Real Hypersurfaces in Complex Space Forms k-th Generalized Tanaka-Webster connection Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

> The generalized Tanaka-Webster connection of real hypersurfaces in symmetric spaces

Konstantina Panagiotidou

(joint work with G. Kaimakamis, J. D. Pérez)

Hellenic Army Academy

Seminario de Geometria 2016 IEMath-Granada

Real Hypersurfaces in Complex Space Forms k-th Generalized Tanaka-Webster connection Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Contents I

Real Hypersurfaces in Complex Space Forms Auxiliary Relations

2 k-th Generalized Tanaka-Webster connection

3 Generalized Tanaka-Webster Ricci Tensor

4 Sketch of Proof

Real Hypersurfaces in Complex Space FormsAuxiliary Relations

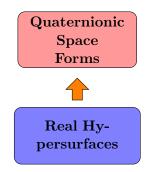
2 k-th Generalized Tanaka-Webster connection

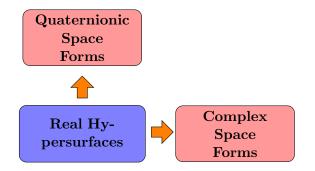
3 Generalized Tanaka-Webster Ricci Tensor

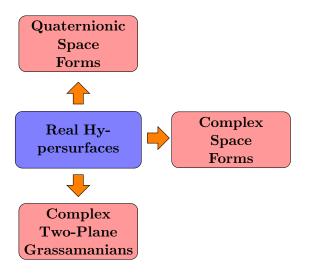
4 Sketch of Proof

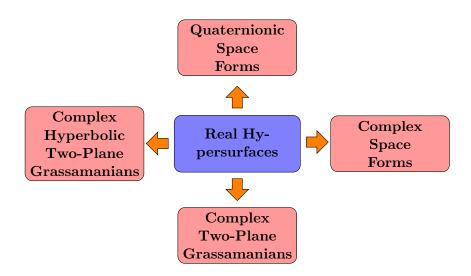
k-th Generalized Tanaka-Webster connection Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

> Real Hypersurfaces









Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J-invariant planes Π in T_PM , for all points $P \in M$.

Definition

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J-invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to:

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J-invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0,

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J-invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0, complex Euclidean space \mathbb{C}^n , if c = 0,

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J-invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0, complex Euclidean space \mathbb{C}^n , if c = 0, complex hyperbolic space $\mathbb{C}H^n$, if c < 0.

Complex Space Form is a Kaehler manifold equipped with a complex structure J, $(J^2 = -I)$, whose holomorphic sectional curvature c is constant for all the J-invariant planes Π in T_PM , for all points $P \in M$.

Theorem

A simply connected, complete complex space form is analytically isometric to: complex projective space $\mathbb{C}P^n$, if c > 0, complex Euclidean space \mathbb{C}^n , if c = 0, complex hyperbolic space $\mathbb{C}H^n$, if c < 0.

 $M_n(c), c \neq 0 \longrightarrow$ Non-Flat Complex Space Form

Definition

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$.

Definition

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold.$

Definition

Almost contact structure or (φ, ξ, η) - **structure** is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold$. Compatible Metric of an almost contact manifold is a Riemannian metric such that

$$\eta(X)=g(X,\xi),\;g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y),X,Y\in\mathfrak{X}(M)$$

Definition

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold$. Compatible Metric of an almost contact manifold is a Riemannian metric such that

 $\eta(X)=g(X,\xi),\;g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y),X,Y\in\mathfrak{X}(M)$

Structure $(\varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ structure.$

Definition

Almost contact structure or (φ, ξ, η) - structure is a tensor field φ of type (1,1), a vector field ξ and a 1-form η , which satisfy the following relations

$$\varphi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

for any vector field $X \in \mathfrak{X}(M)$. $(M, \varphi, \xi, \eta) \longrightarrow Almost \ contact \ manifold$. Compatible Metric of an almost contact manifold is a Riemannian metric such that

 $\eta(X)=g(X,\xi),\;g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y),X,Y\in\mathfrak{X}(M)$

Structure $(\varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ structure.$ $(M, \varphi, \xi, \eta, g) \longrightarrow Almost \ contact \ metric \ manifold.$

Definition

Real Hypersurface M in complex space form $M_n(c)$, is a submanifold of real codimension one.

Real Hypersurface M in complex space form $M_n(c)$, is a submanifold of real codimension one.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$.

Real Hypersurface M in complex space form $M_n(c)$, is a submanifold of real codimension one.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$.

N: locally unit normal vector field on M.

Definition

Real Hypersurface M in complex space form $M_n(c)$, is a submanifold of real codimension one.

J complex structure on $M_n(c)$, G Riemannian metric of $M_n(c)$ and $\overline{\nabla}$ Levi-Civita connection of $M_n(c)$. N: locally unit normal vector field on M.

Gauss and Weingarten equations

$$\overline{\nabla}_Y X = \nabla_Y X + g(AY, X)N,$$
$$\overline{\nabla}_X N = -AX,$$

where ∇ is the Levi-Civita connection of M, A is the shape operator of M and g the induced Riemannian metric on M.

Auxiliary Relations

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field ξ : $\xi = -JN$

Auxiliary Relations

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field $\xi : \xi = -JN$ Metric $g : g(\varphi X, Y) = G(JX, Y)$

Auxiliary Relations

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field $\xi : \xi = -JN$ Metric $g : g(\varphi X, Y) = G(JX, Y)$ 1-form $\eta : \eta(X) = g(X, \xi) = G(JX, N)$

Auxiliary Relations

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field ξ : $\xi = -JN$ Metric g : $g(\varphi X, Y) = G(JX, Y)$ 1-form η : $\eta(X) = g(X, \xi) = G(JX, N)$ Tensor field φ of type (1,1): $JX = \varphi X + \eta(X)N$

Auxiliary Relations

Definition of the (φ, ξ, η, g) - structure on a real hypersurface

Structure vector field ξ : $\xi = -JN$ Metric g : $g(\varphi X, Y) = G(JX, Y)$ 1-form η : $\eta(X) = g(X, \xi) = G(JX, N)$ Tensor field φ of type (1,1): $JX = \varphi X + \eta(X)N$

$$\varphi^2 X = -X + \eta(X)\xi, \qquad \eta \circ \varphi = 0, \qquad \varphi \xi = 0, \qquad \eta(\xi) = 1,$$

 $g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), \ g(X,\varphi Y) = -g(\varphi X,Y),$

$$\nabla_X \xi = \varphi A X, \qquad (\nabla_X \varphi) Y = \eta(Y) A X - g(A X, Y) \xi,$$

for any tangent vector field X, Y on M.

Tensor Auxiliary

Gauss equation:

$$R(X,Y)Z = \frac{c}{4}[g(Y,Z)X - g(X,Z)Y + g(\varphi Y,Z)\varphi X - g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z] + g(AY,Z)AX - g(AX,Z)AY$$

Gauss equation:

$$\begin{split} R(X,Y)Z &= \frac{c}{4}[g(Y,Z)X - g(X,Z)Y + g(\varphi Y,Z)\varphi X \\ &-g(\varphi X,Z)\varphi Y - 2g(\varphi X,Y)\varphi Z] + g(AY,Z)AX - g(AX,Z)AY \\ \end{split}$$
 Codazzi equation:

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4}[\eta(X)\varphi Y - \eta(Y)\varphi X - 2g(\varphi X, Y)\xi],$$

where R denotes the Riemannian curvature tensor on M.

$$A\xi = \alpha\xi + \beta U,$$

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

Definition

A real hypersurface is a **Hopf hypersurface**, if the structure vector field ξ is principal, i.e. $A\xi = \alpha\xi$.

$$A\xi = \alpha\xi + \beta U,$$

where $\beta = |\varphi \nabla_{\xi} \xi|$ and $U = -\frac{1}{\beta} \varphi \nabla_{\xi} \xi \in \mathbb{D}$, provided that $\beta \neq 0$.

