Introduction Real Hypersurfaces in Complex Space Form Structure Jacobi Operator Sketch of Proof Summary of Results-Further Work Bibliography

Results on Real Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$

Konstantina Panagiotidou

(joint work with Ph. J. Xenos, G. Kaimakamis)

Aristotle University of Thessaloniki - Mathematics Division School of Technology

Seminario de Geometria Geometria y Topologia - Universidad de Granada

Contents I

- Introduction
- 2 Real Hypersurfaces in Complex Space Form
 - Three-dimensional Real Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$
- 3 Structure Jacobi Operator
 - Parallelness of Structure Jacobi Operator
 - Conditions on the Lie derivative of the structure Jacobi operator
- 4 Sketch of Proof
 - 1st Step
 - 2^{nd} Step
- 5 Summary of Results-Further Work

- Introduction
- 2 Real Hypersurfaces in Complex Space Form
 - Three-dimensional Real Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$
- 3 Structure Jacobi Operator
 - Parallelness of Structure Jacobi Operator
 - Conditions on the Lie derivative of the structure Jacobi operator
- 4 Sketch of Proof
 - 1st Step
 - \bullet 2nd Step
- 5 Summary of Results-Further Work

Introduction
Real Hypersurfaces in Complex Space Form
Structure Jacobi Operator
Sketch of Proof
Summary of Results-Further Work
Bibliography

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$. The constant holomorphic sectional curvature is denoted by c.

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$. The constant holomorphic sectional curvature is denoted by c.

Theorem

A simply connected, complete complex space form is analytically isometric to:

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$. The constant holomorphic sectional curvature is denoted by c.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c>0,

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$. The constant holomorphic sectional curvature is denoted by c.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c>0, complex Euclidean space \mathbb{C}^n , if c=0,

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$. The constant holomorphic sectional curvature is denoted by c.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c>0, complex Euclidean space \mathbb{C}^n , if c=0, complex hyperbolic space $\mathbb{C}H^n$, if c<0.

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature is constant for all the J - invariant planes Π in T_PM , for all points $P \in M$. The constant holomorphic sectional curvature is denoted by c.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c>0, complex Euclidean space \mathbb{C}^n , if c=0, complex hyperbolic space $\mathbb{C}H^n$, if c<0.

 $M_n(c), c \neq 0 \longrightarrow \text{Non-Flat Complex Space Form}$

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$.

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow \textbf{Almost contact manifold}$.

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$.

 $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold.$

Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X) = g(X,\xi), \ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), X,Y \in \mathfrak{X}(M)$$

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$.

 $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold.$

Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X) = g(X,\xi), \ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), X,Y \in \mathfrak{X}(M)$$

Structure $(\varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ structure.$

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$.

 $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold.$

Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X) = g(X,\xi), \ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), X,Y \in \mathfrak{X}(M)$$

Structure $(\varphi, \xi, \eta, g) \longrightarrow \textbf{Almost contact metric structure}.$ $(M, \varphi, \xi, \eta, g) \longrightarrow \textbf{Almost contact metric manifold}.$

- Introduction
- 2 Real Hypersurfaces in Complex Space Form
 - Three-dimensional Real Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$
- 3 Structure Jacobi Operator
 - Parallelness of Structure Jacobi Operator
 - Conditions on the Lie derivative of the structure Jacobi operator
- 4 Sketch of Proof
 - 1st Step
 - \bullet 2nd Step
- 5 Summary of Results-Further Work

Real hypersurface M in complex space form $M_n(c)$, $c \neq 0$, is a submanifold of dimension equal to 2n - 1.

Real hypersurface M in complex space form $M_n(c)$, $c \neq 0$, is a submanifold of dimension equal to 2n - 1.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$.

Real hypersurface M in complex space form $M_n(c)$, $c \neq 0$, is a submanifold of dimension equal to 2n - 1.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$.

N: locally unit normal vector field on M.

Real hypersurface M in complex space form $M_n(c)$, $c \neq 0$, is a submanifold of dimension equal to 2n - 1.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$.

N: locally unit normal vector field on M.

Gauss and Weingarten equations

$$\overline{\nabla}_Y X = \nabla_Y X + g(AY, X)N,$$
$$\overline{\nabla}_X N = -AX,$$

where ∇ is the Levi-Civita connection of M, A is the shape operator of M and g the induced Riemannian metric on M.

