Análisis geométrico de la distancia lorentziana en subvariedades marginalmente atrapadas

Luis J. Alías Departamento de Matemáticas

Trabajo conjunto con G. Pacelli Bessa y Jorge H.S. de Lira Universidade Federal do Ceará, Fortaleza, Brasil

Este trabajo ha sido parcialmente financiado por el proyecto MTM2012-34037, MICINN/FEDER, España

Seminario de Geometría IEMath - Granada 23 de octubre de 2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

• Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.

< 臣 ▶ □ 臣

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written p < q, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written p < q, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.
- Obviously, $p \ll q$ implies p < q. As usual, $p \le q$ means that either p < q or p = q.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written p < q, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.
- Obviously, $p \ll q$ implies p < q. As usual, $p \le q$ means that either p < q or p = q.
- For a subset $S \subset M$, one defines the chronological future of S as

$$I^+(S) = \{q \in M : p \ll q \text{ for some } p \in S\},\$$

and the causal future of S as

$$J^+(S) = \{q \in M : p \leq q \text{ for some } p \in S\}.$$

Thus $S \cup I^+(S) \subset J^+(S)$.

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p)=\{q\in M:p\ll q\}, \hspace{1em} ext{and} \hspace{1em} J^+(p)=\{q\in M:p\leq q\}.$

< ≣ > _ ≣

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p) = \{q \in M : p \ll q\}, \text{ and } J^+(p) = \{q \in M : p \leq q\}.$

• $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.

< 注→ 注

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p)=\{q\in M:p\ll q\}, \hspace{1em} ext{and} \hspace{1em} J^+(p)=\{q\in M:p\leq q\}.$

- $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.
- If $q \in J^+(p)$, then the Lorentzian distance d(p,q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p,q) = +\infty$).

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p)=\{q\in M:p\ll q\}, \hspace{1em} ext{and} \hspace{1em} J^+(p)=\{q\in M:p\leq q\}.$

- $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.
- If $q \in J^+(p)$, then the Lorentzian distance d(p,q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p,q) = +\infty$).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.

★ 글 ▶ _ 글

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p) = \{q \in M : p \ll q\}, \text{ and } J^+(p) = \{q \in M : p \leq q\}.$

- $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.
- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.

<=>> = √QQ

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p) = \{q \in M : p \ll q\}, \text{ and } J^+(p) = \{q \in M : p \leq q\}.$

- $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.
- If $q \in J^+(p)$, then the Lorentzian distance d(p,q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p,q) = +\infty$).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.
- The Lorentzian distance function d : M × M → [0, +∞] for an arbitrary spacetime may fail to be continuous in general, and may also fail to be finite valued.

< = > < = > = <> < ⊂

• In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

 $I^+(p) = \{q \in M : p \ll q\}, \text{ and } J^+(p) = \{q \in M : p \leq q\}.$

- $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.
- If $q \in J^+(p)$, then the Lorentzian distance d(p,q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p,q) = +\infty$).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.
- The Lorentzian distance function d : M × M → [0, +∞] for an arbitrary spacetime may fail to be continuous in general, and may also fail to be finite valued.
- As a matter of fact, globally hyperbolic spacetimes¹ turn out to be the natural class of spacetimes for which the Lorentzian distance function is finite-valued and continuous.

¹*M* is globally hyperbolic provided (a) $J^+(p) \cap J^-(q)$ is compact for any $p, q \in M$, and (b) *M* is causal, i.e, there are no closed causal curves in $M \cdot e^{-p} + e^{-p} + e^{-p} = e^{-p} \cdot e^{-p}$

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

• In order to guarantee the smoothness of d_p , we need to restrict this function on certain special subsets of M.

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

- In order to guarantee the smoothness of d_p , we need to restrict this function on certain special subsets of M.
- Let $T_{-1}M|_p$ be the fiber of the unit future observer bundle of M at p, that is,

 $T_{-1}M|_{p} = \{v \in T_{p}M : v \text{ is a future-directed timelike unit vector}\}.$

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

- In order to guarantee the smoothness of d_p , we need to restrict this function on certain special subsets of M.
- Let $T_{-1}M|_p$ be the fiber of the unit future observer bundle of M at p, that is,

 $T_{-1}M|_p = \{v \in T_pM : v \text{ is a future-directed timelike unit vector}\}.$

• Define the function $s_{\!\scriptscriptstyle p}:\, T_{-1}M|_{\scriptscriptstyle p} o [0,+\infty]$ by

$$s_p(v) = \sup\{t \ge 0 : d_p(\gamma_v(t)) = t\},$$

where $\gamma_v : [0, a) \to M$ is the future inextendible geodesic starting at p with initial velocity v.