Definition

A real hypersurface is a **Hopf hypersurface**, if the structure vector field ξ is principal, i.e. $A\xi = \alpha\xi$.

If M is a Hopf hypersurface then α is constant

Complex Projective Space $\mathbb{C}P^n, n \geq 2$

Takagi (1973) [26], Cecil, Ryan (1982) [2], Wang (1983) [30], Kimura (1986) [5]

- (A1) geodesic spheres of radius r, where $0 < r < \frac{\pi}{2}$,
- (A2) tubes of radius r over totally geodesic complex projective space $\mathbb{C}P^k$, where $0 < r < \frac{\pi}{2}$ and $1 \le k \le n-2$,
- (B) tubes of radius r over complex quadrics and $\mathbb{R}P^n$, where $0 < r < \frac{\pi}{4}$,
- (C) tubes of radius r over the Serge embedding of $\mathbb{C}P^1 \times \mathbb{C}P^{\frac{(n-1)}{2}}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 2\kappa + 3$, $\kappa \in \mathbb{N}^*$,

- (D) tubes of radius r over the Plucker embedding of the complex Grassmannian manifold $G_{2,5}$, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) tubes of radius r over the canonical embedding of the Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15.

Case of $\mathbb{C}P^2$

A three dimensional real hypersurface M is locally congruent to

- (A1) a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$,
- (B) a tube of radius r over complex quadrics and $\mathbb{R}P^n$, where $0 < r < \frac{\pi}{4}$.

Auxiliary Relations

Case of $\mathbb{C}P^2$

A three dimensional real hypersurface ${\cal M}$ is locally congruent to

- (A1) a geodesic sphere of radius r, where $0 < r < \frac{\pi}{2}$,
- (B) a tube of radius r over complex quadrics and $\mathbb{R}P^n$, where $0 < r < \frac{\pi}{4}$.

Type
$$\alpha$$
 λ ν m_{α} m_{λ} m_{ν} A1 $2\cot 2r$ $\cot r$ -12-B $2\cot 2r$ $\cot(r-\frac{\pi}{4})$ $-\tan(r-\frac{\pi}{4})$ 111

Complex Hyperbolic Space $\mathbb{C}H^n, n \geq 2$

Montiel (1985) [10], Berndt (1989) [1]

- (A0) horospheres
- (A1,0) geodesic spheres of radius r > 0,
- (A1,1) tubes of radius r > 0 over totally geodesic complex hyperbolic hyperplanes $\mathbb{C}H^{n-1}$,
- (A2) tubes of radius r > 0 over totally geodesic submanifold $\mathbb{C}H^k$, $1 \le k \le n-2$,
- (B) tubes of radius r > 0 over totally real hyperbolic space $\mathbb{R}H^n$.

Case of $\mathbb{C}H^2$

A three dimensional real hypersurface M is locally congruent to

- (A0) a horosphere
- (A1,0) a geodesic sphere of radius r > 0,
- (A1,1) a tube of radius r > 0 over totally geodesic complex hyperbolic hyperplanes $\mathbb{C}H^1$,
- (B) a tube of radius r > 0 over totally real hyperbolic space $\mathbb{R}H^2$.

Case of $\mathbb{C}H^2$

A three dimensional real hypersurface M is locally congruent to

- (A0) a horosphere
- (A1,0) a geodesic sphere of radius r > 0,
- (A1,1) a tube of radius r > 0 over totally geodesic complex hyperbolic hyperplanes $\mathbb{C}H^1$,
- (B) a tube of radius r > 0 over totally real hyperbolic space ℝH².

Type	α	λ	ν	m_{lpha}	m_{λ}	$m_{ u}$
A0	2	1	-	1	2	-
A1,0	$2 \operatorname{coth}(2r)$	$\coth(r)$	-	1	2	-
A1,1	$2 \operatorname{coth}(2r)$	$\tanh(r)$	-	1	2	-
В	$2 \tanh(2r)$	$\tanh(r)$	$\coth(r)$	1	1	1

Auxiliary Relations

Ruled real hypersurfaces

Construction: consider a regular curve γ in $M_n(c)$ with tangent vector field X. Then at each point of γ there is a unique hyperplane of $M_n(c)$ cutting γ in a way to be orthogonal to both X and JX. The union of all these hyperplanes is the ruled hypersurface.

Auxiliary Relations

Ruled real hypersurfaces

Construction: consider a regular curve γ in $M_n(c)$ with tangent vector field X. Then at each point of γ there is a unique hyperplane of $M_n(c)$ cutting γ in a way to be orthogonal to both X and JX. The union of all these hyperplanes is the ruled hypersurface.

The maximal holomorphic distribution \mathbb{D} of M at any point P is integrable and it has an integrable manifold $M_{n-1}(c)$, i.e $g(A\mathbb{D}, \mathbb{D}) = 0.$

Auxiliary Relations

Ruled real hypersurfaces

Construction: consider a regular curve γ in $M_n(c)$ with tangent vector field X. Then at each point of γ there is a unique hyperplane of $M_n(c)$ cutting γ in a way to be orthogonal to both X and JX. The union of all these hyperplanes is the ruled hypersurface.

The maximal holomorphic distribution \mathbb{D} of M at any point P is integrable and it has an integrable manifold $M_{n-1}(c)$, i.e $g(A\mathbb{D}, \mathbb{D}) = 0.$

$$A\xi = \alpha \xi + \beta U$$
, $AU = \beta \xi$, $AZ = 0$, Z orthogonal to ξ .

In case of $\mathbb{C}P^n, n \geq 2, \longrightarrow$ Maeda [7] and in case of $\mathbb{C}H^n$ $n \geq 2, \longrightarrow$ Montiel [8].

Theorem

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$. Then i) If W is a vector field which belongs to \mathbb{D} such that $AW = \lambda W$, then $(\lambda - \frac{\alpha}{2})A\varphi W = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi W$. ii) If the vector field W satisfies $AW = \lambda W$ and $A\varphi W = \nu\varphi W$ then $\lambda\nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$.

In case of $\mathbb{C}P^n, n \geq 2, \longrightarrow$ Maeda [7] and in case of $\mathbb{C}H^n$, $n \geq 2, \longrightarrow$ Montiel [8].

Theorem

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$. Then i) If W is a vector field which belongs to \mathbb{D} such that $AW = \lambda W$, then $(\lambda - \frac{\alpha}{2})A\varphi W = (\frac{\lambda\alpha}{2} + \frac{c}{4})\varphi W$. ii) If the vector field W satisfies $AW = \lambda W$ and $A\varphi W = \nu\varphi W$ then $\lambda \nu = \frac{\alpha}{2}(\lambda + \nu) + \frac{c}{4}$.

In case of $\mathbb{C}P^n$, $n \ge 2$, \longrightarrow Okumura [11] and in case of $\mathbb{C}H^n$, $n \ge 2$ \longrightarrow Montiel-Romero [9].