Structure vector field ξ : $\xi = -JN$

Structure vector field ξ : $\xi = -JN$ Metric g : $g(\varphi X, Y) = G(JX, Y)$

Structure vector field ξ : $\xi = -JN$

Metric $g: g(\varphi X, Y) = G(JX, Y)$

1-form η : $\eta(X) = g(X, \xi) = G(JX, N)$

```
Structure vector field \xi: \xi = -JN
Metric g: g(\varphi X, Y) = G(JX, Y)
1-form \eta: \eta(X) = g(X, \xi) = G(JX, N)
Tensor field \varphi of type (1,1): JX = \varphi X + \eta(X)N
```

Structure vector field ξ : $\xi = -JN$

Metric $g: g(\varphi X, Y) = G(JX, Y)$

1-form $\eta : \eta(X) = g(X, \xi) = G(JX, N)$

Tensor field φ of type (1,1): $JX = \varphi X + \eta(X)N$

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta \circ \varphi = 0, \quad \varphi \xi = 0, \quad \eta(\xi) = 1,$$

$$g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y),\ g(X,\varphi Y)=-g(\varphi X,Y),$$

$$\nabla_X \xi = \varphi A X, \qquad (\nabla_X \varphi) Y = \eta(Y) A X - g(A X, Y) \xi,$$

for any tangent vector field X, Y on M.

Gauss equation:

$$R(X,Y)Z = \frac{c}{4}[g(Y,Z)X - g(X,Z)Y + g(\varphi Y,Z)\varphi X$$
$$-g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z] + g(AY,Z)AX - g(AX,Z)AY$$

Gauss equation:

$$R(X,Y)Z = \frac{c}{4}[g(Y,Z)X - g(X,Z)Y + g(\varphi Y,Z)\varphi X$$
$$-g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z] + g(AY,Z)AX - g(AX,Z)AY$$

Codazzi equation:

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} [\eta(X)\varphi Y - \eta(Y)\varphi X - 2g(\varphi X, Y)\xi],$$

where R denotes the Riemannian curvature tensor on M.

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

Definition

A real hypersurface is a **Hopf hypersurface**, if the structure vector field ξ is principal, i.e. $A\xi = \alpha \xi$.

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

Definition

A real hypersurface is a **Hopf hypersurface**, if the structure vector field ξ is principal, i.e. $A\xi = \alpha \xi$.

If M is a Hopf hypersurface then α is constant

Takagi (1973) [23], Cecil, Ryan (1982) [2], Wang (1983) [25], Kimura (1986) [6]

- (A1) geodesic spheres of radius r, where $0 < r < \frac{\pi}{2}$,
- (A2) tubes of radius r over totally geodesic complex projective space $\mathbb{C}P^k$, where $0 < r < \frac{\pi}{2}$ and $1 \le k \le n-2$,
- (B) tubes of radius r over complex quadrics and $\mathbb{R}P^n$, where $0 < r < \frac{\pi}{4}$,
- (C) tubes of radius r over the Serge embedding of $\mathbb{C}P^1 \times \mathbb{C}P^{\frac{(n-1)}{2}}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 2\kappa + 3$, $\kappa \in \mathbb{N}^*$,

- (D) tubes of radius r over the *Plucker* embedding of the complex Grassmannian manifold $G_{2,5}$, where $0 < r < \frac{\pi}{4}$ and n = 9.
- (E) tubes of radius r over the canonical embedding of the Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15.

Complex Hyperbolic Space $\mathbb{C}H^n, n \geq 2$

Montiel (1985) [7], Berndt (1989) [1]

Montiel (1985) [7], Berndt (1989) [1]

- (A0) horospheres
- (A1,0) geodesic spheres of radius r > 0,
- (A1,1) tubes of radius r > 0 over totally geodesic complex hyperbolic hyperplanes $\mathbb{C}H^{n-1}$,
- (A2) tubes of radius r > 0 over totally geodesic submanifold $\mathbb{C}H^k$, $1 \le k \le n-2$,
- (B) tubes of radius r > 0 over totally real hyperbolic space $\mathbb{R}H^n$.

Case of $\mathbb{C}P^2$

A three dimensional real hypersurface M is locally congruent to

- (A1) a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$,
- (B) a tube of radius r over complex quadrics and $\mathbb{R}P^n$, where $0 < r < \frac{\pi}{4}$.

Type	α	λ	ν	m_{α}	m_{λ}	$m_{ u}$
A1	$2\cot 2r$	$\cot r$	-	1	2	-
В	$2\cot 2r$	$\cot(r - \frac{\pi}{4})$	$-\tan(r-\frac{\pi}{4})$	1	1	1

Case of $\mathbb{C}H^{2^{l}}$

A three dimensional real hypersurface M is locally congruent to

- (A0) a horosphere
- (A1,0) a geodesic sphere of radius r > 0,
- (A1,1) a tube of radius r > 0 over totally geodesic complex hyperbolic hyperplanes $\mathbb{C}H^1$,
- (B) a tube of radius r > 0 over totally real hyperbolic space $\mathbb{R}H^2$.

