Quaternionic Holomorphic Geometry: transformations of minimal surfaces

Katrin Leschke

University of Leicester

joint with K. Moriya (University of Tsukuba)

26th March 2013

Katrin Leschke (with K Moriya)

QHG & minimal surfaces

글 > - < 글 >

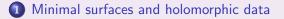
A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

E.

2 Tools from Quaternionic Holomorphic Geometry

< 17 ▶

- 2 Tools from Quaternionic Holomorphic Geometry
- 3 Harmonic maps and their associated families of flat connections



- 2 Tools from Quaternionic Holomorphic Geometry
- 3 Harmonic maps and their associated families of flat connections
 - 4 Transformations

2 Tools from Quaternionic Holomorphic Geometry

3 Harmonic maps and their associated families of flat connections

Transformations

• The left and right associated family

2 Tools from Quaternionic Holomorphic Geometry

3 Harmonic maps and their associated families of flat connections

Transformations

- The left and right associated family
- Simple factor dressing

- 2 Tools from Quaternionic Holomorphic Geometry
- 3 Harmonic maps and their associated families of flat connections

Transformations

- The left and right associated family
- Simple factor dressing
- López-Ros deformation

Let $f: M \to \mathbb{R}^3$ be a conformal immersion from a Riemann surface M into 3-space.

Let $f: M \to \mathbb{R}^3$ be a conformal immersion from a Riemann surface M into 3-space.

Then f is called minimal if f has zero mean curvature H = 0.

Let $f: M \to \mathbb{R}^3$ be a conformal immersion from a Riemann surface M into 3-space.

Then f is called minimal if f has zero mean curvature H = 0.

 $H = 0 \iff f : M \to \mathbb{R}^3$ is harmonic

Let $f: M \to \mathbb{R}^3$ be a conformal immersion from a Riemann surface M into 3-space.

Then f is called minimal if f has zero mean curvature H = 0.

$$H = 0 \iff f : M \to \mathbb{R}^3$$
 is harmonic, i.e. $\Delta f = 0$.

Given $g: M \to \mathbb{C}$ meromorphic, $\omega \in \Omega^1(M, \mathbb{C})$ meromorphic on simply connected M, then

$$\Phi = \int \left(rac{1}{2}(1-g^2)\omega, rac{{f i}}{2}(1+g^2)\omega, g\omega
ight)$$

is a holomorphic null curve

Given $g: M \to \mathbb{C}$ meromorphic, $\omega \in \Omega^1(M, \mathbb{C})$ meromorphic on simply connected M, then

$$\Phi = \int \left(rac{1}{2}(1-g^2)\omega,rac{{f i}}{2}(1+g^2)\omega,g\omega
ight)$$

is a holomorphic null curve, and $f = \operatorname{Re} \Phi$ is a minimal surface in \mathbb{R}^3

Given $g: M \to \mathbb{C}$ meromorphic, $\omega \in \Omega^1(M, \mathbb{C})$ meromorphic on simply connected M, then

$$\Phi = \int \left(rac{1}{2}(1-g^2)\omega,rac{{f i}}{2}(1+g^2)\omega,g\omega
ight)$$

is a holomorphic null curve, and $f = \operatorname{Re} \Phi$ is a minimal surface in \mathbb{R}^3 with Gauss map given by the stereographic projection of g:

$$N = rac{1}{1+|g|^2} (2 \mathrm{Re}\,g, 2 \mathrm{Im}\,g, |g|^2 - 1)$$

Conversely, every minimal surface arises

< □ > <

Э

Conversely, every minimal surface arises - at least locally -

Conversely, every minimal surface arises - at least locally - this way

Conversely, every minimal surface arises – at least locally – this way: Writing $\Phi = f + \mathbf{i}f^* = (\Phi_1, \Phi_2, \Phi_3)$ we obtain the Weierstrass data (g, ω) via

$$\omega = d\Phi_1 - \mathbf{i} d\Phi_2$$

Conversely, every minimal surface arises – at least locally – this way: Writing $\Phi = f + \mathbf{i}f^* = (\Phi_1, \Phi_2, \Phi_3)$ we obtain the Weierstrass data (g, ω) via

$$\omega = d\Phi_1 - \mathbf{i}d\Phi_2, \quad g = rac{d\Phi_3}{d\Phi_1 - \mathbf{i}d\Phi_2}$$

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate minimal surface f^* . Then

$$f_{\cos t,\sin t} = f \cos t + f^* \sin t, \quad t \in \mathbb{R},$$

is called the associated family of f.