Theorem

Let M be a real hypersurface in $M_n(c)$, $n \ge 2$, then $\varphi A = A\varphi$ if and only if M is an open subset of real hypersurfaces of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Real Hypersurfaces in Complex Space Forms Auxiliary Relations

2 k-th Generalized Tanaka-Webster connection

3 Generalized Tanaka-Webster Ricci Tensor

4 Sketch of Proof

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition [Tanno (1989)]

Generalized Tanaka-Webster connection for contact metric manifolds is given by

$$\hat{\nabla}_X Y = \nabla_X Y + (\nabla_X \eta)(Y)\xi - \eta(Y)\nabla_X \xi - \eta(X)\varphi Y$$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition [Tanno (1989)]

Generalized Tanaka-Webster connection for contact metric manifolds is given by

$$\hat{\nabla}_X Y = \nabla_X Y + (\nabla_X \eta)(Y)\xi - \eta(Y)\nabla_X \xi - \eta(X)\varphi Y$$

Definition [Cho (1999)]

k-th Generalized Tanaka-Webster connection for real hypersurfaces in complex space forms is given by

$$\hat{\nabla}_X^{(k)} Y = \nabla_X Y + g(\varphi A X, Y) \xi - \eta(Y) \varphi A X - k \eta(X) \varphi Y,$$

where X, Y are tangent to M and k is a real non-null number.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition [Tanno (1989)]

Generalized Tanaka-Webster connection for contact metric manifolds is given by

$$\hat{\nabla}_X Y = \nabla_X Y + (\nabla_X \eta)(Y)\xi - \eta(Y)\nabla_X \xi - \eta(X)\varphi Y$$

Definition [Cho (1999)]

k-th Generalized Tanaka-Webster connection for real hypersurfaces in complex space forms is given by

$$\hat{\nabla}_X^{(k)} Y = \nabla_X Y + g(\varphi A X, Y) \xi - \eta(Y) \varphi A X - k \eta(X) \varphi Y,$$

where X, Y are tangent to M and k is a real non-null number.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Properties of k-th Generalized Tanaka-Webster Connection

•
$$\nabla^{(k)}\xi = 0$$
, $\nabla^{(k)}g = 0$, $\nabla^{(k)}\varphi = 0$, $\nabla^{(k)}\eta = 0$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Properties of k-th Generalized Tanaka-Webster Connection

•
$$\nabla^{(k)}\xi = 0$$
, $\nabla^{(k)}g = 0$, $\nabla^{(k)}\varphi = 0$, $\nabla^{(k)}\eta = 0$

• If the shape operator satisfies $\varphi A + A\varphi = 2k\varphi$, then the k-th generalized Tanaka-Webster connection coincides with the Tanaka-Webster connection.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Levi-Civita Connection

Parallel Shape Operator

 \downarrow $(\nabla_X A)Y = 0, X \in TM$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Levi-Civita Connection

Parallel Shape Operator

 $\downarrow \\ (\nabla_X A)Y = 0, X \in TM$

Result: There do not exist real hypersurfaces in $M_n(c)$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Levi-Civita Connection

Parallel Shape Operator

 $\downarrow (\nabla_X A)Y = 0, X \in TM$

Result: There do not exist real hypersurfaces in $M_n(c)$.

Generalized Tanaka-Webster Connection

Parallel Shape Operator

 $\downarrow \\ (\hat{\nabla}_X^{(k)} A) Y = 0, X \in TM$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Levi-Civita Connection

Parallel Shape Operator

 $\downarrow (\nabla_X A)Y = 0, X \in TM$

Result: There do not exist real hypersurfaces in $M_n(c)$.

Generalized Tanaka-Webster ConnectionParallel Shape OperatorResult: \downarrow Cho (1999) Cho (1999) Type $(\hat{\nabla}_X^{(k)}A)Y = 0, X \in TM$ (A)

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Definition

Structure Jacobi Operator of real hypersurface is defined by the relation $l = R(\cdot, \xi)\xi$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Definition

Structure Jacobi Operator of real hypersurface is defined by the relation $l = R(\cdot, \xi)\xi$.

$$lX = \frac{c}{4}[X - \eta(X)\xi] + \alpha AX - \eta(AX)A\xi$$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Definition

Structure Jacobi Operator of real hypersurface is defined by the relation $l = R(\cdot, \xi)\xi$.

$$lX = \frac{c}{4}[X - \eta(X)\xi] + \alpha AX - \eta(AX)A\xi$$

Levi-Civta Connection

Parallel Structure Jacobi operator

$$\downarrow (\nabla_X l) Y = 0, X \in TM$$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

The **Jacobi operator** with respect to X on M is defined by the relation $R(\cdot, X)X$.

Definition

Structure Jacobi Operator of real hypersurface is defined by the relation $l = R(\cdot, \xi)\xi$.

$$lX = \frac{c}{4}[X - \eta(X)\xi] + \alpha AX - \eta(AX)A\xi$$

Levi-Civta Connection

Parallel Structure Jacobi operator

$$(\nabla_X l)Y = 0, X \in TM$$

Result: Ortega, Perez and Santos (2006): Non-existence of real hypersurfaces in complex space form $M_n(c)$, $n \ge 2$, whose structure Jacobi operator is parallel.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) on M is of Codazzi type when it satisfies

$$(\nabla_X T)Y = (\nabla_Y T)X,$$

where X, Y are tangent to M.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) on M is of Codazzi type when it satisfies

$$(\nabla_X T)Y = (\nabla_Y T)X,$$

where X, Y are tangent to M.

Perez, Santos, Suh (2007): Non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is of Codazzi type.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) on M is of **Codazzi type** when it satisfies

$$(\nabla_X T)Y = (\nabla_Y T)X,$$

where X, Y are tangent to M.

Perez, Santos, Suh (2007): Non-existence of real hypersurfaces in complex projective space whose structure Jacobi operator is of Codazzi type.

Theofanidis, Xenos (2010), (2014):

1) Non-existence of three dimensional real hypersurfaces in non-flat complex space forms, whose structure Jacobi operator is of Codazzi type.

2) Non-existence of real hypersurfaces in complex hyperbolic space, whose structure Jacobi operator is of Codazzi type.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) is of Codazzi type with respect to the generalized Tanaka-Webster connection when it satisfies

$$(\hat{\nabla}_X^{(k)}T)Y = (\hat{\nabla}_Y^{(k)}T)X,$$

where X, Y are tangent to M.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) is of Codazzi type with respect to the generalized Tanaka-Webster connection when it satisfies

$$(\hat{\nabla}_X^{(k)}T)Y = (\hat{\nabla}_Y^{(k)}T)X,$$

where X, Y are tangent to M.

QUESTION

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) is of Codazzi type with respect to the generalized Tanaka-Webster connection when it satisfies

$$(\hat{\nabla}_X^{(k)}T)Y = (\hat{\nabla}_Y^{(k)}T)X,$$

where X, Y are tangent to M.

QUESTION

Are there real hypersurfaces in $M_n(c)$ whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection?

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition

A tensor field T of type (1,1) is of Codazzi type with respect to the generalized Tanaka-Webster connection when it satisfies

$$(\hat{\nabla}_X^{(k)}T)Y = (\hat{\nabla}_Y^{(k)}T)X,$$

where X, Y are tangent to M.

QUESTION

Are there real hypersurfaces in $M_n(c)$ whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection?

$$(\hat{\nabla}_X^{(k)}l)Y = (\hat{\nabla}_Y^{(k)}l)X.$$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [Kaimakamis, - , Pérez, Kodai J. Math. (2016)]

Every real hypersurface M in $M_2(c)$, whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection and also commutes with the shape operator, is a Hopf hypersurface. Furthermore, if $\alpha \neq 2k$ then M is locally congruent to a real hypersurface of type (A) or to a Hopf hypersurface with $A\xi = 0$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [Kaimakamis, - , Pérez, Kodai J. Math. (2016)]

Every real hypersurface M in $M_2(c)$, whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection and also commutes with the shape operator, is a Hopf hypersurface. Furthermore, if $\alpha \neq 2k$ then M is locally congruent to a real hypersurface of type (A) or to a Hopf hypersurface with $A\xi = 0$.