Type	α	λ	ν	m_{lpha}	m_{λ}	$m_{ u}$
A0	2	1	-	1	2	-
A1,0	$2\coth(2r)$	$\coth(r)$	-	1	2	-
A1,1	$2\coth(2r)$	tanh(r)	-	1	2	-
В	$2\tanh(2r)$	tanh(r)	$\coth(r)$	1	1	1

Introduction Real Hypersurfaces in Complex Space Form Structure Jacobi Operator Sketch of Proof Summary of Results-Further Work Bibliography

Case of
$$\mathbb{C}P^n$$
, $n \geq 2$, \longrightarrow Okumura, [9]

Case of
$$\mathbb{C}H^n$$
, $n \geq 2 \longrightarrow$ Montiel-Romero [8]

Introduction
Real Hypersurfaces in Complex Space Form
Structure Jacobi Operator
Sketch of Proof
Summary of Results-Further Work
Bibliography

Case of
$$\mathbb{C}P^n$$
, $n \geq 2$, \longrightarrow Okumura, [9]

Case of
$$\mathbb{C}H^n$$
, $n \geq 2 \longrightarrow \text{Montiel-Romero}$ [8]

Theorem

Let M be a real hypersurface in $M_n(c)$, $n \ge 2$, then $\varphi A = A\varphi$ if and only if M is an open subset of real hypersurfaces of type A.

- Introduction
- Real Hypersurfaces in Complex Space Form
 Three-dimensional Real Hypersurfaces in CP² and CH²
- 3 Structure Jacobi Operator
 - Parallelness of Structure Jacobi Operator
 - Conditions on the Lie derivative of the structure Jacobi operator
- Sketch of Proof
 - 1st Step
 - 2nd Step
- 5 Summary of Results-Further Work

Structure Jacobi Operator

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Structure Jacobi Operator

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Definition

Structure Jacobi operator of real hypersurface is defined by the relation $l = R(\cdot, \xi)\xi$.

Structure Jacobi Operator

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Definition

Structure Jacobi operator of real hypersurface is defined by the relation $l = R(\cdot, \xi)\xi$.

$$lX = \frac{c}{4}[X - \eta(X)\xi] + \alpha AX - \eta(AX)A\xi$$

Covariant Derivative of Structure Jacobi Operator

Parallel

Covariant Derivative of Structure Jacobi Operator

Parallel

$$\begin{array}{l}
\downarrow \\
(\nabla_X l)Y = 0, \\
X \in TM
\end{array}$$

Covariant Derivative of Structure Jacobi Operator Parallel D-Parallel

$$(\nabla_X l)Y = 0, X \in TM$$

Covariant Derivative of Structure Jacobi Operator

$\begin{array}{ll} \mathbf{Parallel} & & \mathbb{D}\text{-}\mathbf{Parallel} \\ \downarrow & & \downarrow \\ (\nabla_X l) Y = 0, & & \downarrow \\ X \in TM & & (\nabla_X l) Y = 0, \\ X \in \mathbb{D} & & \end{array}$

Covariant Derivative of Structure Jacobi Operator

Covariant Derivative of Structure Jacobi Operator

Covariant Derivative of Structure Jacobi Operator

Lie Derivative of Structure Jacobi Operator

Lie

Parallel

.1

Covariant Derivative of Structure Jacobi Operator

Lie Derivative of Structure Jacobi Operator

Lie

Parallel

$$\downarrow \\
(\mathcal{L}_X l) Y = 0, \\
X \in TM$$

Covariant Derivative of Structure Jacobi Operator

Covariant Derivative of Structure Jacobi Operator

$$\begin{array}{lll} \textbf{Lie} & \textbf{Lie} \; \mathbb{D}\textbf{-Parallel} \\ \textbf{Parallel} & \downarrow & \\ \downarrow & (\mathcal{L}_X l) Y = 0, \\ (\mathcal{L}_X l) Y = 0, & X \in \mathbb{D} \\ X \in TM \end{array}$$

Covariant Derivative of Structure Jacobi Operator

Lie	$\operatorname{Lie} \mathbb{D} ext{-}\operatorname{Parallel}$	Lie ξ -Parallel
Parallel	\downarrow	I
\downarrow	$(\mathcal{L}_X l)Y = 0,$	+
$(\mathcal{L}_X l)Y = 0,$	$X \in \mathbb{D}$	
$X \in TM$		

Covariant Derivative of Structure Jacobi Operator

Lie	$\mathbf{Lie} \ \mathbb{D}\text{-}\mathbf{Parallel}$	Lie ξ -Parallel
Parallel	\downarrow	1
\downarrow	$(\mathcal{L}_X l)Y = 0,$	+
$(\mathcal{L}_X l)Y = 0,$	$X \in \mathbb{D}$	$(\mathcal{L}_{\xi}l)Y = 0$
$X \in TM$		

Ortega, Perez and Santos (2006) [10]: Non-existence of real hypersurfaces in complex space form $M_n(c)$, $n \geq 2$, whose structure Jacobi operator is parallel.