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(p) = \{tv: ext{ for all } v \in T_{-1}M|_p ext{ and } 0 < t < s_p(v)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(p) = \exp_p(\operatorname{int}(\tilde{\mathcal{I}}^+(p))) \subset I^+(p).$

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(p) = \{tv: ext{ for all } v \in T_{-1}M|_p ext{ and } 0 < t < s_p(v)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(p) = \exp_p(\operatorname{int}(\tilde{\mathcal{I}}^+(p))) \subset I^+(p).$

• Observe that $\exp_p : \operatorname{int}(\tilde{\mathcal{I}}^+(p)) \to \mathcal{I}^+(p)$ is a diffeomorphism and $\mathcal{I}^+(p)$ is an open subset (possible empty).

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(p) = \{tv: ext{ for all } v \in T_{-1}M|_p ext{ and } 0 < t < s_p(v)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(p) = \exp_p(\operatorname{int}(\tilde{\mathcal{I}}^+(p))) \subset I^+(p).$

• Observe that $\exp_p : \operatorname{int}(\tilde{\mathcal{I}}^+(p)) \to \mathcal{I}^+(p)$ is a diffeomorphism and $\mathcal{I}^+(p)$ is an open subset (possible empty).

Lemma 1 (Erkekoglu, García-Río and Kupeli, 2003)

Let M be a spacetime and $p \in M$.

- If *M* is strongly causal at p^a , then $s_p(v) > 0$ for all $v \in T_{-1}M|_p$ and $\mathcal{I}^+(p) \neq \emptyset$.
- If *I*⁺(*p*) ≠ Ø, then the Lorentzian distance function *d_p* is smooth on *I*⁺(*p*) and its gradient ∇*d_p* is a past-directed timelike (geodesic) unit vector field on *I*⁺(*p*).

^aGiven any neighborhood U of p there is a neighborhood $V \subset U$ of p such that every causal curve segment with endpoints in V is entirely contained in U.

• For every $c \in \mathbb{R}$, let us define

$$h_{c}(t) = \begin{cases} \frac{1}{\sqrt{c}} \sinh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ t & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{\sqrt{-c}} \sin(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• For every $c \in \mathbb{R}$, let us define

$$h_c(t) = \begin{cases} \frac{1}{\sqrt{c}} \sinh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ t & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{\sqrt{-c}} \sin(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Observe that the index of a Jacobi field along a timelike geodesic in a Lorentzian space form of constant curvature *c* is given by

$$I_{\gamma_c}(J_c, J_c) = -rac{h_c'(t)}{h_c(t)} \langle x, x
angle.$$

• For every $c \in \mathbb{R}$, let us define

$$h_{c}(t) = \begin{cases} \frac{1}{\sqrt{c}} \sinh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ t & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{\sqrt{-c}} \sin(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Observe that the index of a Jacobi field along a timelike geodesic in a Lorentzian space form of constant curvature *c* is given by

$$I_{\gamma_c}(J_c,J_c) = -rac{h_c'(t)}{h_c(t)}\langle x,x
angle.$$

• On the other hand, $\frac{h_c'(t)}{h_c(t)}$ is the future mean curvature of the level set

$$\Sigma_c(t) = \{q \in \mathcal{I}^+(p) : d_p(q) = t\} \subset M_c^n.$$

Lemma 2 (Alías, Hurtado, Palmer, 2010)

Let M be a spacetime such that $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$

$$\overline{
abla}^2 d_{
ho}(x,x) \leq -rac{h_c'}{h_c}(d_{
ho}(q))\langle x,x
angle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on *M*.

Lemma 2 (Alías, Hurtado, Palmer, 2010)

Let M be a spacetime such that $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$

$$\overline{
abla}^2 d_{
ho}(x,x) \leq -rac{h_c'}{h_c}(d_{
ho}(q))\langle x,x
angle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on *M*.