Corollary [Kaimakamis, - , Pérez, Kodai J. Math. (2016)]

Let M be a real hypersurface in $M_2(c)$ with $\alpha \neq 2k$, whose structure Jacobi operator is parallel with respect to the generalized Tanaka-Webster connection and also commutes with the shape operator. Then M is locally congruent to a real hypersurface of type (A) or to a Hopf hypersurface with $A\xi = 0$. Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Proposition[Kaimakamis, - , Pérez, Kodai J. Math. (2016)]

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$, whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection and $\alpha \ne 2k$. Then M is locally congruent

i) to a real hypersurface of type (A)

ii) or to a real hypersurface with $A\xi = 0$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Proposition[Kaimakamis, - , Pérez, Kodai J. Math. (2016)]

Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 2$, whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection and $\alpha \ne 2k$. Then M is locally congruent

i) to a real hypersurface of type (A)

ii) or to a real hypersurface with $A\xi = 0$.

Proposition [Kaimakamis, - , Pérez, Kodai J. Math. (2016)]

There are no ruled real hypersurfaces in $M_n(c)$, $n \ge 2$, whose structure Jacobi operator is of Codazzi type with respect to the generalized Tanaka-Webster connection and $\alpha \ne 2k$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

k-th Cho Operator

Definition [Pérez (2014)]

The k-th Cho Operator with respect to X is defined by

 $F_X^{(k)}Y = g(\varphi AX, Y)\xi - \eta(Y)\varphi AX - k\eta(X)\varphi Y.$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

k-th Cho Operator

Definition [Pérez (2014)]

The k-th Cho Operator with respect to X is defined by

 $F_X^{(k)}Y = g(\varphi AX, Y)\xi - \eta(Y)\varphi AX - k\eta(X)\varphi Y.$

In case $X \in \mathbb{D}$ the k-th Cho operator becomes

$$F_X Y = g(\varphi A X, Y) \xi - \eta(Y) \varphi A X,$$

and is called *Cho* operator.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

k-th Cho Operator

Definition [Pérez (2014)]

The k-th Cho Operator with respect to X is defined by

 $F_X^{(k)}Y = g(\varphi AX, Y)\xi - \eta(Y)\varphi AX - k\eta(X)\varphi Y.$

In case $X \in \mathbb{D}$ the k-th Cho operator becomes

$$F_X Y = g(\varphi A X, Y)\xi - \eta(Y)\varphi A X,$$

and is called *Cho operator*. The generalized Tanaka-Webster connection becomes

$$(\hat{\nabla}_X^{(k)})Y = \nabla_X Y + F_X^{(k)}Y.$$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Definition[-, Pérez (2015)]

The Lie derivative of a tensor field T of type (1,1) with respect to the generalized Tanaka-Webster connection is given by

$$(\hat{\mathcal{L}}_X T)Y = \hat{\nabla}_X (TY) - \hat{\nabla}_{TY} (X) - T\hat{\nabla}_X (Y) + T\hat{\nabla}_Y (X),$$

and it will be called generalized Tanaka-Webster Lie derivative of T.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Derivatives

Let T be a (1,1) tensor field on a real hypersurface.

• covariant derivative $(\nabla_X T)Y$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Derivatives

Let T be a (1,1) tensor field on a real hypersurface.

- covariant derivative $(\nabla_X T)Y$
- k-th generalized Tanaka-Webster covariant derivative $(\hat{\nabla_X^{(k)}}T)Y$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Derivatives

Let T be a (1,1) tensor field on a real hypersurface.

- covariant derivative $(\nabla_X T)Y$
- k-th generalized Tanaka-Webster covariant derivative $(\hat{\nabla^{(k)}_X}T)Y$
- Lie derivative $(\mathcal{L}_X T)Y$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Derivatives

Let T be a (1,1) tensor field on a real hypersurface.

- covariant derivative $(\nabla_X T)Y$
- k-th generalized Tanaka-Webster covariant derivative $(\hat{\nabla^{(k)}_X}T)Y$
- Lie derivative $(\mathcal{L}_X T) Y$
- generalized Tanaka-Webster Lie derivative $(\mathcal{L}_X^{\hat{k}}T)Y$.

PROBLEM

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Derivatives

Let T be a (1,1) tensor field on a real hypersurface.

- covariant derivative $(\nabla_X T)Y$
- k-th generalized Tanaka-Webster covariant derivative $(\hat{\nabla^{(k)}_X}T)Y$
- Lie derivative $(\mathcal{L}_X T)Y$
- generalized Tanaka-Webster Lie derivative $(\mathcal{L}_X^{\hat{k}}T)Y$.

PROBLEM

Classify real hypersurfaces when the derivatives of them coincides

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE I:
$$\nabla_X^{(k)}T = \nabla_X T$$

Let T be a tensor field of type (1,1) on M and X a vector field tangent to M.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE I:
$$\nabla_X^{(k)}T = \nabla_X T$$

Let T be a tensor field of type (1,1) on M and X a vector field tangent to M.

$$\nabla_X T = \hat{\nabla}_X^{(k)} T$$
 if and only if $TF_X^{(k)} = F_X^{(k)} T$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE I: $\nabla_X^{(k)}T = \nabla_X T$

Let T be a tensor field of type (1, 1) on M and X a vector field tangent to M.

$$\nabla_X T = \hat{\nabla}_X^{(k)} T$$
 if and only if $TF_X^{(k)} = F_X^{(k)} T$

The eigenspaces of T are preserved by $F_X^{(k)}$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE I: $\nabla_X^{(k)}T = \nabla_X T$

Let T be a tensor field of type (1,1) on M and X a vector field tangent to M.

$$\nabla_X T = \hat{\nabla}_X^{(k)} T$$
 if and only if $TF_X^{(k)} = F_X^{(k)} T$

The eigenspaces of T are preserved by $F_X^{(k)}$

PROBLEM

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE I: $\nabla_X^{(k)}T = \nabla_X T$

Let T be a tensor field of type (1,1) on M and X a vector field tangent to M.

$$\nabla_X T = \hat{\nabla}_X^{(k)} T$$
 if and only if $TF_X^{(k)} = F_X^{(k)} T$

The eigenspaces of T are preserved by $F_X^{(k)}$

PROBLEM

Classify real hypersurfaces in $M_n(c)$ in terms of their tensor fields satisfying commuting conditions with k-th Cho operator or Cho operator.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Shape Operator

Theorem [Pérez, Suh Monatsh. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_{\xi}^{(k)}A = AF_{\xi}^{(k)}$ for any non-null constant k if and only if M is locally congruent to a real hypersurface of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Shape Operator

Theorem [Pérez, Suh Monatsh. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_{\xi}^{(k)}A = AF_{\xi}^{(k)}$ for any non-null constant k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Pérez, Suh, Monatsh. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_X A = AF_X$ for any $X \in \mathbb{D}$ and any non-null constant k if and only if M is locally congruent to a ruled real hypersurface.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Shape Operator

Theorem [Pérez, Suh Monatsh. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_{\xi}^{(k)}A = AF_{\xi}^{(k)}$ for any non-null constant k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Pérez, Suh, Monatsh. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_X A = AF_X$ for any $X \in \mathbb{D}$ and any non-null constant k if and only if M is locally congruent to a ruled real hypersurface.