Ortega, Perez and Santos (2006) [10]: Non-existence of real hypersurfaces in complex space form $M_n(c)$, $n \geq 2$, whose structure Jacobi operator is parallel.

Perez, Santos and Suh (2006) [18]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$ equipped with \mathbb{D} -parallel structure Jacobi operator.

Ortega, Perez and Santos (2006) [10]: Non-existence of real hypersurfaces in complex space form $M_n(c)$, $n \geq 2$, whose structure Jacobi operator is parallel.

Perez, Santos and Suh (2006) [18]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$ equipped with \mathbb{D} -parallel structure Jacobi operator.

QUESTION

Ortega, Perez and Santos (2006) [10]: Non-existence of real hypersurfaces in complex space form $M_n(c)$, $n \geq 2$, whose structure Jacobi operator is parallel.

Perez, Santos and Suh (2006) [18]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$ equipped with \mathbb{D} -parallel structure Jacobi operator.

QUESTION

Do there exist real hypersurfaces equipped with ξ -parallel structure Jacobi operator?

Theorem [14]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator is ξ -parallel. Then

- in case of $\mathbb{C}P^2$, M is locally congruent to either a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$, or a non-homogeneous real hypersurface, which is considered as a tube of radius $r = \frac{\pi}{4}$ over a holomorphic curve in $\mathbb{C}P^2$
- in case of $\mathbb{C}H^2$, M is locally congruent to a horosphere, or to a geodesic sphere, or to a tube over $\mathbb{C}H^1$, or to a Hopf hypersurface with $A\xi = 0$.

Theorem [14]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator is ξ -parallel. Then

- in case of $\mathbb{C}P^2$, M is locally congruent to either a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$, or a non-homogeneous real hypersurface, which is considered as a tube of radius $r = \frac{\pi}{4}$ over a holomorphic curve in $\mathbb{C}P^2$
- in case of $\mathbb{C}H^2$, M is locally congruent to a horosphere, or to a geodesic sphere, or to a tube over $\mathbb{C}H^1$, or to a Hopf hypersurface with $A\xi = 0$.

Perez and Santos, (2005) [16]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie-parallel structure Jacobi operator, i.e. $(\mathcal{L}_X l)Y = 0$, with $X, Y \in TM$.

Perez and Santos, (2005) [16]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie-parallel structure Jacobi operator, i.e. $(\mathcal{L}_X l)Y = 0$, with $X, Y \in TM$. Perez, Santos and Suh, (2005) [17]: Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie ξ -parallel structure Jacobi operator, i.e. $(\mathcal{L}_{\xi} l)Y = 0$, with $Y \in TM$.

Perez and Santos, (2005) [16]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie-parallel structure Jacobi operator, i.e. $(\mathcal{L}_X l)Y = 0$, with $X, Y \in TM$. Perez, Santos and Suh, (2005) [17]: Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie ξ -parallel structure Jacobi operator, i.e. $(\mathcal{L}_{\xi}l)Y = 0$, with $Y \in TM$. Ivey and Ryan, (2009) [4]:

Perez and Santos, (2005) [16]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie-parallel structure Jacobi operator, i.e. $(\mathcal{L}_X l)Y = 0$, with $X, Y \in TM$. Perez, Santos and Suh, (2005) [17]: Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie ξ -parallel structure Jacobi operator, i.e. $(\mathcal{L}_{\xi}l)Y = 0$, with $Y \in TM$. Ivey and Ryan, (2009) [4]: 1) Classification of three-dimensional real hyperusurfaces in $M_2(c)$ with Lie ξ -parallel structure Jacobi operator.

Perez and Santos, (2005) [16]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie-parallel structure Jacobi operator, i.e. $(\mathcal{L}_X l)Y = 0$, with $X, Y \in TM$. Perez, Santos and Suh, (2005) [17]: Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie ξ -parallel structure Jacobi operator, i.e. $(\mathcal{L}_{\varepsilon}l)Y = 0$, with $Y \in TM$. Ivey and Ryan, (2009) [4]:

- 1) Classification of three-dimensional real hyperusurfaces in $M_2(c)$ with Lie ξ -parallel structure Jacobi operator.
- 2) Non-existence of real hypersurfaces in $M_n(c)$, $n \geq 2$, with Lie-parallel structure Jacobi operator.

Conditions on the Lie derivative of the structure Jacobi

QUESTION

QUESTION

Do there exist real hypersurfaces whose structure Jacobi operator is Lie \mathbb{D} -parallel?

QUESTION

Do there exist real hypersurfaces whose structure Jacobi operator is Lie \mathbb{D} -parallel?

Theorem [-, Xenos 2012] [12]

There are no real hypersurfaces in $M_2(c)$ equipped with Lie \mathbb{D} -parallel structure Jacobi operator.