• The proof of Lemma 2 follows from the fact that

$$\overline{\nabla}^2 d_p(x,x) = I_\gamma(J,J)$$

where γ is the radial future directed unit timelike geodesic from p to q and J is the Jacobi field along γ with J(0) = 0 and J(s) = x, and is strongly based on the maximality of the index of Jacobi fields.

• On the other hand, under the assumption that the sectional curvatures of the timelike planes of *M* are bounded from above by a constant *c*, we get the following result.

Lemma 3 (Alías, Hurtado, Palmer, 2010)

Let *M* be a spacetime such that $K_M(\Pi) \leq c \ c \in \mathbb{R}$, for all timelike planes in *M*. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$ it holds that

$$\overline{\nabla}^2 d_p(x,x) \geq -rac{h_c'}{h_c}(d_p(q))\langle x,x
angle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on M.

• On the other hand, under the assumption that the sectional curvatures of the timelike planes of *M* are bounded from above by a constant *c*, we get the following result.

Lemma 3 (Alías, Hurtado, Palmer, 2010)

Let *M* be a spacetime such that $K_M(\Pi) \leq c \ c \in \mathbb{R}$, for all timelike planes in *M*. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$ it holds that

$$\overline{\nabla}^2 d_p(x,x) \geq -rac{h_c'}{h_c}(d_p(q))\langle x,x
angle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on M.

• The proof is similar to that of Lemma 2.

• Consider $\psi: \Sigma^m \to M^n$ an *m*-dimensional spacelike submanifold immersed into a spacetime *M*.

< 注→ 注

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).

∃ >

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).
- Let $r = d_p$ denote the Lorentzian distance function with respect to p, and let $u = r \circ \psi : \Sigma \rightarrow (0, \infty)$ be the function r along the submanifold, which is a smooth function on Σ .

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).
- Let r = d_p denote the Lorentzian distance function with respect to p, and let u = r ∘ ψ : Σ→(0,∞) be the function r along the submanifold, which is a smooth function on Σ.
- Our first objective is to compute the Hessian of *u*. To do that, observe that

$$\overline{\nabla}r = \nabla u + (\overline{\nabla}r)^{\perp}$$

along Σ , where $\nabla u = (\overline{\nabla}r)^{\top}$ stands for the gradient of u on Σ and $(\overline{\nabla}r)^{\perp}$ denotes the normal component of $\overline{\nabla}r$.

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).
- Let r = d_p denote the Lorentzian distance function with respect to p, and let u = r ∘ ψ : Σ→(0,∞) be the function r along the submanifold, which is a smooth function on Σ.
- Our first objective is to compute the Hessian of *u*. To do that, observe that

$$\overline{\nabla}r = \nabla u + (\overline{\nabla}r)^{\perp}$$

along Σ , where $\nabla u = (\overline{\nabla}r)^{\top}$ stands for the gradient of u on Σ and $(\overline{\nabla}r)^{\perp}$ denotes the normal component of $\overline{\nabla}r$.

• By Gauss and Weingarten formulae we get

$$\overline{\nabla}_X \overline{\nabla} r = \nabla_X \nabla u - A_{(\overline{\nabla} r)^{\perp}} X + \operatorname{II}(X, \nabla u) + \nabla_X^{\perp} (\overline{\nabla} r)^{\perp},$$

for every tangent vector $X \in T\Sigma$, where II denotes the second fundamental form of the submanifold and, for every normal vector η , A_{η} denotes the Weingarten endomorphism with respect to η .

• It follows from here that

$$abla^2 u(X,Y) = \overline{
abla}^2 r(X,Y) + \langle \mathrm{II}(X,Y), \overline{
abla} r \rangle$$

for every tangent vector fields $X, Y \in T\Sigma$, where $\overline{\nabla}^2 r$ and $\nabla^2 u$ stand for the Hessian of r and u in M and Σ , respectively.

글 > 글

It follows from here that

$$abla^2 u(X,Y) = \overline{
abla}^2 r(X,Y) + \langle \mathrm{II}(X,Y), \overline{
abla} r \rangle$$

for every tangent vector fields $X, Y \in T\Sigma$, where $\overline{\nabla}^2 r$ and $\nabla^2 u$ stand for the Hessian of r and u in M and Σ , respectively.

