
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Inclusive immersions.

Here we summarize our setting :

dimM = 4n n = 1 n ≥ 2

structure conformal quaternion

integrability of IZ anti-self-dual always

immersion from a surface conformal inclusive

invariant conformal quaternion

Table: setting
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An invariant.

Hereafter assume that Σ is compact

f : Σ → M : inclusive immersion
∇ : q-connection
f #∇ : the pull-back conn. of ∇ on f #TM.

To introduce an quaternion invariant for an inclusive immersion,
we need some notations/definitions :

(1) Operators on End(f #TM)

Af #∇′
X :=

1

4

(
I1(f

#∇)X I1) + (f #∇)IX I1
)

Af #∇′′
X :=

1

4

(
I1(f

#∇)X I1)− (f #∇)IX I1
)

for X ∈ TM.
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An invariant for an inclusive immersion.

(2) 2-form aΩ(s)Ω :

On a complex manifold Σ of dimRΣ = 2, we can choose an area
form Ω on Σ, which satisfies Ω(X , IX ) ̸= 0 for all nonzero
X ∈ TΣ.

Definition 4.1

For a symmetric (0, 2)-tensor s on Σ, we define

aΩ(s) =
s(X ,X ) + s(IX , IX )

Ω(X , IX )

for a nonzero X ∈ TΣ.

• aΩ(s)Ω = aΩ′(s)Ω′ if Ω′ = cΩ for c ̸= 0.
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An invariant for an inclusive immersion.

(3) hermitrazation :
θ : (0, 2)-tensor on M

Πh(θ)(X ,Y ) :=
1

4

(
θ(X ,Y ) +

3∑
i=1

θ(IiX , I2Y )

)
for X , Y ∈ TM.

(4) θs : symmetrization of θ

(5) Ric∇ : Ricci tensor of ∇
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An invariant for an inclusive immersion.

Definition 4.2

For an inclusive immersion f : Σ → M, we define

WQ(f ) :=
1

2

∫
Σ
aΩ{f ∗(Ric∇)s −

2

n + 2
f ∗(Πh(Ric

∇)s)

−(TrAf #∇′
( · ) Af #∇′

( · ) )}Ω.

Theorem 4.3

For an inclusive immersion f : Σ → M,

WQ(f ) is a quaternion invariant,

that is, it is independent of the choice of q-connections.
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An invariant for an inclusive immersion.

Remark 4.4

Assume that M is quaternion Kähler with n ≥ 2 or Q =ASD and
g =Einstein (n = 1) . If f is inclusive, then

WQ(f ) =
Sc

4(n + 2)
Area(Σ, f ∗g) +

1

n

∫
Σ
∥H∥2Ω,

and f ∗g is compatible with I . In particular, if M =(4-dim. space
form of constant curvature),

WQ =(Willmore functional).
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An invariant for an inclusive immersion.

Definition 4.5

If the natural twistor lift I1 is holomorphic, then f is called a
twistor holomorphic (t-hol.).

• The property that f is t-hol. is independent of the choice of
q-connections.
• f is t-hol. ⇐⇒ Af #∇′′ = 0.
• When M is QK, f is minimal ⇐⇒ Af #∇′ = 0 .
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An invariant for an inclusive immersion.

Theorem 4.6

Assume that n ≥ 2 or Q =ASD (n = 1). Then we have

WQ(f ) ≥ 2π

∫
Σ
c1(f

#TM, I1).

The equality holds if and only if f is twistor holomorphic.

In general, when we study
(M, S) : mfd. with geometric str. S
Σ : submanifold in M,

one of elementary approach to study Σ is
(i) find an (extrinsic) invariant of Σ w.r.t S ,
(ii) give a lower or upper bound for it,
(iii) characterize the equality case of (ii)
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An invariant for an inclusive immersion.

One of the advantage of considering “the twistor space” for the
study of quaternion structures is that “complex geometry” can be
applied.

Hence, for inclusive surfaces in quaternion manifolds, it is
important to give a relation among the quaternion invariants and
complex geometric objects.
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An invariant for an inclusive immersion.

In particular, if the twistor lift of an inclusive immersion from a
compact surface into the quaternion projective space HPn is
holomorphic, its image is an algebraic curve in the complex
projective space CP2n+1.