QUESTION

Do there exist real hypersurfaces whose structure Jacobi operator is Lie \mathbb{D} -parallel?

Theorem [-, Xenos 2012] [12]

There are no real hypersurfaces in $M_2(c)$ equipped with Lie \mathbb{D} -parallel structure Jacobi operator.

Theorem [Perez and Suh] [22]

There do not exist Hopf real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, equipped with Lie \mathbb{D} -parallel structure Jacobi operator.

Pseudo-parallel Structure Jacobi Operator

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$.

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$.

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \wedge Y) \cdot P\}$, where $(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y$.

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$.

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \wedge Y) \cdot P\}$, where $(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y$.

If
$$L \neq 0 \longrightarrow \mathbf{proper}$$

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$.

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \wedge Y) \cdot P\}$, where $(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y$.

If $L \neq 0 \longrightarrow \mathbf{proper}$

R acts as derivation on P, i.e.

Definition

A tensor field P of type (1,s) is **semi-parallel**, if $R \cdot P = 0$.

Definition

A tensor field P of type (1,s) is **pseudo-parallel**, if there exists a function L such that $R \cdot P = L\{(X \wedge Y) \cdot P\}$, where $(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y$.

If $L \neq 0 \longrightarrow \mathbf{proper}$

R acts as derivation on P, i.e.

$$(R(X,Y) \cdot P)(X_1, ..., X_s) = R(X,Y)(P(X_1, ..., X_s) - \sum_{j=1}^s P(X_1, ..., R(X,Y)X_j, ..., X_s).$$

Cho and Kimura (2010) [3]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$ equipped with semi-parallel structure Jacobi operator.

Cho and Kimura (2010) [3]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$ equipped with semi-parallel structure Jacobi operator.

Definition

The structure Jacobi operator is called pseudo-parallel, i.e. $R(X,Y) \cdot l = L\{(X \wedge Y) \cdot l\}$, where L is a function.

Cho and Kimura (2010) [3]: Non-existence of real hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$ equipped with semi-parallel structure Jacobi operator.

Definition

The structure Jacobi operator is called pseudo-parallel, i.e. $R(X,Y) \cdot l = L\{(X \wedge Y) \cdot l\}$, where L is a function.

$$R(X,Y)lZ - l(R(X,Y)Z)) = L\{g(lZ,Y)X - g(lZ,X)Y - l(g(Z,Y)X) + l(g(Z,X)Y)\}$$

Theorem [-, Xenos 2012] [13]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator is pseudo-parallel. Then

- in case of $\mathbb{C}P^2$, M is locally congruent to either a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$, or a non-homogeneous real hypersurface, which is considered as a tube of radius $r = \frac{\pi}{4}$ over a holomorphic curve in $\mathbb{C}P^2$
- in case of $\mathbb{C}H^2$, M is locally congruent to a horosphere, or to a geodesic sphere, or to a tube over $\mathbb{C}H^1$, or to a Hopf hypersurface with $A\xi = 0$.

Theorem [-, Xenos 2012] [13]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator is pseudo-parallel. Then

- in case of $\mathbb{C}P^2$, M is locally congruent to either a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$, or a non-homogeneous real hypersurface, which is considered as a tube of radius $r = \frac{\pi}{4}$ over a holomorphic curve in $\mathbb{C}P^2$
- in case of $\mathbb{C}H^2$, M is locally congruent to a horosphere, or to a geodesic sphere, or to a tube over $\mathbb{C}H^1$, or to a Hopf hypersurface with $A\xi = 0$.

Relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$

Perez and Santos (2009) [21]: Classified real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$.

Relation $\mathcal{L}_{\varepsilon}l = \nabla_{\varepsilon}l$

Perez and Santos (2009) [21]: Classified real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\varepsilon}l = \nabla_{\varepsilon}l$.

Theorem

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies $\mathcal{L}_{\xi}l = \nabla_{\xi}l$. Then M is locally congruent:

- either to a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C}P^n$.
- or a tube of radius $r \neq \frac{\pi}{4}$ over $\mathbb{C}P^k$, where $0 \leq k \leq n-1$.

Theorem [-,Xenos 2012] [11]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$. Then

- in case of $\mathbb{C}P^2$, M is locally congruent to either a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$, or a non-homogeneous real hypersurface, which is considered as a tube of radius $r = \frac{\pi}{4}$ over a holomorphic curve in $\mathbb{C}P^2$
- in case of $\mathbb{C}H^2$, M is locally congruent to a horosphere, or to a geodesic sphere, or to a tube over $\mathbb{C}H^1$, or to a Hopf hypersurface with $A\xi = 0$.