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate minimal surface f^* . Then

$$f_{\cos t,\sin t} = f \cos t + f^* \sin t, \quad t \in \mathbb{R},$$

is called the associated family of f. The minimal surfaces f_t are isometric to f.

Let $f: M \to \mathbb{R}^3$ be minimal on simply connected M with Weierstrass data (g, ω) .

Let $f: M \to \mathbb{R}^3$ be minimal on simply connected M with Weierstrass data (g, ω) . Then for $z \in \mathbb{C}_*$ the pair

$$(zg, \frac{\omega}{z})$$

is the Weierstrass data of a minimal immersion $f_z: M \to \mathbb{R}^3$.

Let $f: M \to \mathbb{R}^3$ be minimal on simply connected M with Weierstrass data (g, ω) . Then for $z \in \mathbb{C}_*$ the pair

$$(zg, \frac{\omega}{z})$$

is the Weierstrass data of a minimal immersion $f_z : M \to \mathbb{R}^3$. This deformation is called the López-Ros deformation.

Let $f: M \to \mathbb{R}^3$ be minimal on simply connected M with Weierstrass data (g, ω) . Then for $z \in \mathbb{C}_*$ the pair

$$(zg, \frac{\omega}{z})$$

is the Weierstrass data of a minimal immersion $f_z : M \to \mathbb{R}^3$. This deformation is called the López-Ros deformation.

Note that from $d\Phi_3 = g\omega$ we see that this deformation does not change the third coordinate

$$(f_z)_3 = f_3$$

for all $z \in \mathbb{C}_*$.

$$\mathbb{H} = \mathsf{span}_{\mathbb{R}} \{1, i, j, k\}$$

E.

∃ ► < ∃ ►</p>

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\mathbb{H} = \operatorname{span}_{\mathbb{R}} \{1, i, j, k\}$$

with $i^2 = j^2 = k^2 = -1, ij = k$

<ロ> <四> <四> <四> <四> <四> <四> <四> <四> <四</p>

$$\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$$
 with $i^2 = j^2 = k^2 = -1, ij = k = -ji.$

$$\mathbb{H} = \mathsf{span}_{\mathbb{R}} \{1, i, j, k\}$$

with $i^2 = j^2 = k^2 = -1$, ij = k = -ji.

 $\mathbb{R}^3 = \operatorname{Im} \mathbb{H}$ with inner product given by

$$ab = - \langle a, b \rangle + a \times b$$

for $a, b \in \mathbb{R}^3 = \operatorname{Im} \mathbb{H}$.

Let $f: M \to \mathbb{R}^3$ be an immersion with Gauss map $N: M \to S^2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $f: M \to \mathbb{R}^3$ be an immersion with Gauss map $N: M \to S^2$. Then f is conformal $\iff *df = Ndf$

Katrin Leschke (with K Moriya)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $f: M \to \mathbb{R}^3$ be an immersion with Gauss map $N: M \to S^2$. Then f is conformal $\iff *df = Ndf$ f is minimal $\iff *dN = -NdN$

- 4 戸 2 4 三 2 4 三 2 三 三

Let $f: M \to \mathbb{R}^3$ be an immersion with Gauss map $N: M \to S^2$. Then

f is conformal	\iff	*df = Ndf
f is minimal	\iff	*dN = -NdN
f^* is conjugate of f	\iff	$*df = -df^*$

The conformal Gauss map

Let $f: M \to \mathbb{R}^3$ be a minimal immersion with Gauss map $N: M \to S^2$.

< □ > <

The conformal Gauss map

Let $f : M \to \mathbb{R}^3$ be a minimal immersion with Gauss map $N : M \to S^2$. Then the conformal Gauss map of f is the complex structure

$$S = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} N & 0 \\ 0 & -N \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1}$$

on $M \times \mathbb{H}^2$.