Theorem [Pérez, Suh, Monatsh. Math. (2015)]

There do not exist real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, such that for any nonnull $k F_X A = AF_X$ for any X tangent to M. Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [-, Pérez (work in progress)]

Let M be a Hopf hypersurface in $M_2(c)$ whose shape operator satisfies relation $F_{\xi}^{(k)}A = AF_{\xi}^{(k)}$. Then M is locally congruent to a real hypersurface of type (A). Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [-, Pérez (work in progress)]

Let M be a Hopf hypersurface in $M_2(c)$ whose shape operator satisfies relation $F_{\xi}^{(k)}A = AF_{\xi}^{(k)}$. Then M is locally congruent to a real hypersurface of type (A).

Theorem [-, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$ whose shape operator satisfies relation $F_X A = AF_X$ any $X \in \mathbb{D}$. Then M is locally congruent to a ruled real hypersurface.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi operator

Theorem [Pérez, Ann. Mat. Pura Appl. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Let k be a non-null constant. Then, $F_{\xi}^{(k)}l = lF_{\xi}^{(k)}$ if and only if M is locally congruent to either a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C}P^n$ or to a type (A) real hypersurface with radius $r \neq \frac{\pi}{4}$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi operator

Theorem [Pérez, Ann. Mat. Pura Appl. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Let k be a non-null constant. Then, $F_{\xi}^{(k)}l = lF_{\xi}^{(k)}$ if and only if M is locally congruent to either a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C}P^n$ or to a type (A) real hypersurface with radius $r \neq \frac{\pi}{4}$.

Theorem [Pérez, Ann. Mat. Pura Appl. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_X l = lF_X$ for any $X \in \mathbb{D}$ if and only if M is locally congruent to a ruled real hypersurface.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi operator

Theorem [Pérez, Ann. Mat. Pura Appl. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Let k be a non-null constant. Then, $F_{\xi}^{(k)}l = lF_{\xi}^{(k)}$ if and only if M is locally congruent to either a tube of radius $\frac{\pi}{4}$ over a complex submanifold of $\mathbb{C}P^n$ or to a type (A) real hypersurface with radius $r \neq \frac{\pi}{4}$.

Theorem [Pérez, Ann. Mat. Pura Appl. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $F_X l = lF_X$ for any $X \in \mathbb{D}$ if and only if M is locally congruent to a ruled real hypersurface.

Corollary

There do not exist real hypersurfaces M in $\mathbb{C}P^n$, $n \geq 3$, such that for a nonnull constant $k F_X^{(k)} l = l F_X^{(k)}$ for any $X \in TM$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [-, Pérez (2015), Open Math. (2015)]

Every real hypersurface M in $M_2(c)$, whose structure Jacobi operator satisfies relation $F_{\xi}^{(k)}l = lF_{\xi}^{(k)}$, is Hopf and is locally congruent

i) to a real hypersurface of type (A)

ii) or to a Hopf hypersurface with $A\xi = 0$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [-, Pérez (2015), Open Math. (2015)]

Every real hypersurface M in $M_2(c)$, whose structure Jacobi operator satisfies relation $F_{\xi}^{(k)}l = lF_{\xi}^{(k)}$, is Hopf and is locally congruent

i) to a real hypersurface of type (A)

ii) or to a Hopf hypersurface with $A\xi = 0$.

Theorem [-, Pérez (2015), Open Math. (2015)]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $F_X l = lF_X$ for any $X \in \mathbb{D}$. Then, M is locally congruent to a ruled real hypersurface.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Ricci tensor

The **Ricci tensor S** with respect to the Levi-Civita connection is given by

$$SX = \sum_{i=1}^{2n-1} R_{E_i}(X) = \sum_{i=1}^{2n-1} R(X, E_i) E_i,$$

where $\{E_i\}_{i=1,\dots,2n-1}$ is an orthonormal basis of TM, for any X tangent to M.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Ricci tensor

The **Ricci tensor S** with respect to the Levi-Civita connection is given by

$$SX = \sum_{i=1}^{2n-1} R_{E_i}(X) = \sum_{i=1}^{2n-1} R(X, E_i) E_i,$$

where $\{E_i\}_{i=1,\dots,2n-1}$ is an orthonormal basis of TM, for any X tangent to M.

More analytically,

$$SX = \frac{c}{4}[(2n+1)X - 3\eta(X)\xi] + hAX - A^2X.$$

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [Kaimakamis, -, Pérez (work in progress)]

There do not exist Hopf hypersurfaces in $M_n(c)$, $n \ge 2$, whose Ricci tensor satisfies relation $F_X S = SF_X$, for any $X \in \mathbb{D}$. Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [Kaimakamis, -, Pérez (work in progress)]

There do not exist Hopf hypersurfaces in $M_n(c)$, $n \ge 2$, whose Ricci tensor satisfies relation $F_X S = SF_X$, for any $X \in \mathbb{D}$.

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose Ricci tensor satisfies relation $F_X S = SF_X$, for any $X \in \mathbb{D}$. Then M is locally congruent to a ruled real hypersurface. Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [Kaimakamis, -, Pérez (work in progress)]

There do not exist Hopf hypersurfaces in $M_n(c)$, $n \ge 2$, whose Ricci tensor satisfies relation $F_X S = SF_X$, for any $X \in \mathbb{D}$.

Theorem [Kaimakamis, - , Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose Ricci tensor satisfies relation $F_X S = SF_X$, for any $X \in \mathbb{D}$. Then M is locally congruent to a ruled real hypersurface.

Theorem [Kaimakamis, - , Pérez (work in progress)]

Let M be a real hypersurface in $M_n(c)$, $n \ge 3$, whose Ricci tensor satisfies relation $F_X S = SF_X$, for any $X \in \mathbb{D}$ and $h = g(A\xi, \xi)$. Then M is locally congruent to a ruled real hypersurface.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Overview

Condition	$M_2(c)$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \ge 3$
$F_{\varepsilon}^{(k)}l = lF_{\varepsilon}^{(k)}$	~	~	~
$F_X l = lF_X$	~	~	~
$F_{\varepsilon}^{(k)}A = AF_{\varepsilon}^{(k)}$	~	~	?
$F_X A = AF_X$	~	~	?
$F_X S = SF_X$	~	$h = \alpha$	$h = \alpha$
$F_{\xi}S = SF_{\xi}$?	?	?

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE II: $\mathcal{L}_X^{(k)}T = \mathcal{L}_XT$ Shape Operator

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE II: $\mathcal{L}_X^{(k)}T = \mathcal{L}_XT$ Shape Operator

Theorem [Pérez, Medit. J. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\mathcal{L}_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE II: $\mathcal{L}_X^{(k)}T = \mathcal{L}_XT$ Shape Operator

Theorem [Pérez, Medit. J. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\mathcal{L}_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Pérez, Medit. J. Math. (2015)]

There do not exist real hypersurfaces in in $\mathbb{C}P^n$, $n \geq 3$, such that $\hat{\mathcal{L}}_X^{(k)}A = \mathcal{L}_XA$ for any $X \in \mathbb{D}$ and some non-null constant k.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE II: $\mathcal{L}_X^{(k)}T = \mathcal{L}_XT$ Shape Operator

Theorem [Pérez, Medit. J. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\hat{\mathcal{L}}_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Pérez, Medit. J. Math. (2015)]

There do not exist real hypersurfaces in in $\mathbb{C}P^n$, $n \geq 3$, such that $\hat{\mathcal{L}}_X^{(k)}A = \mathcal{L}_XA$ for any $X \in \mathbb{D}$ and some non-null constant k.