• Tracing this expression, one gets that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathbf{H}, \overline{\nabla} r \rangle,$$

where $\{E_1, \ldots, E_m\}$ is a local orthonormal frame on Σ , and

$$\mathbf{H} := rac{1}{m} \mathrm{tr}(\mathrm{II}) = rac{1}{m} \sum_{i=1}^m \mathrm{II}(E_i, E_i)$$

defines the mean curvature vector field of the submanifold.

It follows from here that

$$abla^2 u(X,Y) = \overline{
abla}^2 r(X,Y) + \langle \mathrm{II}(X,Y), \overline{
abla} r \rangle$$

for every tangent vector fields $X, Y \in T\Sigma$, where $\overline{\nabla}^2 r$ and $\nabla^2 u$ stand for the Hessian of r and u in M and Σ , respectively.

• Tracing this expression, one gets that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathbf{H}, \overline{\nabla} r \rangle,$$

where $\{E_1,\ldots,E_m\}$ is a local orthonormal frame on $\Sigma,$ and

$$\mathbf{H} := \frac{1}{m} \operatorname{tr}(\mathrm{II}) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{II}(E_i, E_i)$$

defines the mean curvature vector field of the submanifold.

• Consider the function $v = \phi_c(u)$, where $\phi_c(t)$ is a primitive of $h_c(t)$:

$$\phi_c(t) = \begin{cases} \frac{1}{c} \cosh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ \frac{t^2}{2} & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{c} \cos(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Then, the Laplacian of v is given by

$$\begin{aligned} \Delta v &= \phi_c'(u) \Delta u + \phi_c''(u) |\nabla u|^2 \\ &= h_c(u) \sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) + m h_c(u) \langle \mathbf{H}, \overline{\nabla} r \rangle + h_c'(u) |\nabla u|^2. \end{aligned}$$

∢ 臣 ▶

æ

• Then, the Laplacian of v is given by

$$\begin{aligned} \Delta v &= \phi_c'(u) \Delta u + \phi_c''(u) |\nabla u|^2 \\ &= h_c(u) \sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) + mh_c(u) \langle \mathbf{H}, \overline{\nabla} r \rangle + h_c'(u) |\nabla u|^2. \end{aligned}$$

 Assume now that K_M(Π) ≥ c (resp. K_M(Π) ≤ c) for all timelike planes in M. Then by the Hessian comparison results for r given in Lemma 2 (resp. Lemma 3), one gets that

$$\overline{\nabla}^2 r(X,X) \leq (\geq) - rac{h_c'}{h_c}(u)(1 + \langle X,
abla u
angle^2)$$

for every unit tangent vector field $X \in T\Sigma$.

• Then, the Laplacian of v is given by

$$\begin{aligned} \Delta v &= \phi_c'(u) \Delta u + \phi_c''(u) |\nabla u|^2 \\ &= h_c(u) \sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) + mh_c(u) \langle \mathbf{H}, \overline{\nabla} r \rangle + h_c'(u) |\nabla u|^2. \end{aligned}$$

 Assume now that K_M(Π) ≥ c (resp. K_M(Π) ≤ c) for all timelike planes in M. Then by the Hessian comparison results for r given in Lemma 2 (resp. Lemma 3), one gets that

$$\overline{\nabla}^2 r(X,X) \leq (\geq) - rac{h_c'}{h_c}(u)(1 + \langle X,
abla u
angle^2)$$

for every unit tangent vector field $X \in T\Sigma$.

• Therefore,

$$h_c(u)\sum_{i=1}^m \overline{
abla}^2 r(E_i,E_i) \leq (\geq) - h'_c(u)(m+|
abla u|^2),$$

which, jointly with the expression above, gives the following inequality for the Laplacian of \boldsymbol{v}

$$\Delta v \leq (\geq) - mh'_c(u) + mh_c(u) \langle \mathbf{H}, \overline{\nabla} r \rangle.$$

Summarizing:

• $K_M(\Pi) \ge c$ implies that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

• $K_M(\Pi) \leq c$ implies that

$$\Delta v \geq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

where $v = \phi_c(u)$ and u is the Lorentzian distance function of M restricted on the spacelike submanifold Σ .

ㅋ ㅋ

Summarizing:

• $K_M(\Pi) \ge c$ implies that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

• $K_M(\Pi) \leq c$ implies that

$$\Delta v \geq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

where $v = \phi_c(u)$ and u is the Lorentzian distance function of M restricted on the spacelike submanifold Σ .