The conformal Gauss map

Let $f : M \to \mathbb{R}^3$ be a minimal immersion with Gauss map $N : M \to S^2$. Then the conformal Gauss map of f is the complex structure

$$S = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} N & 0 \\ 0 & -N \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1}$$

on $M \times \mathbb{H}^2$. The Hopf field A of the conformal Gauss map is defined by

$$-2*A=\frac{1}{2}(dS-S*dS).$$

If f is minimal then

$$2 * A = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & dN \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1}$$

The conformal Gauss map

Let $f : M \to \mathbb{R}^3$ be a minimal immersion with Gauss map $N : M \to S^2$. Then the conformal Gauss map of f is the complex structure

$$S = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} N & 0 \\ 0 & -N \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1}$$

on $M \times \mathbb{H}^2$. The Hopf field A of the conformal Gauss map is defined by

$$-2*A=\frac{1}{2}(dS-S*dS).$$

If f is minimal then

$$2 * A = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & dN \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1},$$

in particular im A gives f

Katrin Leschke (with K Moriya)

The conformal Gauss map

Let $f : M \to \mathbb{R}^3$ be a minimal immersion with Gauss map $N : M \to S^2$. Then the conformal Gauss map of f is the complex structure

$$S = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} N & 0 \\ 0 & -N \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1}$$

on $M \times \mathbb{H}^2$. The Hopf field A of the conformal Gauss map is defined by

$$-2*A=\frac{1}{2}(dS-S*dS).$$

If f is minimal then

$$2 * A = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & dN \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix}^{-1},$$

in particular im A gives f and d * A = 0.

Let $f: M \to \mathbb{R}^3$ be minimal then its Gauss map $N: M \to S^2$ is conformal

Let $f: M ightarrow \mathbb{R}^3$ be minimal then its Gauss map $N: M ightarrow S^2$ is conformal

*dN = -NdN.

Let $f:M o \mathbb{R}^3$ be minimal then its Gauss map $N:M o S^2$ is conformal *dN=-NdN .

Fact: $N : M \to S^2$ is harmonic if and only if d(N * dN) = 0.

Katrin Leschke (with K Moriya)

Let $f:M o \mathbb{R}^3$ be minimal then its Gauss map $N:M o S^2$ is conformal *dN=-NdN .

Fact: $N : M \to S^2$ is harmonic if and only if d(N * dN) = 0. Thus: the Gauss map of N is harmonic. Let $f: M \to \mathbb{R}^3$ be minimal and $N: M \to S^2$ its harmonic Gauss map.

Let $f: M \to \mathbb{R}^3$ be minimal and $N: M \to S^2$ its harmonic Gauss map. Put $Q = -\frac{1}{2} * dN$. Then

$$d_\lambda = d + (\lambda - 1)Q^{1,0} + (\lambda^{-1} - 1)Q^{0,1}$$

is a flat connection on $M \times \mathbb{C}^2$ for all $\lambda \in \mathbb{C}_*$.

Let $f: M \to \mathbb{R}^3$ be minimal and $N: M \to S^2$ its harmonic Gauss map. Put $Q = -\frac{1}{2} * dN$. Then

$$d_\lambda = d + (\lambda - 1)Q^{1,0} + (\lambda^{-1} - 1)Q^{0,1}$$

is a flat connection on $M \times \mathbb{C}^2$ for all $\lambda \in \mathbb{C}_*$. Let $\mu \in \mathbb{C}_*$ and $a = \frac{\mu + \mu^{-1}}{2}, b = i \frac{\mu^{-1} - \mu}{2}$. Then

$$d_{\mu}\beta = 0 \iff \beta = Nm + m\frac{b}{a-1}, m \in \mathbb{H}.$$

Katrin Leschke (with K Moriya)

Let $f: M \to \mathbb{R}^3$ be minimal then its conformal Gauss map $N: M \to S^2$ is harmonic since

$$d(S*dS)=4d*A=0.$$

Let $f: M \to \mathbb{R}^3$ be minimal then its conformal Gauss map $N: M \to S^2$ is harmonic since

$$d(S*dS)=4d*A=0.$$

Then

$$d_{\lambda} = d + (\lambda - 1) A^{1,0} + (\lambda^{-1} - 1) A^{0,1}$$

is a flat connection on $M \times \mathbb{C}^4$ for all $\lambda \in \mathbb{C}_*$.