Corollary

There do not exist real hypersurfaces in in $\mathbb{C}P^n$, $n \geq 3$, such that $\mathcal{L}_X^{(k)}A = \mathcal{L}_XA$ for some non-null constant k and any $X \in TM$.

Theorem [Kaimakamis, - , Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose shape operator satisfies relation $\mathcal{L}_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k. Then, M is a Hopf hypersurface and is locally congruent to a real hypersurface of type (A).

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose shape operator satisfies relation $\mathcal{L}_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k. Then, M is a Hopf hypersurface and is locally congruent to a real hypersurface of type (A).

Theorem [Kaimakamis, -, Pérez (work in progress)]

There do not exist real hypersurfaces in $M_2(c)$, whose shape operator satisfies relation $\mathcal{L}_X^{(k)}A = \mathcal{L}_XA$ for any $X \in \mathbb{D}$ and some non-null constant k.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi operator

Theorem [Pérez (submitted)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi operator

Theorem [Pérez (submitted)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Pérez (submitted)]

There do not exist real hypersurfaces in in $\mathbb{C}P^n$, $n \geq 3$, such that $\mathcal{L}_X^{(k)} l = \mathcal{L}_X l$ for any $X \in \mathbb{D}$ and some non-null constant k.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi operator

Theorem [Pérez (submitted)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Pérez (submitted)]

There do not exist real hypersurfaces in in $\mathbb{C}P^n$, $n \geq 3$, such that $\mathcal{L}_X^{(k)} l = \mathcal{L}_X l$ for any $X \in \mathbb{D}$ and some non-null constant k.

Corollary

There do not exist real hypersurfaces in in $\mathbb{C}P^n$, $n \geq 3$, such that $\mathcal{L}_X^{(k)} l = \mathcal{L}_X l$ for some non-null constant k and any $X \in TM$.

Theorem [Kaimakamis, -, Pérez (submitted)]

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ is a Hopf hypersurface. Moreover, M is locally congruent either to a real hypersurface of type (A), or to a Hopf hypersurface with $A\xi = 0$.

Theorem [Kaimakamis, -, Pérez (submitted)]

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ is a Hopf hypersurface. Moreover, M is locally congruent either to a real hypersurface of type (A), or to a Hopf hypersurface with $A\xi = 0$.

Theorem [Kaimakamis, -, Pérez (submitted)]

There do not exist real hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_X^{(k)} l = \mathcal{L}_X l$ for any nonnull constant k and any $X \in \mathbb{D}$.

Theorem [Kaimakamis, -, Pérez (submitted)]

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ is a Hopf hypersurface. Moreover, M is locally congruent either to a real hypersurface of type (A), or to a Hopf hypersurface with $A\xi = 0$.

Theorem [Kaimakamis, -, Pérez (submitted)]

There do not exist real hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_X^{(k)} l = \mathcal{L}_X l$ for any nonnull constant k and any $X \in \mathbb{D}$.

Corollary

There do not exist real hypersurfaces in $M_2(c)$ such that $\hat{\mathcal{L}}_X^{(k)} l = \mathcal{L}_X l$, for any nonnull constant $k \ X \in TM$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Overview

Condition	$M_2(c)$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
$\mathcal{L}_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$	~	V	?
$\mathcal{L}_X^{(k)} A = \mathcal{L}_X A$	~	~	?
			•
$\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$	V	V	£
$\mathcal{L}_X^{(k)}A = \mathcal{L}_XA$	~	✓	?

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE III: $\nabla_X^{(k)}T = \mathcal{L}_XT$

Perez and Santos (2009): Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE III: $\nabla_X^{(k)}T = \mathcal{L}_XT$

Perez and Santos (2009): Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$.

Panagiotidou and Xenos (2012): Classification of real hypersurfaces in $M_2(c)$, $n \ge 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE III: $\nabla_X^{(k)}T = \mathcal{L}_XT$

Perez and Santos (2009): Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$.

Panagiotidou and Xenos (2012): Classification of real hypersurfaces in $M_2(c)$, $n \ge 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$. **Panagiotidou (2013):**

1) Non-existence of real hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_X l = \nabla_X l$ for any $X \in \mathbb{D}$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

CASE III: $\nabla_X^{(k)}T = \mathcal{L}_XT$

Perez and Santos (2009): Classification of real hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$.

Panagiotidou and Xenos (2012): Classification of real hypersurfaces in $M_2(c)$, $n \ge 3$, whose structure Jacobi operator satisfies the relation $\mathcal{L}_{\xi}l = \nabla_{\xi}l$. **Panagiotidou (2013):**

1) Non-existence of real hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_X l = \nabla_X l$ for any $X \in \mathbb{D}$. 2) Non-existence of real hypersurfaces in $M_2(c)$, whose shape operator satisfies relation $\mathcal{L}_X A = \nabla_X A$ for any $X \in \mathbb{D}$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Shape Operator

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Shape Operator

Theorem [Pérez, Int. J. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\nabla_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Shape Operator

Theorem [Pérez, Int. J. Math. (2015)]

Let M be a real hypersurface in $\mathbb{C}P^n$, $n \geq 3$. Then, $\nabla_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$ for some nonnull k if and only if M is locally congruent to a real hypersurface of type (A).

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose shape operator satisfies relation $\nabla_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$, for some nonnull constant k. Then, M is locally congruent to a real hypersurface of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose shape operator satisfies relation $\nabla_X^{(k)} A = \mathcal{L}_X A$ for any $X \in \mathbb{D}$ and any nonnull constant k. Then, M is locally congruent to a ruled real hypersurface.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi Operator

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\nabla_{\xi}^{(k)} l = \mathcal{L}_{\xi} l$. Then, M is locally congruent to a real hypersurface of type (A).

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Structure Jacobi Operator

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\nabla_{\xi}^{(k)} l = \mathcal{L}_{\xi} l$. Then, M is locally congruent to a real hypersurface of type (A).

Theorem [Kaimakamis, -, Pérez (work in progress)]

There do not exist Hopf hypersurfaces in $M_2(c)$, whose structure Jacobi operator satisfies relation $\nabla_X^{(k)} l = \mathcal{L}_X l$ for any $X \in \mathbb{D}$.

Generalized Tanaka-Webster Ricci Tensor Sketch of Proof

Overview

Condition	$M_2(c)$	$\mathbb{C}P^n, n \geq 3$	$\mathbb{C}H^n, n \geq 3$
$\nabla_{\xi}^{(k)}A = \mathcal{L}_{\xi}A$	~	V	?
$\widehat{\nabla_X^{(k)}A} = \mathcal{L}_X A$	~	?	?
$\nabla_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$	v	?	?
$\nabla_X^{(k)} l = \mathcal{L}_X l$	~	?	?

Sketch of Proof

Real Hypersurfaces in Complex Space Forms Auxiliary Relations

2 k-th Generalized Tanaka-Webster connection

3 Generalized Tanaka-Webster Ricci Tensor

4 Sketch of Proof

Sketch of Proof

The Ricci tensor with respect to the k- th generalized Tanaka-Webster connection is denoted by \hat{S} and is called generalized Tanaka-Webster Ricci tensor.

$$\hat{S}(X,Y) = Trace \ of \ \{X \mapsto \hat{R}(Z,X)Y.\}$$

More analytically

$$\hat{S}(X,Y) = \frac{cn}{2}g(X,Y) + [tr(A) - \eta(A\xi) + k]g(AX,Y)$$

$$g(A^{2}X,Y) - g(\phi A \phi AX,Y) - kg(\phi A \phi X,Y) + \eta(AX)g(A\xi,Y)$$

$$+ \eta(Y)\{-\frac{cn}{2}\eta(X) - \eta(AX)[tr(A) - \eta(A\xi) + k\eta(AX)]\}.$$

Sketch of Proof

Theorem [Kon, Publ. Debrecen (2011)]

Let M be a real hypersurface in $M_n(c)$, $n \ge 3$, whose generalized Tanaka-Webster Ricci tensor satisfies the relation $\hat{S}(X, \phi Y) = \mu g(X, \phi Y)$, for any vector field X, Y and μ being a function. Then M is locally congruent to a real hypersurface of type (A).

