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Definition

Complex Space Form is a Kaehler manifold equipped with a
complex structure J , (J2 = −I), whose holomorphic sectional
curvature is constant for all the J - invariant planes Π in TPM ,
for all points P ∈ M . The constant holomorphic sectional
curvature is denoted by c.

Theorem

A simply connected, complete complex space form is
analytically isometric to:
complex projective space CPn, if c > 0,
complex Euclidean space Cn, if c = 0,
complex hyperbolic space CHn, if c < 0.

Mn(c), c 6= 0 −→ Non-Flat Complex Space Form
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Definition

Almost contact structure or (ϕ, ξ, η) - structure is a tensor
field ϕ of type (1,1), a vector field ξ and a 1-form η, which
satisfy the following relations

ϕ2X = −X + η(X)ξ, η(ξ) = 1,

for any vector field X ∈ X(M).

(M,ϕ, ξ, η) −→ Almost contact manifold.
Compatible Metric of an almost contact manifold is a
Riemannian metric such that

η(X) = g(X, ξ), g(ϕX,ϕY ) = g(X,Y )−η(X)η(Y ), X, Y ∈ X(M)

Structure (ϕ, ξ, η, g) −→ Almost contact metric structure.
(M,ϕ, ξ, η,g) −→ Almost contact metric manifold.
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Definition

Real hypersurface M in complex space form Mn(c), c 6= 0, is
a submanifold of dimension equal to 2n− 1.

J complex structure on Mn(c), G Riemannian metric of Mn(c)
and ∇ Levi-Civita connection of Mn(c).
N : locally unit normal vector field on M .
Gauss and Weingarten equations

∇YX = ∇YX + g(AY,X)N,

∇XN = −AX,

where ∇ is the Levi-Civita connection of M , A is the shape
operator of M and g the induced Riemannian metric on M .
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Definition of the (ϕ, ξ, η, g) - structure on a real
hypersurface

Structure vector field ξ : ξ = −JN
Metric g : g(ϕX, Y ) = G(JX, Y )
1-form η : η(X) = g(X, ξ) = G(JX,N)
Tensor field ϕ of type (1,1): JX = ϕX + η(X)N

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ),

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,

for any tangent vector field X,Y on M .
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Gauss equation:

R(X,Y )Z =
c

4
[g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY

Codazzi equation:

(∇XA)Y − (∇YA)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ],

where R denotes the Riemannian curvature tensor on M .
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Three-dimensional Real Hypersurfaces in CP2 and CH2

The tangent space TPM : TPM = span{ξ} ⊕ D,
D = ker(η) = {X ∈ TPM : η(X) = 0} (holomorphic
distribution).

Aξ = αξ + βU,

where β = |ϕ∇ξξ| and U = − 1
βϕ∇ξξ ∈ D, provided that β 6= 0.

Definition

A real hypersurface is a Hopf hypersurface, if the structure
vector field ξ is principal, i.e. Aξ = αξ.

If M is a Hopf hypersurface then α is constant
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Complex Projective Space CP n, n ≥ 2

Takagi (1973) [23], Cecil, Ryan (1982) [2], Wang (1983) [25],
Kimura (1986) [6]

(A1) geodesic spheres of radius r, where 0 < r < π
2 ,

(A2) tubes of radius r over totally geodesic complex
projective space CP k, where 0 < r < π

2 and 1 ≤ k ≤ n− 2,

(B) tubes of radius r over complex quadrics and RPn,
where 0 < r < π

4 ,

(C) tubes of radius r over the Serge embedding of

CP 1 × CP
(n−1)

2 , where 0 < r < π
4 and n ≥ 2κ+ 3, κ ε N∗,

Konstantina Panagiotidou Results on Real Hypersurfaces in CP2 and CH2



Introduction
Real Hypersurfaces in Complex Space Form

Structure Jacobi Operator
Sketch of Proof

Summary of Results-Further Work
Bibliography

Three-dimensional Real Hypersurfaces in CP2 and CH2

(D) tubes of radius r over the Plucker embedding of the
complex Grassmannian manifold G2,5, where 0 < r < π

4
and n = 9,

(E) tubes of radius r over the canonical embedding of the
Hermitian symmetric space SO(10)/U(5), where 0 < r < π

4
and n = 15.
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Complex Hyperbolic Space CHn, n ≥ 2

Montiel (1985) [7], Berndt (1989) [1]

(A0) horospheres

(A1,0) geodesic spheres of radius r > 0,

(A1,1) tubes of radius r > 0 over totally geodesic complex
hyperbolic hyperplanes CHn−1,

(A2) tubes of radius r > 0 over totally geodesic
submanifold CHk, 1 ≤ k ≤ n− 2,

(B) tubes of radius r > 0 over totally real hyperbolic space
RHn.
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Case of CP 2

A three dimensional real hypersurface M is locally congruent to

(A1) a geodesic sphere of radius r, where 0 < r < π
2 ,

(B) a tube of radius r over complex quadrics and RPn,
where 0 < r < π

4 .