- Before stating our main results, we need to introduce some terminology about:
 - Our analytical tool: the weak maximum principle.
 - Our geometric objects: trapped submanifolds.

The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an *n*-dimensional Riemannian manifold Σ if, for any smooth function u ∈ C²(Σ) with u* = sup_Σ u < +∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ with the properties

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an *n*-dimensional Riemannian manifold Σ if, for any smooth function u ∈ C²(Σ) with u* = sup_Σ u < +∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ with the properties

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

Equivalently, for any u ∈ C²(Σ) with u_{*} = inf_Σ u > -∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ satisfying

(i)
$$u(p_k) < u_* + \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) > -\frac{1}{k}$.

The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an *n*-dimensional Riemannian manifold Σ if, for any smooth function u ∈ C²(Σ) with u* = sup_Σ u < +∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ with the properties

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

Equivalently, for any u ∈ C²(Σ) with u_{*} = inf_Σ u > -∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ satisfying

(i)
$$u(p_k) < u_* + \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) > -\frac{1}{k}$.

 In this sense, the classical maximum principle given by Omori (1967) and Yau (1975) stays that the Omori-Yau maximum principle holds on every complete Riemannian manifold with Ricci curvature bounded from below.

The weak maximum principle

- The weak maximum principle is said to hold on Σ if, for any u ∈ C²(Σ) with u* < +∞ there is a sequence {p_k}_{k∈N} in Σ with
 (i) u(p_k) > u* 1/k, and (iii) Δu(p_k) < 1/k.
- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1. In other words,

$$\int_{\Sigma} p(x,y,t) dy = 1 ext{ for any } (x,t) \in \Sigma imes (0,+\infty),$$

where p(x, y, t) is the heat kernel of the Laplacian operator².

²For any open $\Omega \subset \Sigma$, $\int_{\Omega} p(x, y, t) dy$ is the probability that a random path starting at x lies in Ω at finite time t. Hence $\int_{\Sigma} p(x, y, t) dy < 1$ means that there is a positive probability that a random path will reach infinity in finite time t.

The weak maximum principle

- The weak maximum principle is said to hold on Σ if, for any u ∈ C²(Σ) with u* < +∞ there is a sequence {p_k}_{k∈N} in Σ with
 (i) u(p_k) > u* 1/k, and (iii) Δu(p_k) < 1/k.
- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1. In other words,

$$\int_{\Sigma} p(x,y,t) dy = 1 ext{ for any } (x,t) \in \Sigma imes (0,+\infty),$$

where p(x, y, t) is the heat kernel of the Laplacian operator².

 This is equivalent (among other conditions) to the fact that for every λ > 0, the only non-negative bounded smooth solution u of Δu ≥ λu on Σ is the constant u = 0.

²For any open $\Omega \subset \Sigma$, $\int_{\Omega} p(x, y, t) dy$ is the probability that a random path starting at x lies in Ω at finite time t. Hence $\int_{\Sigma} p(x, y, t) dy < 1$ means that there is a positive probability that a random path will reach infinity in finite time \overline{t} .

The weak maximum principle

- The weak maximum principle is said to hold on Σ if, for any u ∈ C²(Σ) with u* < +∞ there is a sequence {p_k}_{k∈N} in Σ with
 (i) u(p_k) > u* 1/k, and (iii) Δu(p_k) < 1/k.
- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1. In other words,

$$\int_{\Sigma} p(x,y,t) dy = 1 ext{ for any } (x,t) \in \Sigma imes (0,+\infty),$$

where p(x, y, t) is the heat kernel of the Laplacian operator².

 This is equivalent (among other conditions) to the fact that for every λ > 0, the only non-negative bounded smooth solution u of Δu ≥ λu on Σ is the constant u = 0.

• In particular, every parabolic manifold is stochastically complete. Hence, the weak max principle holds on every parabolic manifold.

²For any open $\Omega \subset \Sigma$, $\int_{\Omega} p(x, y, t) dy$ is the probability that a random path starting at x lies in Ω at finite time t. Hence $\int_{\Sigma} p(x, y, t) dy < 1$ means that there is a positive probability that a random path will reach infinity in finite time t.

 Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if ${\bf H}$ is lightlike and past-pointing on $\Sigma.$

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if **H** is lightlike and past-pointing on Σ .
- Finally, Σ is said to be weakly future trapped if H is causal (that is, timelike or lightlike) and future-pointing everywhere.