Sketch of Proof

Theorem [Kon, Publ. Debrecen (2011)]

Let M be a real hypersurface in $M_n(c)$, $n \ge 3$, whose generalized Tanaka-Webster Ricci tensor satisfies the relation $\hat{S}(X, \phi Y) = \mu g(X, \phi Y)$, for any vector field X, Y and μ being a function. Then M is locally congruent to a real hypersurface of type (A).

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a Hopf hypersurfaces in $M_2(c)$, whose generalized Tanaka-Webster Ricci tensor satisfies the relation $\hat{S}X = 0$, for any vector fields X tangent to M. Then M is locally congruent to a real hypersurface of type (A) or type (B).

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

where

$$(\hat{\mathcal{L}}_V^{(k)}g)(X,Y) = g(\hat{\nabla}_X^{(k)}V,Y) + g(\hat{\nabla}_Y^{(k)}V,X)$$

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

where

 $(\hat{\mathcal{L}}_V^{(k)}g)(X,Y) = g(\hat{\nabla}_X^{(k)}V,Y) + g(\hat{\nabla}_Y^{(k)}V,X),$ $\hat{Ric}(X,Y)$ the generalized Tanaka-Webster Ricci tensor,

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

where

$$(\hat{\mathcal{L}}_V^{(k)}g)(X,Y) = g(\hat{\nabla}_X^{(k)}V,Y) + g(\hat{\nabla}_Y^{(k)}V,X),$$

Ric(X, Y) the generalized Tanaka-Webster Ricci tensor, λ is a constant.

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

where

$$(\hat{\mathcal{L}}_V^{(k)}g)(X,Y) = g(\hat{\nabla}_X^{(k)}V,Y) + g(\hat{\nabla}_Y^{(k)}V,X),$$

Ric(X, Y) the generalized Tanaka-Webster Ricci tensor, λ is a constant.

A generalized Tanaka-Webster Ricci soliton is called generalized shrinking if $\lambda < 0$,

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

where

$$(\hat{\mathcal{L}}_V^{(k)}g)(X,Y) = g(\hat{\nabla}_X^{(k)}V,Y) + g(\hat{\nabla}_Y^{(k)}V,X),$$

 $\hat{Ric}(X, Y)$ the generalized Tanaka-Webster Ricci tensor, λ is a constant.

A generalized Tanaka-Webster Ricci soliton is called generalized shrinking if $\lambda < 0$, generalized steady if $\lambda = 0$

Sketch of Proof

Generalized Tanaka-Webster Ricci Soliton

The generalized Tanaka-Webster Ricci soliton is a Riemannian metric g on a real hypersurface M satisfying relation

$$\frac{1}{2}\hat{\mathcal{L}}_{V}^{(k)}g + \hat{Ric} - \lambda g = 0,$$

where

$$(\hat{\mathcal{L}}_V^{(k)}g)(X,Y) = g(\hat{\nabla}_X^{(k)}V,Y) + g(\hat{\nabla}_Y^{(k)}V,X),$$

 $\hat{Ric}(X, Y)$ the generalized Tanaka-Webster Ricci tensor, λ is a constant.

A generalized Tanaka-Webster Ricci soliton is called generalized shrinking if $\lambda < 0$, generalized steady if $\lambda = 0$ and generalized expanding if $\lambda > 0$.

Sketch of Proof

Theorem [Kaimakamis, - , Pérez (work in progress)]

Let M be a real hypersurface in $M_n(c)$, $n \ge 3$, admitting a generalized Tanaka-Webster Ricci soliton with potential vector field ξ . Then M is locally congruent to a real hypersurface of type (A) and the generalized Tanaka-Webster Ricci soliton is generalized steady.

Sketch of Proof

Theorem [Kaimakamis, - , Pérez (work in progress)]

Let M be a real hypersurface in $M_n(c)$, $n \ge 3$, admitting a generalized Tanaka-Webster Ricci soliton with potential vector field ξ . Then M is locally congruent to a real hypersurface of type (A) and the generalized Tanaka-Webster Ricci soliton is generalized steady.

Theorem [Kaimakamis, -, Pérez (work in progress)]

Let M be a Hopf hypersurface in $M_2(c)$ admitting a generalized Tanaka-Webster Ricci soliton with potential vector field ξ . Then M is locally congruent to a real hypersurface of type (A)or (B) and the generalized Tanaka-Webster Ricci soliton is generalized steady. Real Hypersurfaces in Complex Space Forms k-th Generalized Tanaka-Webster connection Generalized Tanaka-Webster Ricci Tensor

Real Hypersurfaces in Complex Space Forms Auxiliary Relations

2 k-th Generalized Tanaka-Webster connection

3 Generalized Tanaka-Webster Ricci Tensor

4 Sketch of Proof

Real Hypersurfaces in Complex Space Forms k-th Generalized Tanaka-Webster connection Generalized Tanaka-Webster Ricci Tensor

$\mathbf{1}^{st} \mathbf{Step}$

Proposition

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)} l = \mathcal{L}_{\xi} l$ is a Hopf hypersurface.

Real Hypersurfaces in Complex Space Forms k-th Generalized Tanaka-Webster connection Generalized Tanaka-Webster Ricci Tensor

1^{st} Step

Proposition

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ is a Hopf hypersurface.

Let \mathcal{N} be the open subset of M

 $\mathcal{N} = \{ P \ \in \ M : \beta \neq 0, \text{in a neighborhood of } P \}.$

$\mathbf{1}^{st}$ Step

Proposition

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ is a Hopf hypersurface.

Let \mathcal{N} be the open subset of M

 $\mathcal{N} = \{ P \in M : \beta \neq 0, \text{ in a neighborhood of } P \}.$

We consider at every point P we consider a local orthonormal basis.

$\mathbf{1}^{st}$ Step

Proposition

Every real hypersurface in $M_2(c)$, whose structure Jacobi operator satisfies relation $\mathcal{L}_{\xi}^{(k)}l = \mathcal{L}_{\xi}l$ is a Hopf hypersurface.

Let \mathcal{N} be the open subset of M

$$\mathcal{N} = \{ P \in M : \beta \neq 0, \text{ in a neighborhood of } P \}.$$

We consider at every point P we consider a local orthonormal basis.

The shape operator has the form

$$AU = \gamma U + \delta \varphi U + \beta \xi, \quad A\varphi U = \delta U + \mu \varphi U, \quad A\xi = \alpha \xi + \beta U.$$

Sketch of Proof

Lemma 1

Let M be a non-Hopf real hypersurface in $M_2(c)$. Then the following relations hold on M

$$AU = \gamma U + \delta \varphi U + \beta \xi, \quad A\varphi U = \delta U + \mu \varphi U, \quad A\xi = \alpha \xi + \beta U,$$

$$\nabla_U \xi = -\delta U + \gamma \varphi U, \ \nabla_{\varphi U} \xi = -\mu U + \delta \varphi U, \ \nabla_{\xi} \xi = \beta \varphi U,$$

$$\nabla_U U = \kappa_1 \varphi U + \delta \xi, \ \nabla_{\varphi U} U = \kappa_2 \varphi U + \mu \xi, \\ \nabla_{\xi} U = \kappa_3 \varphi U,$$

$$\nabla_U \varphi U = -\kappa_1 U - \gamma \xi, \nabla_{\varphi U} \varphi U = -\kappa_2 U - \delta \xi, \nabla_\xi \varphi U = -\kappa_3 U - \beta \xi$$

where $\gamma, \delta, \mu, \kappa_1, \kappa_2, \kappa_3$ are smooth functions on M.