Type α λ ν mα mλ mν

A1 2cot 2r cot r - 1 2 -
B 2cot 2r cot(r − π

4 ) − tan(r − π
4 ) 1 1 1
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Case of CH2

A three dimensional real hypersurface M is locally congruent to

(A0) a horosphere

(A1,0) a geodesic sphere of radius r > 0,

(A1,1) a tube of radius r > 0 over totally geodesic complex
hyperbolic hyperplanes CH1,

(B) a tube of radius r > 0 over totally real hyperbolic
space RH2.

Type α λ ν mα mλ mν

A0 2 1 - 1 2 -
A1,0 2coth(2r) coth(r) - 1 2 -
A1,1 2coth(2r) tanh(r) - 1 2 -
B 2tanh(2r) tanh(r) coth(r) 1 1 1
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Three-dimensional Real Hypersurfaces in CP2 and CH2

Case of CPn, n ≥ 2,−→ Okumura, [9]

Case of CHn, n ≥ 2 −→ Montiel-Romero [8]

Theorem

Let M be a real hypersurface in Mn(c), n ≥ 2, then ϕA = Aϕ if
and only if M is an open subset of real hypersurfaces of type A.
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Structure Jacobi Operator

The Jacobi operator with respect to X on M is defined by
the relation R(·, X)X.

Definition

Structure Jacobi operator of real hypersurface is defined by
the relation l = R(·, ξ)ξ.

lX =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ
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Types of Parallelness

Covariant Derivative of Structure Jacobi Operator

Parallel
↓

(∇X l)Y = 0,
X ∈ TM

D-Parallel

↓
(∇X l)Y = 0,
X ∈ D

ξ-Parallel

↓

(∇ξl)Y = 0

Lie Derivative of Structure Jacobi Operator

Lie
Parallel
↓
(LX l)Y = 0,
X ∈ TM

Lie D-Parallel
↓
(LX l)Y = 0,
X ∈ D

Lie ξ-Parallel

↓

(Lξl)Y = 0
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ξ-Parallel Structure Jacobi Operator

Ortega, Perez and Santos (2006) [10]: Non-existence of real
hypersurfaces in complex space form Mn(c), n ≥ 2, whose
structure Jacobi operator is parallel.

Perez, Santos and Suh (2006) [18]: Non-existence of real
hypersurfaces in CPn, n ≥ 3 equipped with D-parallel structure
Jacobi operator.

QUESTION

Do there exist real hypersurfaces equipped with
ξ-parallel structure Jacobi operator?
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Theorem [14]

Let M be a real hypersurface in M2(c), whose structure Jacobi
operator is ξ-parallel. Then

in case of CP 2, M is locally congruent to
either a geodesic sphere of radius r, where 0 < r < π

2 ,
or a non-homogeneous real hypersurface, which is
considered as a tube of radius r = π

4 over a holomorphic
curve in CP 2

in case of CH2, M is locally congruent to
a horosphere,
or to a geodesic sphere,
or to a tube over CH1,
or to a Hopf hypersurface with Aξ = 0.
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Lie D-Parallel Structure Jacobi Operator

Perez and Santos, (2005) [16]: Non-existence of real
hypersurfaces in CPn, n ≥ 3, equipped with Lie-parallel
structure Jacobi operator, i.e. (LX l)Y = 0, with X,Y ∈ TM .

Perez, Santos and Suh, (2005) [17]: Classification of real
hypersurfaces in CPn, n ≥ 3 , equipped with Lie ξ-parallel
structure Jacobi operator, i.e. (Lξl)Y = 0, with Y ∈ TM .
Ivey and Ryan, (2009) [4]:
1) Classification of three-dimensional real hyperusurfaces in
M2(c) with Lie ξ-parallel structure Jacobi operator.
2) Non-existence of real hypersurfaces in Mn(c), n ≥ 2, with
Lie-parallel structure Jacobi operator.
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QUESTION

Do there exist real hypersurfaces whose structure
Jacobi operator is Lie D-parallel?

Theorem [-, Xenos 2012] [12]

There are no real hypersurfaces in M2(c) equipped with Lie
D-parallel structure Jacobi operator.

Theorem [Perez and Suh] [22]

There do not exist Hopf real hypersurfaces in CPn, n ≥ 3,
equipped with Lie D-parallel structure Jacobi operator.
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A tensor field P of type (1,s) is pseudo-parallel, if there exists
a function L such that R · P = L{(X ∧ Y ) · P},where
(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y .

If L 6= 0 −→ proper
R acts as derivation on P , i.e.

(R(X,Y ) · P )(X1, ..., Xs) = R(X,Y )(P (X1, ..., Xs)

−
s∑
j=1

P (X1, ..., R(X,Y )Xj , ..., Xs).
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Perez and Santos (2009)[20]: Non-existence of real
hypersurfaces in CPn, whose structure Jacobi operator is
semi-parallel, i.e. R · l = 0.

Cho and Kimura (2010) [3]: Non-existence of real
hypersurfaces in CPn and CHn equipped with semi-parallel
structure Jacobi operator.

Definition

The structure Jacobi operator is called pseudo-parallel, i.e.
R(X,Y ) · l = L{(X ∧ Y ) · l}, where L is a function.