Let $f: M \to \mathbb{R}^3$ be minimal then its conformal Gauss map $N: M \to S^2$ is harmonic since

$$d(S*dS)=4d*A=0.$$

Then

$$d_{\lambda} = d + (\lambda - 1) A^{1,0} + (\lambda^{-1} - 1) A^{0,1}$$

is a flat connection on $M \times \mathbb{C}^4$ for all $\lambda \in \mathbb{C}_*$.

Let
$$\mu\in\mathbb{C}_{*}$$
 and $a=rac{\mu+\mu^{-1}}{2},b=irac{\mu^{-1}-\mu}{2}.$ Then

$$d_{\mu} \varphi = 0 \quad \Longleftrightarrow \quad \varphi = \begin{pmatrix} n \\ 0 \end{pmatrix}, n \in \mathbb{H},$$

Let $f: M \to \mathbb{R}^3$ be minimal then its conformal Gauss map $N: M \to S^2$ is harmonic since

$$d(S*dS)=4d*A=0.$$

Then

$$d_{\lambda} = d + (\lambda - 1) A^{1,0} + (\lambda^{-1} - 1) A^{0,1}$$

is a flat connection on $M \times \mathbb{C}^4$ for all $\lambda \in \mathbb{C}_*$.

Let $\mu \in \mathbb{C}_*$ and $a = \frac{\mu + \mu^{-1}}{2}, b = i \frac{\mu^{-1} - \mu}{2}$. Then

$$d_{\mu}\varphi = 0 \iff \varphi = \begin{pmatrix} n \\ 0 \end{pmatrix}, n \in \mathbb{H}, \text{ or}$$

 $\varphi = \begin{pmatrix} \alpha + f\beta \\ \beta \end{pmatrix} \text{ with } \beta = Nm + m\frac{b}{a-1}, \text{ and}$
 $\alpha = -f^*m - fm\frac{b}{a-1}, m \in \mathbb{H}.$

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

$$f_{p,q} = fp + f^*q$$

is called the right associated family of f.

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

$$f_{p,q} = fp + f^*q$$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

$$f_{p,q} = fp + f^*q$$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Theorem (L-Moriya)

Let f be a minimal immersion into \mathbb{R}^3 or \mathbb{R}^4 .

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

$$f_{p,q} = fp + f^*q$$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Theorem (L-Moriya)

Let f be a minimal immersion into \mathbb{R}^3 or \mathbb{R}^4 .

Then the right (left) associated family is a S^3 –family of minimal surfaces in \mathbb{R}^4

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

 $f_{p,q} = fp + f^*q$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Theorem (L-Moriya)

Let f be a minimal immersion into \mathbb{R}^3 or \mathbb{R}^4 .

Then the right (left) associated family is a S^3 -family of minimal surfaces in \mathbb{R}^4 which extends the classical associated family $f_{\cos t, \sin t}, t \in \mathbb{R}$, of minimal surfaces.

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

$$f_{p,q} = fp + f^*q$$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Theorem (L-Moriya)

Let f be a minimal immersion into \mathbb{R}^3 or \mathbb{R}^4 .

Then the right (left) associated family is a S^3 -family of minimal surfaces in \mathbb{R}^4 which extends the classical associated family $f_{\cos t, \sin t}, t \in \mathbb{R}$, of minimal surfaces.

The right (left) associated family preserves the conformal class.

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

$$f_{p,q} = fp + f^*q$$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Theorem (L-Moriya)

Let f be a minimal immersion into \mathbb{R}^3 or \mathbb{R}^4 .

Then the right (left) associated family is a S^3 -family of minimal surfaces in \mathbb{R}^4 which extends the classical associated family $f_{\cos t, \sin t}, t \in \mathbb{R}$, of minimal surfaces.

The right (left) associated family preserves the conformal class.

A surface $f_{p,q}$ (or $f^{p,q}$) is isometric to f

Let $f: M \to \mathbb{R}^3$ be minimal with conjugate surface f^* . Let $p, q \in \mathbb{H}$. Then

 $f_{p,q} = fp + f^*q$

is called the right associated family of f. Similarly, $f^{p,q} = pf + qf^*$ is called the left associated family.

Theorem (L-Moriya)

Let f be a minimal immersion into \mathbb{R}^3 or \mathbb{R}^4 .