< ∃→

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if **H** is lightlike and past-pointing on Σ .
- Finally, Σ is said to be weakly future trapped if H is causal (that is, timelike or lightlike) and future-pointing everywhere.
- Analogously, Σ is said to be weakly past trapped if **H** is causal and past-pointing on Σ .

医下颌 医下颌

3

Weakly trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Weakly trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 1

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \geq c$, $c \in \mathbb{R}$, for all timelike planes in M.

- If c ≥ 0 there exists no stochastically complete, weakly past trapped submanifold contained in *I*⁺(*p*).
- If c < 0 and Σ is a stochastically complete, weakly past trapped submanifold contained in *I*⁺(p) ∩ B⁺(p, π/√−c), then

$$u_*=\inf_{\Sigma}u\geq\frac{\pi}{2\sqrt{-c}},$$

where *u* denotes the Lorentzian distance d_p along the hypersurface. In other words, Σ is contained in $B^+(p, \pi/\sqrt{-c}) \cap O^+(p, \pi/2\sqrt{-c})$.

Weakly trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 1

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M.

- If c ≥ 0 there exists no stochastically complete, weakly past trapped submanifold contained in *I*⁺(p).
- If c < 0 and Σ is a stochastically complete, weakly past trapped submanifold contained in *I*⁺(p) ∩ B⁺(p, π/√−c), then

$$u_*=\inf_{\Sigma}u\geq\frac{\pi}{2\sqrt{-c}},$$

where *u* denotes the Lorentzian distance d_p along the hypersurface. In other words, Σ is contained in $B^+(p, \pi/\sqrt{-c}) \cap O^+(p, \pi/2\sqrt{-c})$.

• Here, for $\delta > 0$, the subsets $B^+(p, \delta)$ and $O^+(p, \delta)$ denote the future inner ball and the future outer ball of radius δ , that is, $B^+(p, \delta) = \{q \in I^+(p) : d_p(q) < \delta\}$ $O^+(p, \delta) = \{q \in I^+(p) : d_p(q) > \delta\}.$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

< 注 → 注

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathbf{H}, \overline{\nabla}r \rangle(p_k),$

 $\text{for } \{p_k\} \subset \Sigma \text{ with } \lim_{k \to \infty} v(p_k) = v_* \text{ and } \lim_{k \to \infty} u(p_k) = u_*.$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathbf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$. • Observe that, since Σ is weakly past trapped, then

 $\langle \boldsymbol{\mathsf{H}}, \overline{\nabla} r \rangle < 0 \quad \text{ everywhere on } \boldsymbol{\Sigma}.$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathbf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$. • Observe that, since Σ is weakly past trapped, then

 $\langle \mathbf{H}, \overline{
abla} r
angle < 0$ everywhere on Σ .

• Therefore,

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'(u(p_k))$$

and, making $k \to \infty$ here we get $h'_c(u_*) \leq 0$.

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathbf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathbf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$. • Observe that, since Σ is weakly past trapped, then

 $\langle \boldsymbol{\mathsf{H}}, \overline{\nabla} r \rangle < 0 \quad \text{ everywhere on } \boldsymbol{\Sigma}.$

• Therefore,

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'(u(p_k))$$

and, making $k \to \infty$ here we get $h_c'(u_*) \leq 0$.

• The result then follows by observing that, when $c \ge 0$ then $h'_c(t) > 0$, and if c < 0 then $h'_c(t) \le 0$ when $\pi/2\sqrt{-c} \le t < \pi/\sqrt{-c}$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 2

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally trapped submanifold contained in $\mathcal{I}^+(p)$ (with $u_* < \pi/2\sqrt{-c}$ in the case c < 0). Then

$$\sup_{\Sigma} |\mathbf{H}_0| \geq \frac{h_c'}{h_c}(u_*),$$

where \mathbf{H}_0 stands for the spacelike component of the lightlike vector field \mathbf{H} which is orthogonal to $\overline{\nabla}r$, and $u_* = \inf_{\Sigma} u$. In particular, if $u_* = 0$ then $\sup_M |\mathbf{H}_0| = +\infty$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 2

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally trapped submanifold contained in $\mathcal{I}^+(p)$ (with $u_* < \pi/2\sqrt{-c}$ in the case c < 0). Then

$$\sup_{\Sigma} |\mathbf{H}_0| \geq \frac{h_c'}{h_c}(u_*),$$

where \mathbf{H}_0 stands for the spacelike component of the lightlike vector field \mathbf{H} which is orthogonal to $\overline{\nabla}r$, and $u_* = \inf_{\Sigma} u$. In particular, if $u_* = 0$ then $\sup_M |\mathbf{H}_0| = +\infty$.