R(X,Y )lZ − l(R(X,Y )Z)) = L{g(lZ, Y )X − g(lZ,X)Y

−l(g(Z, Y )X) + l(g(Z,X)Y )}
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Theorem [-, Xenos 2012] [13]

Let M be a real hypersurface in M2(c), whose structure Jacobi
operator is pseudo-parallel. Then

in case of CP 2, M is locally congruent to
either a geodesic sphere of radius r, where 0 < r < π

2 ,
or a non-homogeneous real hypersurface, which is
considered as a tube of radius r = π

4 over a holomorphic
curve in CP 2

in case of CH2, M is locally congruent to
a horosphere,
or to a geodesic sphere,
or to a tube over CH1,
or to a Hopf hypersurface with Aξ = 0.
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Relation Lξl = ∇ξl

Perez and Santos (2009) [21]: Classified real hypersurfaces
in CPn, n ≥ 3, whose structure Jacobi operator satisfies the
relation Lξl = ∇ξl.

Theorem

Let M be a real hypersurface in CPn, n ≥ 3, whose structure
Jacobi operator satisfies Lξl = ∇ξl. Then M is locally
congruent:

either to a tube of radius π
4 over a complex submanifold of

CPn,

or a tube of radius r 6= π
4 over CP k, where 0 ≤ k ≤ n− 1.
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Relation LX l = ∇X l, X ∈ D

Relation

(LX l)Y = (∇X l)Y,X ∈ D

Theorem [15]

There do not exist real hypersurfaces in M2(c), whose structure
Jacobi operator satisfies the above relation.
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Lie recurrence

Definition

A tensor field P of type (1,1) is called recurrent, if there exists
a 1-form ω such that (∇XP ) = ω(X)P (Y ), where X, Y are
tangent to M .

Perez and Santos (2008)[19]: Non-existence real
hypersurfaces in CPn, n ≥ 3 equipped with recurrent structure
Jacobi operator.
Theofanidis and Xenos (2012) [24]: Non-existence of real
hypersurfaces in Mn(c), n ≥ 3, whose structure Jacobi operator
is recurrent.
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Parallelness of Structure Jacobi Operator
Conditions on the Lie derivative of the structure Jacobi operator

Relation

(LX l)Y = ω(X)lY,X, Y ∈ TM

Theorem [5]

There do not exist real hypersurfaces in M2(c), whose structure
Jacobi operator is Lie recurrent.
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1st Step
2nd Step

1st Step: Real Hypersurface is Hopf

We consider a local orthonormal basis {U,ϕU, ξ}.

Aξ = αξ + βU,

α, β functions.

Let N be the open subset of M

N = {P ∈ M : β 6= 0, in a neighborhood of P}.

We consider V, Ω the open subsets of N

V = {P ∈ N : α = 0, in a neighborhood of P},

Ω = {P ∈ N : α 6= 0, in a neighborhood of P},

V ∪ Ω is open and dense in the closure of N .
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2nd Step

Lemma 1

Let M be a non-Hopf real hypersurface in M2(c). Then the
following relations hold on M

AU = γU + δϕU + βξ, AϕU = δU + µϕU, Aξ = αξ + βU,

∇Uξ = −δU + γϕU, ∇ϕUξ = −µU + δϕU, ∇ξξ = βϕU,

∇UU = κ1ϕU + δξ, ∇ϕUU = κ2ϕU + µξ,∇ξU = κ3ϕU,

∇UϕU = −κ1U − γξ,∇ϕUϕU = −κ2U − δξ,∇ξϕU = −κ3U − βξ,

where γ, δ, µ, κ1, κ2, κ3 are smooth functions on M .
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1st Step
2nd Step

Lemma 2

Let M be a non-Hopf real hypersurface in M2(c). Then the
following relations hold on M

Uβ − ξγ = αδ − 2δκ3

ξδ = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ− γκ3 − β2

Uα− ξβ = −3βδ

ξµ = αδ + βκ2 − 2δκ3

(ϕU)α = αβ + βκ3 − 3βµ

(ϕU)β = αγ + βκ1 + 2δ2 +
c

2
− 2γµ+ αµ

Uδ − (ϕU)γ = µκ1 − κ1γ − βγ − 2δκ2 − 2βµ

Uµ− (ϕU)δ = γκ2 + βδ − κ2µ− 2δκ1
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2nd Step

1) Hopf Hypersurface −→ Aξ = αξ −→ α=constant.
2) We consider a point P ∈ M and we choose principal vector
field Z ∈ ker(η) at P such that m

AZ = λZ and AϕZ = νϕZ,

λ, ν functions

λν =
α

2
(λ+ ν) +

c

4

λ, ν distinct at P −→ λ, ν constant

λ = ν −→ Aϕ = ϕA.
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Types of Parallelness of the Structure Jacobi Operator

Condition CP 2 and CH2 CPn, n ≥ 3 CHn, n ≥ 3

ξ-Parallel 4 ? ?

Lie D - parallel No No ?

Pseudo - parallel 4 ? ?
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