Then the right (left) associated family is a S^3 -family of minimal surfaces in \mathbb{R}^4 which extends the classical associated family $f_{\cos t, \sin t}, t \in \mathbb{R}$, of minimal surfaces.

The right (left) associated family preserves the conformal class.

A surface $f_{p,q}$ (or $f^{p,q}$) is isometric to f if and only if it is an element of the classical associated family, up to an isometry of \mathbb{R}^4 .

Simple factor dressing (Terng–Uhlenbeck)

Let $N: M \to S^2$ be harmonic and d_λ its associated family of flat connections.

Simple factor dressing (Terng–Uhlenbeck)

Let $N: M \to S^2$ be harmonic and d_λ its associated family of flat connections.

Fix $\mu \in \mathbb{C}_*$. Choose a parallel section $\beta \in \Gamma(M \times \mathbb{C}^2)$ of the flat connection d_{μ} .

Simple factor dressing (Terng–Uhlenbeck)

Let $N: M \to S^2$ be harmonic and d_λ its associated family of flat connections.

Fix $\mu \in \mathbb{C}_*$. Choose a parallel section $\beta \in \Gamma(M \times \mathbb{C}^2)$ of the flat connection d_{μ} .

Put

$$r_{\lambda} = \begin{cases} \frac{\lambda - \mu}{\lambda - \bar{\mu}^{-1}} \frac{1 - \bar{\mu}^{-1}}{1 - \mu} & \text{on } \beta \mathbb{C} \\ 1 & \text{on } (\beta \mathbb{C})^{\perp} \end{cases}$$

Let $N: M \to S^2$ be harmonic and d_λ its associated family of flat connections.

Fix $\mu \in \mathbb{C}_*$. Choose a parallel section $\beta \in \Gamma(M \times \mathbb{C}^2)$ of the flat connection d_{μ} .

Put

$$r_{\lambda} = \begin{cases} \frac{\lambda - \mu}{\lambda - \bar{\mu}^{-1}} \frac{1 - \bar{\mu}^{-1}}{1 - \mu} & \text{on } \beta \mathbb{C} \\ 1 & \text{on } (\beta \mathbb{C})^{\perp} \end{cases}$$

Then the gauge

$$\hat{d}_{\lambda} = r_{\lambda} \cdot d_{\lambda}$$

of d_{λ} by r_{λ} is the associated family of a harmonic map $\hat{N} : M \to S^2$, the simple factor dressing of N.

Using an explicit formula for the simple factor dressing given by $\left[\text{BDLQ}\right]$ we obtain

Lemma (L-Moriya)

In the case of the harmonic Gauss map $N : M \to S^2$ of a minimal surface $f : M \to \mathbb{R}^3$, the simple factor dressing of N is given by

$$\hat{N} = (N + \rho)N(N + \rho)^{-1}$$

with
$$\rho = m \frac{b}{a-1} m^{-1}$$
, $a = \frac{\mu + \mu^{-1}}{2}$, $b = i \frac{\mu^{-1} - \mu}{2}$, $m \in \mathbb{H}$.

Let $f: M \to \mathbb{R}^4$ be Willmore with harmonic conformal Gauss map S.

Katrin Leschke (with K Moriya)

Let $f : M \to \mathbb{R}^4$ be Willmore with harmonic conformal Gauss map S. Let d_{λ} be the associated family of S and assume that $M = (\varphi_1, \varphi_2)$ is invertible where φ_i are d_{μ} -parallel sections.

Let $f: M \to \mathbb{R}^4$ be Willmore with harmonic conformal Gauss map S. Let d_{λ} be the associated family of S and assume that $M = (\varphi_1, \varphi_2)$ is invertible where φ_i are d_{μ} -parallel sections. Then

$$\hat{S} = T^{-1}ST$$

is the conformal Gauss map of a Willmore surface $\hat{f}: M \to \mathbb{R}^4$ where

$$T = SM(a-1)M^{-1} + MbM^{-1}$$
.

Let $f: M \to \mathbb{R}^4$ be Willmore with harmonic conformal Gauss map S. Let d_{λ} be the associated family of S and assume that $M = (\varphi_1, \varphi_2)$ is invertible where φ_i are d_{μ} -parallel sections. Then

$$\hat{S} = T^{-1}ST$$

is the conformal Gauss map of a Willmore surface $\hat{f}:M\to \mathbb{R}^4$ where

$$T = SM(a-1)M^{-1} + MbM^{-1}$$
.