Theorem [-,Xenos 2012] [11]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$. Then

- in case of $\mathbb{C}P^2$, M is locally congruent to either a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$, or a non-homogeneous real hypersurface, which is considered as a tube of radius $r = \frac{\pi}{4}$ over a holomorphic curve in $\mathbb{C}P^2$
- in case of $\mathbb{C}H^2$, M is locally congruent to a horosphere, or to a geodesic sphere, or to a tube over $\mathbb{C}H^1$, or to a Hopf hypersurface with $A\xi = 0$.

Relation $\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$

Relation

$$(\mathcal{L}_X l)Y = (\nabla_X l)Y, X \in \mathbb{D}$$

Relation $\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$

Relation

$$(\mathcal{L}_X l)Y = (\nabla_X l)Y, X \in \mathbb{D}$$

Theorem [15]

There do not exist real hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies the above relation.

Lie recurrence

Definition

A tensor field P of type (1,1) is called **recurrent**, if there exists a 1-form ω such that $(\nabla_X P) = \omega(X)P(Y)$, where X, Y are tangent to M.

Lie recurrence

Definition

A tensor field P of type (1,1) is called **recurrent**, if there exists a 1-form ω such that $(\nabla_X P) = \omega(X)P(Y)$, where X, Y are tangent to M.

Perez and Santos (2008)[19]: Non-existence real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$ equipped with recurrent structure Jacobi operator.

Lie recurrence

Definition

A tensor field P of type (1,1) is called **recurrent**, if there exists a 1-form ω such that $(\nabla_X P) = \omega(X)P(Y)$, where X, Y are tangent to M.

Perez and Santos (2008)[19]: Non-existence real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$ equipped with recurrent structure Jacobi operator.

Theofanidis and Xenos (2012) [24]: Non-existence of real hypersurfaces in $M_n(c)$, $n \geq 3$, whose structure Jacobi operator is recurrent.

Relation

$$(\mathcal{L}_X l)Y = \omega(X)lY, X, Y \in TM$$

Relation

$$(\mathcal{L}_X l)Y = \omega(X)lY, X, Y \in TM$$

Theorem [5]

There do not exist real hypersurfaces in $M_2(c)$, whose structure Jacobi operator is Lie recurrent.

- Introduction
- 2 Real Hypersurfaces in Complex Space Form
 - Three-dimensional Real Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$
- 3 Structure Jacobi Operator
 - Parallelness of Structure Jacobi Operator
 - Conditions on the Lie derivative of the structure Jacobi operator
- Sketch of Proof
 - 1st Step
 - \bullet 2nd Step
- 5 Summary of Results-Further Work

1^{st} Step: Real Hypersurface is Hopf

We consider a local orthonormal basis $\{U, \varphi U, \xi\}$.

$$A\xi = \alpha\xi + \beta U,$$

 α , β functions.

1^{st} Step: Real Hypersurface is Hopf

We consider a local orthonormal basis $\{U, \varphi U, \xi\}$.

$$A\xi = \alpha\xi + \beta U,$$

 α , β functions.

Let \mathcal{N} be the open subset of M

$$\mathcal{N} = \{ P \in M : \beta \neq 0, \text{in a neighborhood of } P \}.$$

1^{st} Step: Real Hypersurface is Hopf

We consider a local orthonormal basis $\{U, \varphi U, \xi\}$.

$$A\xi = \alpha\xi + \beta U,$$

 α , β functions.

Let \mathcal{N} be the open subset of M

$$\mathcal{N} = \{ P \in M : \beta \neq 0, \text{in a neighborhood of } P \}.$$

We consider \mathcal{V} , Ω the open subsets of \mathcal{N}

$$\mathcal{V} = \{ P \in \mathcal{N} : \alpha = 0, \text{ in a neighborhood of } P \},$$

$$\Omega = \{ P \in \mathcal{N} : \alpha \neq 0, \text{ in a neighborhood of } P \},$$

1st Step: Real Hypersurface is Hopf

We consider a local orthonormal basis $\{U, \varphi U, \xi\}$.

$$A\xi = \alpha\xi + \beta U,$$

 α , β functions.

Let \mathcal{N} be the open subset of M

$$\mathcal{N} = \{ P \in M : \beta \neq 0, \text{in a neighborhood of } P \}.$$

We consider \mathcal{V} , Ω the open subsets of \mathcal{N}

$$\mathcal{V} = \{ P \in \mathcal{N} : \alpha = 0, \text{in a neighborhood of } P \},$$

$$\Omega = \{ P \in \mathcal{N} : \alpha \neq 0, \text{ in a neighborhood of } P \},$$

 $\mathcal{V} \cup \Omega$ is open and dense in the closure of \mathcal{N} .