Lemma 2 [15]

Let M be a non-Hopf real hypersurface in $M_2(c)$. Then the following relations hold on M

$$\begin{split} U\beta &-\xi\gamma = \alpha\delta - 2\delta\kappa_3\\ \xi\delta &= \alpha\gamma + \beta\kappa_1 + \delta^2 + \mu\kappa_3 + \frac{c}{4} - \gamma\mu - \gamma\kappa_3 - \beta^2\\ U\alpha &-\xi\beta &= -3\beta\delta\\ \xi\mu &= \alpha\delta + \beta\kappa_2 - 2\delta\kappa_3\\ (\varphi U)\alpha &= \alpha\beta + \beta\kappa_3 - 3\beta\mu\\ (\varphi U)\beta &= \alpha\gamma + \beta\kappa_1 + 2\delta^2 + \frac{c}{2} - 2\gamma\mu + \alpha\mu\\ U\delta &- (\varphi U)\gamma &= \mu\kappa_1 - \kappa_1\gamma - \beta\gamma - 2\delta\kappa_2 - 2\beta\mu\\ U\mu &- (\varphi U)\delta &= \gamma\kappa_2 + \beta\delta - \kappa_2\mu - 2\delta\kappa_1 \end{split}$$

 2^{nd} Step: We consider a point $P \in M$ and we choose principal vector field $W \in \ker(\eta)$ at P such that

 $AW = \lambda W$ and $A\varphi W = \nu \varphi W$,

 2^{nd} Step: We consider a point $P \in M$ and we choose principal vector field $W \in \ker(\eta)$ at P such that

 $AW = \lambda W$ and $A\varphi W = \nu \varphi W$,

 λ, ν distinct at $P \longrightarrow \lambda, \nu$ constant

 2^{nd} Step: We consider a point $P \in M$ and we choose principal vector field $W \in \ker(\eta)$ at P such that

 $AW = \lambda W$ and $A\varphi W = \nu \varphi W$,

 λ, ν distinct at $P \longrightarrow \lambda, \nu$ constant $\lambda = \nu \longrightarrow A\varphi = \varphi A.$

 2^{nd} Step: We consider a point $P \in M$ and we choose principal vector field $W \in \ker(\eta)$ at P such that

 $AW = \lambda W$ and $A\varphi W = \nu \varphi W$,

 λ, ν distinct at $P \longrightarrow \lambda, \nu$ constant $\lambda = \nu \longrightarrow A\varphi = \varphi A$. Case of ruled real hypersurfaces: Examine if Hopf hypersurfaces satisfies the condition. Define the shape operator with respect to the local orthonormal basis.

References I

Berndt, J.: Real hypersurfaces with constant principal curvatures in complex hyperbolic space. J. Reine Angew. Math. **395**, 132-141 (1989).

Cecil, T. E. and Ryan, P. J.: Focal sets and real hypersurfaces in complex projective space. Trans. Amer. Math. Soc. **269**, 481-499 (1982).

- Cho, J. T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debrecem 54, 473-487, (1999).
- Kaimakamis, G., Panagiotidou K., Pérez, J. D.: The structure Jacobi operator of three dimensional real hypersurfaces in non-flat complex space forms. Kodai J. Math.

Kimura, M.: Real Hypersurfaces and Complex Submanifolds in complex projective spaces. Trans. Amer. Math. Soc. **296**, 137-149 (1986).

Kon, M.: On the Ricci tensor and the generalized Tanaka-Webster connection of real hypersurfaces in a complex space form. Publl. Math. Debrecen (2011).

- Maeda. Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Japan **28**,529-540, (1976).
- Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Japan **35**, 515-535, (1985).

References II

- Montiel, S. and Romero, A.: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata **20**, 245-261, (1986).
- Montiel, S. : Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Japan, **35**, 515-535 (1985).

- Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. **212**, 355-364, (1975).

Ortega, M. Pérez, J.D. and Santos, F.G.: Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms. Rocky Mountain J. Math. **36**, 1603-1613, (2006).

Panagiotidou, K. and Xenos, Ph.J.: Real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ equipped with structure Jacobi operator $\mathcal{L}_{\xi}l = \nabla_{\xi}l$. Adv. Pure Math. **2**, 1-5, (2012).

Panagiotidou, K.:The structure Jacobi and the shape operator of real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$. Beitr. Algebra Geom. **55**, 1991-1998 (2013).

Panagiotidou, K. and Xenos, Ph.J.: Real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ whose structure Jacobi operator is Lie D-parallel. Note Mat. **32**, 89-99 (2012).

Panagiotidou, K. and Pérez, J. D.: Commuting conditions of the k-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms. Open Math. 13, 321-332 (2015).

References III

Panagiotidou, K. and Pérez, J. D.: Commutativity of the k-th Cho operator with the shape operator of real hypersurfaces in complex space forms. Work in progress.

Panagiotidou, K. and Pérez, J. D.: On the Lie derivative of real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ with respect to the generalized Tanaka-Webster connection. Bull. Korean Math. Soc. **52**, 1621-1630 (2015).

15. Pérez J. D., Santos F.G. and Suh, Y.J.: Real hypersurfaces in complex projective space whose structure Jacobi operator is of Codazzi type. Canad. Math. Bull. **50**, 347-355, (2007).

Pérez, J.D. and Santos, F.G.:Real hypersurfaces in complex projective space whose structure Jacobi operator satisfies $\pounds_{\xi}R_{\xi}=\nabla_{\xi}R_{\xi}$. Rocky Mountain J. Math.**39**, 1293-1301 (2009).

Pérez, J. D. and Suh, Y. J.: A characterization of type (A) real hypersurfaces in complex projective space. Turkish J. Math. **38**, 139-153, (2014).

Pérez, J. D. and Suh, Y. J.: Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space. Monatsh. Math. **177**, 637-647 (2015).



References IV

Pérez, J. D.: Comparing Lie derivatives on real hypersurfaces in complex projective space. Medit. J. Math. (2015). DOI: 10.1007/s00009-015-0601-8.

Pérez, J. D.: Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective space.

Takagi, R: Real hypersurfaces n a complex prjective space with constant principal curvatures. J. Math. Soc, Japan **27**, 43-53 (1975).

Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. **314**, 349-379 (1989).

Theofanidis, Th. and Xenos, Ph. J.: Non-existence of real hypersurfaces equipped with Jacobi structure operator of Codazzi type. Intern. J. of Pure and Applied Math. **65**, 31-40, (2010).

Theofanidis, Th. and Xenos, Ph. J.: Real hypersurface of non-flat complex space forms equipped with Jacobi structure operator of Codazzi type. Houston J. Math. **40**, 97-107, (2014).

Wang, Q. M.: Real hypersurfaces with constant principal curvatures in complex

projective spaces (I). Sci. Sinica. Ser. A 26, 1017-1024 (1983).

THANK YOU

Konstantina Panagiotidou Generalized Tanaka-Webster connection