We call \hat{S} the simple factor dressing of S.

Simple factor dressing of a minimal surface

Theorem (L–Moriya)

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$arphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad arphi_2 = \begin{pmatrix} lpha + feta \\ eta \end{pmatrix},$$

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$\varphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \alpha + f\beta \\ \beta \end{pmatrix},$$

where $\alpha = -f^*m - fm\frac{b}{a-1}$

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$\varphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \alpha + f\beta \\ \beta \end{pmatrix},$$

where $\alpha = -f^*m - fm\frac{b}{a-1}$ and $\beta = Nm + m\frac{b}{a-1}$, $n, m \in \mathbb{H}_*$.

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$\varphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} lpha + feta \\ eta \end{pmatrix},$$

where $\alpha = -f^*m - fm\frac{b}{a-1}$ and $\beta = Nm + m\frac{b}{a-1}$, $n, m \in \mathbb{H}_*$. Then $\hat{f} : M \to \mathbb{R}^4$ is minimal.

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$\varphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} lpha + feta \\ eta \end{pmatrix},$$

where $\alpha = -f^*m - fm\frac{b}{a-1}$ and $\beta = Nm + m\frac{b}{a-1}$, $n, m \in \mathbb{H}_*$.

Then $\hat{f} : M \to \mathbb{R}^4$ is minimal. We call \hat{f} a simple factor dressing of f with parameters (μ, m, n) .

Theorem (L–Moriya)

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$arphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad arphi_2 = \begin{pmatrix} lpha + feta \\ eta \end{pmatrix},$$

where $\alpha = -f^*m - fm\frac{b}{a-1}$ and $\beta = Nm + m\frac{b}{a-1}$, $n, m \in \mathbb{H}_*$.

Then $\hat{f} : M \to \mathbb{R}^4$ is minimal. We call \hat{f} a simple factor dressing of f with parameters (μ, m, n) . Moreover,

• f is complete if and only if \hat{f} is complete.

Theorem (L–Moriya)

Let $f : M \to \mathbb{R}^3$ be minimal and \hat{f} the Willmore surface given by the simple factor dressing of the conformal Gauss map S of f given by

$$\varphi_1 = \begin{pmatrix} n \\ 0 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} lpha + feta \\ eta \end{pmatrix},$$

where $\alpha = -f^*m - fm\frac{b}{a-1}$ and $\beta = Nm + m\frac{b}{a-1}$, $n, m \in \mathbb{H}_*$.

Then $\hat{f} : M \to \mathbb{R}^4$ is minimal. We call \hat{f} a simple factor dressing of f with parameters (μ, m, n) . Moreover.

- f is complete if and only if \hat{f} is complete.
- f has finite total curvature if and only if \hat{f} has finite total curvature.

Theorem (L, Moriya)

Let $f : M \to \mathbb{R}^3$ be minimal. Then the simple factor dressing \hat{f} of f with parameters (μ, m, m) is a minimal surface in \mathbb{R}^3 .

Theorem (L, Moriya)

Let $f : M \to \mathbb{R}^3$ be minimal. Then the simple factor dressing \hat{f} of f with parameters (μ, m, m) is a minimal surface in \mathbb{R}^3 .

The Gauss map of \hat{f} is the simple factor dressing

$$\hat{N} = (N + \rho)N(N + \rho)^{-1}$$

of the Gauss map N of f where $\rho = m \frac{b}{a-1} m^{-1}$, $a = \frac{\mu + \mu^{-1}}{2}$, $b = i \frac{\mu^{-1} - \mu}{2}$.

Theorem

Let $f = (f_1, f_2, f_3) : M \to \mathbb{R}^3$ be a minimal surface in \mathbb{R}^3 with conjugate surface $f^* = (f_1^*, f_2^*, f_3^*)$.