Lemma 1

Let M be a non-Hopf real hypersurface in $M_2(c)$. Then the following relations hold on M

$$AU = \gamma U + \delta \varphi U + \beta \xi, \quad A\varphi U = \delta U + \mu \varphi U, \quad A\xi = \alpha \xi + \beta U,$$

$$\nabla_U \xi = -\delta U + \gamma \varphi U, \quad \nabla_{\varphi U} \xi = -\mu U + \delta \varphi U, \quad \nabla_{\xi} \xi = \beta \varphi U,$$

$$\nabla_U U = \kappa_1 \varphi U + \delta \xi, \ \nabla_{\varphi U} U = \kappa_2 \varphi U + \mu \xi, \nabla_{\xi} U = \kappa_3 \varphi U,$$

$$\nabla_U \varphi U = -\kappa_1 U - \gamma \xi, \nabla_{\varphi U} \varphi U = -\kappa_2 U - \delta \xi, \nabla_{\xi} \varphi U = -\kappa_3 U - \beta \xi$$

where $\gamma, \delta, \mu, \kappa_1, \kappa_2, \kappa_3$ are smooth functions on M.

Lemma 2

Let M be a non-Hopf real hypersurface in $M_2(c)$. Then the following relations hold on M

$$\begin{split} U\beta - \xi\gamma &= \alpha\delta - 2\delta\kappa_3 \\ \xi\delta &= \alpha\gamma + \beta\kappa_1 + \delta^2 + \mu\kappa_3 + \frac{c}{4} - \gamma\mu - \gamma\kappa_3 - \beta^2 \\ U\alpha - \xi\beta &= -3\beta\delta \\ \xi\mu &= \alpha\delta + \beta\kappa_2 - 2\delta\kappa_3 \\ (\varphi U)\alpha &= \alpha\beta + \beta\kappa_3 - 3\beta\mu \\ (\varphi U)\beta &= \alpha\gamma + \beta\kappa_1 + 2\delta^2 + \frac{c}{2} - 2\gamma\mu + \alpha\mu \\ U\delta - (\varphi U)\gamma &= \mu\kappa_1 - \kappa_1\gamma - \beta\gamma - 2\delta\kappa_2 - 2\beta\mu \\ U\mu - (\varphi U)\delta &= \gamma\kappa_2 + \beta\delta - \kappa_2\mu - 2\delta\kappa_1 \end{split}$$

2^{nd} Step

- 1) Hopf Hypersurface $\longrightarrow A\xi = \alpha\xi \longrightarrow \alpha = \text{constant}.$
- 2) We consider a point $P \in M$ and we choose principal vector field $Z \in \ker(\eta)$ at P such that m

$$AZ = \lambda Z$$
 and $A\varphi Z = \nu \varphi Z$,

 λ , ν functions

$$\lambda \nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$$

2^{nd} Step

- 1) Hopf Hypersurface $\longrightarrow A\xi = \alpha\xi \longrightarrow \alpha = \text{constant}.$
- 2) We consider a point $P \in M$ and we choose principal vector field $Z \in \ker(\eta)$ at P such that m

$$AZ = \lambda Z$$
 and $A\varphi Z = \nu \varphi Z$,

 λ , ν functions

$$\lambda \nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$$

• λ , ν distinct at $P \longrightarrow \lambda$, ν constant

2^{nd} Step

- 1) Hopf Hypersurface $\longrightarrow A\xi = \alpha\xi \longrightarrow \alpha = \text{constant}$.
- 2) We consider a point $P \in M$ and we choose principal vector field $Z \in \ker(\eta)$ at P such that m

$$AZ = \lambda Z$$
 and $A\varphi Z = \nu \varphi Z$,

 λ , ν functions

$$\lambda \nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$$

- λ , ν distinct at $P \longrightarrow \lambda$, ν constant
- $\lambda = \nu \longrightarrow A\varphi = \varphi A$.

- - Three-dimensional Real Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$
- Structure Jacobi Operator
 - Parallelness of Structure Jacobi Operator
 - Conditions on the Lie derivative of the structure Jacobi
- - 1st Step
 - 2nd Step
- 5 Summary of Results-Further Work

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ-Parallel	V	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
ξ -Parallel	V	?	?
Lie D - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ -Parallel	V	?	?
Lie D - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ -Parallel	V	?	?
Lie D - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
ξ -Parallel	V	?	?
Lie D - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
ξ -Parallel	V	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
$\xi ext{-Parallel}$	V	?	?
Lie D - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ-Parallel	V	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ -Parallel	V	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ -Parallel	V	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
ξ -Parallel	~	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
ξ -Parallel	~	?	?
Lie $\mathbb D$ - parallel	No	No	?
Pseudo - parallel	V	?	?

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l= abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l= abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
$\mathcal{L}_{\xi}l= abla_{\xi}l$	~	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	${\Bbb C}P^2$ and ${\Bbb C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	~	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	~	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

Condition	$\mathbb{C}P^2$ and $\mathbb{C}H^2$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$\mathcal{L}_{\xi}l = abla_{\xi}l$	V	V	?
$\mathcal{L}_X l = \nabla_X l, X \in \mathbb{D}$	No	?	?
Lie recurrence	No	No	No

References I

1. J. Berndt, "Real hypersurfaces with constant principal curvatures in complex hyperbolic space", J. Reine Angew. Math., 395 (1989), 132-141.