Theorem 4.7

If
f : Σ → HPn is a t-hol. inclusive immersion
d =the degree of the image I1(Σ) ⊂ CP2n+1

then we have
WQ(f ) = 4πnd .
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An invariant for an inclusive immersion.

Example 4.8

Consider the Veronese map

CP1 ∋ [W0,W1] 7→ [W 2n+1
0 ,W0W

2n
1 , · · · ,W 2n+1

1 ] ∈ CP2n+1.

Its image is a nondegenerate curve of degree 2n + 1, which is
called the rational normal curve. Then the twistor projection of
this curve is a twistor holomorphic (nondegenerate) surface with

WQ(f ) = 4πn(2n + 1).
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An invariant for an inclusive immersion.

We give an applications of Theorem 4.7.

Consider the quotient bundle N := f #TM/TΣ and define the
complex structure IN on N by IN([ξ]) = [I1ξ] for ξ ∈ Γ(f #TM).

Corollary 4.9

If
f : Σ → HPn is a t-hol inclusive immersion
d =the degree of the image I1(Σ) ⊂ CP2n+1

q =genus of Σ
then we have ∫

Σ
c1(N) = 2(nd + q − 1).
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An invariant for an inclusive immersion.

Friedrich proves the following [Ann. Global Anal. Geom. 1984] :

Fact 4.10

If f : Σ → S4(∼= HP1) is a t-hol. conformal immersion, then the
Euler class of the normal bundle is non negative. Moreover, its
Euler class vanishes if and only if f is totally umblic.

Therefore Corollary 4.9 is a generalized and an improved result of
his result as above.
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Quaternion Willmore immersions.

Quaternion Willmore immersions

We consider critical points of WQ .

Definition 5.1

We say that f is quaternion Willmore (resp. constrained
quaternion Willmore) if

d

dt
WQ(ft)

∣∣∣∣
t=0

= 0

for any variation {ft}t∈J of f = f0 such that ft is inclusive for each
t ∈ J (resp. ft is inclusive for each t ∈ J and the induced complex
structure on Σ does not vary).

• An explicit expression of the first variation formula has been
obtained.
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Quaternion Willmore immersions.

Example 5.2

Any twistor holomorphic immersions are quaternion Willmore.

Example 5.3

If
(M,Q, g) : QK mfd. with n ≥ 2 or Q =ASD, g =Einstein
f : minimal (H = 0)

then
f is quaternion Willmore.
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Quaternion Willmore immersions.

Burstall and Calderbank show in [arXiv:1006.5700 (2010)]:

Fact 5.4

If f is an immersion into 4-dim space form of constant curvature
with holomorphic mean curvature vector field, then f is
constrained Willmore.

• f is constrained Willmore if f is a stationary point of the
Willmore functional under any variations of f such that the
induced conformal structure do not vary.
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Quaternion Willmore immersions.

In [H-, J. Geom. Phys. 57 (2007)],

Fact 5.5

Let f be an immersion into 4-dim space form with the natural
twistor lift I1. Then the mean curvature vector field is holomorphic
if and only if I1 is a harmonic section.

• ξ is a harmonic section (or vertically harmonic) of a Riemanian
vector bundle if a stationary point the restricted energy functional
to the space of sections with unit length.
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Quaternion Willmore immersions.

Theorem 5.6

If
(M,Q, g) : QK mfd. with n ≥ 2 or Q =ASD, g =Einstein
I1 : a harmonic section

then
f is constrained quaternion Willmore.

This theorem is a generalization and a quaternion version of
[Burstall and Calderbank,2010] above.
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Remark.

Remark.

WQ > 0 when M = HPn. Find a positive constant C s.t.
WQ ≥ C (C = 4πn ? When n = 1, it is true).

Another almost cpx. str. IZ ′ on Z is also important to study
inclusive minimal immerisons.

Superminimal immersion, by definition I1 is horizontal, are
interesting (e.g., index etc.).

Give more examples of quaternion Willmore or constrained
quaternion Willmore.immersions.

Characterize these.

· · ·
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Remark.

Thank you for your attention.
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