Theorem

Let $f = (f_1, f_2, f_3) : M \to \mathbb{R}^3$ be a minimal surface in \mathbb{R}^3 with conjugate surface $f^* = (f_1^*, f_2^*, f_3^*)$. The López-Ros deformation f_z with complex parameter $z = e^{x+iy} \in \mathbb{C}_*$ is given by

$$f_{z} = \begin{pmatrix} -(f_{1} \cosh x - f_{2}^{*} \sinh x) \cos y - (f_{2} \cosh x + f_{1}^{*} \sinh x) \sin y \\ (f_{1} \cosh x - f_{2}^{*} \sinh x) \sin y - (f_{2} \cosh x + f_{1}^{*} \sinh x) \cos y \\ f_{3} \end{pmatrix}$$

Theorem

Let $f = (f_1, f_2, f_3) : M \to \mathbb{R}^3$ be a minimal surface in \mathbb{R}^3 with conjugate surface $f^* = (f_1^*, f_2^*, f_3^*)$. The López-Ros deformation f_z with complex parameter $z = e^{x+iy} \in \mathbb{C}_*$ is given by

$$f_{z} = \begin{pmatrix} -(f_{1}\cosh x - f_{2}^{*}\sinh x)\cos y - (f_{2}\cosh x + f_{1}^{*}\sinh x)\sin y \\ (f_{1}\cosh x - f_{2}^{*}\sinh x)\sin y - (f_{2}\cosh x + f_{1}^{*}\sinh x)\cos y \\ f_{3} \end{pmatrix}$$

Moreover, the López-Ros deformation with complex parameter z is the simple factor dressing of f with parameters (μ, m) for $\mu = \mu(z) \in \mathbb{C}_*$ and m = 1 - i - j - k.

Theorem

Let $f = (f_1, f_2, f_3) : M \to \mathbb{R}^3$ be a minimal surface in \mathbb{R}^3 with conjugate surface $f^* = (f_1^*, f_2^*, f_3^*)$. The López-Ros deformation f_z with complex parameter $z = e^{x+iy} \in \mathbb{C}_*$ is given by

$$f_z = \begin{pmatrix} -(f_1 \cosh x - f_2^* \sinh x) \cos y - (f_2 \cosh x + f_1^* \sinh x) \sin y \\ (f_1 \cosh x - f_2^* \sinh x) \sin y - (f_2 \cosh x + f_1^* \sinh x) \cos y \\ f_3 \end{pmatrix}$$

Moreover, the López-Ros deformation with complex parameter z is the simple factor dressing of f with parameters (μ, m) for $\mu = \mu(z) \in \mathbb{C}_*$ and m = 1 - i - j - k.

All simple factor dressings \hat{f} with parameter (μ, m, m) are given by a rotation R_m in \mathbb{R}^3 as

$$\hat{f} = R_m^{-1} f_z R_m$$

where *z* depends on μ .

Katrin Leschke (with K Moriya)

20 / 24

Catenoid

 $f = \operatorname{Re} \Phi$ where

$$\Phi(z) = \begin{pmatrix} z \\ \cosh z \\ -\mathbf{i} \sinh z \end{pmatrix}, \quad z \in \mathbb{C}.$$

E.

ヘロア 人間ア 人間ア 人間アー

Examples

Examples with one planar end

 $f = \operatorname{Re} \Phi$ where

$$\Phi = \begin{pmatrix} \frac{1}{2} \left(-\frac{1}{z} - \frac{z^{2n+1}}{2n+1} \right) \\ \frac{1}{2} \left(-\frac{1}{z} + \frac{z^{2n+1}}{2n+1} \right) \\ \frac{z^n}{n} \end{pmatrix}, \quad z \in \mathbb{C} \setminus \{0\} = \mathbb{C}_* .$$

Katrin Leschke (with K Moriya)

< 17 ► <

Э

Examples

Scherk's first surface

 $f = \operatorname{Re} \Phi$ where

$$\Phi(z) = \begin{pmatrix} \mathsf{i} \log(\frac{z+\mathsf{i}}{z-\mathsf{i}}) \\ \mathsf{i} \log(\frac{z+\mathsf{i}}{z-1}) \\ \log(\frac{z^2+\mathsf{i}}{z^2-\mathsf{i}}) \end{pmatrix}, \quad z \in \mathbb{C} \setminus \{\pm 1, \pm \mathsf{i}\}.$$

Katrin Leschke (with K Moriya)

A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

E.

Thanks!

Katrin Leschke (with K Moriya)

QHG & minimal surfaces

26th March 2013 24 / 24

E.

- ∢ ⊒ ▶

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A