 T. Cecil and P. J. Ryan, "Focal sets and real hypersurfaces in complex projective spaces", Trans. Amer. Math. Soc., 269 (1982), 481-499.

3. J. T. Cho and M. Kimura, "Curvature of Hopf Hypersurfaces in a Complex Space form", Results Math., (in electronic form)

4. T. A. Ivey and P. J. Ryan, "The structure Jacobi operator for real hypersurfaces in CP² and CH²", Result. Math., 56 (2009), 473-488.

5. G. Kaimakamis and K. Panagiotidou, "Real hypersurfaces in non-flat complex space form with Lie recurrent structure Jacobi operator", submitted.

 M. Kimura, "Real Hypersurfaces and Complex Submanifolds in complex projective spaces," Trans. Amer. Math. Soc., 296 (1986), 137-149.

7. S. Montiel, "Real hypersurfaces of a complex hyperbolic space", J. Math. Soc. Japan, 35 (1985), 515-535.

 S. Montiel and A. Romero, "On some real hypersurfaces of a complex hyperbolic space", Geom. Dedicta, 20 (1986), no. 2, 245-261.

References II

9. M. Okumura, "On some real hypersurfaces of a complex projective space", *Trans. Amer. Math. Soc.*, **212** (1975), 355-364.

10. M. Ortega, J. D. Perez and F. G. Santos, "Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms", *Rocky Mountain J. Math.*, **36** (2006), no. 5, 1603-1613.

11. K. Panagiotidou and Ph. J. Xenos, "Real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ equipped with structure Jacobi operator satisfying $\mathcal{L}_{\xi}l = \nabla_{\xi}l$ ", Advances in Pure Mathematics, 2 (2012), no. 1, 1-5.

12. K. Panagiotidou and Ph. J. Xenos, "Real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ whose structure Jacobi operator is Lie \mathbb{D} -parallel", to appear Note di Matematica.

13. K. Panagiotidou and Ph. J. Xenos, "Real hypersurfaces equipped with pseudo-parallel structure Jacobi operator in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ ", to appear in Houston Journal of Mathematics.

14. K. Panagiotidou and Ph. J. Xenos, "Real hypersurfaces equipped with ξ -parallel structure Jacobi operator in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ ", arxiv:1201.2910.

15. K. Panagiotidou, "The structure Jacobi operator and the shape operator of real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ ", arxiv:1209.0131.

References III

 J. D. Perez and F. G. Santos, "On the Lie derivative of structure Jacobi operator of real hypersurfaces in complex projective space", *Publ. Math. Debrecen*, 66 (2005), 269-282.

17. J. D. Perez, F. G. Santos and Y. J. Suh, "Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ -parallel", *Differential Geom. Appl.*, **22** (2005), no. 2, 181-188.

18. J. D. Perez, F. G. Santos and Y. J. Suh, "Real hypersurfaces in complex projective space whose structure Jacobi operator is D-parallel", *Bull. Belg. Math. Soc. Simon Stevin*, **13** (2006), no. 3, 459-469.

19. J. D. Perez and F. G. Santos, "Real hypersurfaces in complex projective space with recurrent structure Jacobi operator", Diff. Geom. Appl., 26 (2008), 218-223/

 J. D. Perez and F. G. Santos, "Real hypersurfaces in Complex Projective Space Whose Structure Jacobi Operator is Cyclic-Ryan Parallel", Kyungpook Math. J., 49 (2009), 211-219.

21. J. D. Perez and F. G. Santos, "Real hypersurfaces in complex projective space whose structure Jacobi operator satisfies $\mathcal{L}_{\xi}R_{\xi}=\nabla_{\xi}R_{\xi}$ ", Rocky Mountain J. Math., 39.

22. J. D. Perez and Y. J. Suh, "Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\mathbb D$ - parallel , Canad. Math. Bull., 39.

References IV

23. R. Takagi, "Real hypersurfacesin a complex prjective space with constant principal curvatures", J. Math. Soc. Japan, 27 (1975), 43-53.

24. Th. Theofanidis and Ph. J. Xenos, "Non-existence of real hypersurfaces equipped with recurrent structure Jacobi operator in non-flat complex space forms, *Results Math.*, **61** (2012), 43-55.

25. Q. M. Wang, "Real hypersurfaces with constant principal curvatures in complex projective spaces (I), Sci. Sinica. Ser. A, 26 (1983), 1017-1024.

Introduction
Real Hypersurfaces in Complex Space Form
Structure Jacobi Operator
Sketch of Proof
Summary of Results-Further Work
Bibliography

THANK YOU