Corollary 1

Under the assumptions of Theorem 2, if $|\mathbf{H}_0|$ is bounded from above on Σ , then there exists some $\delta > 0$ such that $\Sigma \subset O^+(p, \delta)$, where $O^+(p, \delta)$ denotes the future outer ball of radius δ .

• We know from Theorem 1 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.

< E → E

- We know from Theorem 1 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathbf{H} = \mathbf{H}_0 - \langle \mathbf{H}, \overline{\nabla}r \rangle \overline{\nabla}r,$$

with $\langle \mathbf{H}_0, \overline{\nabla}r \rangle = 0$.

< E > E

- We know from Theorem 1 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathbf{H} = \mathbf{H}_0 - \langle \mathbf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle \mathbf{H}_0, \overline{\nabla} r \rangle = 0.$

• Since H is lightlike and future-pointing we derive from here that

$$\langle \boldsymbol{\mathsf{H}}, \overline{\nabla} r \rangle = |\boldsymbol{\mathsf{H}}_0| > 0 \quad \text{on } \boldsymbol{\Sigma}.$$

≣ ▶

- We know from Theorem 1 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathbf{H} = \mathbf{H}_0 - \langle \mathbf{H}, \overline{\nabla}r \rangle \overline{\nabla}r,$$

with $\langle \boldsymbol{H}_0, \overline{\nabla} r \rangle = 0.$

• Since H is lightlike and future-pointing we derive from here that

$$\langle \mathbf{H}, \overline{
abla} r
angle = |\mathbf{H}_0| > 0 \quad \text{on } \Sigma.$$

• Therefore, as $K_M(\Pi) \ge c$, we have

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathbf{H}_0|.$$

- We know from Theorem 1 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathbf{H} = \mathbf{H}_0 - \langle \mathbf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle \mathbf{H}_0, \overline{\nabla} r \rangle = 0.$

• Since H is lightlike and future-pointing we derive from here that

$$\langle \mathbf{H}, \overline{
abla} r
angle = |\mathbf{H}_0| > 0 \quad \text{on } \Sigma.$$

• Therefore, as $K_M(\Pi) \ge c$, we have

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathbf{H}_0|.$$

• If sup_{Σ} $|\mathbf{H}_0| = +\infty$ then there is nothing to prove.

- We know from Theorem 1 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathbf{H} = \mathbf{H}_0 - \langle \mathbf{H}, \overline{\nabla}r \rangle \overline{\nabla}r,$$

with $\langle \textbf{H}_{0},\overline{\nabla}r\rangle=0.$

 $\bullet\,$ Since H is lightlike and future-pointing we derive from here that

$$\langle \mathbf{H}, \overline{
abla} r
angle = |\mathbf{H}_0| > 0 \quad \text{on } \Sigma.$$

• Therefore, as $K_M(\Pi) \ge c$, we have

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathbf{H}_0|.$$

- If $\text{sup}_{\Sigma} \left| \boldsymbol{H}_{0} \right| = +\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathbf{H}_0| \leq -mh_c'(u) + mh_c(u) \sup_{\Sigma} |\mathbf{H}_0|.$$

• Applying again the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v_* = \inf_{\Sigma} v = \phi_c(u_*)$, we have

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'_c(u(p_k)) + mh_c(u(p_k)) \sup_{\Sigma} |\mathbf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k \to \infty} v(p_k) = v_*$ and $\lim_{k \to \infty} u(p_k) = u_*$.

- 注 → - - -

• Applying again the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v_* = \inf_{\Sigma} v = \phi_c(u_*)$, we have

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'_c(u(p_k)) + mh_c(u(p_k)) \sup_{\Sigma} |\mathbf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k \to \infty} v(p_k) = v_*$ and $\lim_{k \to \infty} u(p_k) = u_*$.

• Letting
$$k \to +\infty$$
 we conclude that

$$\sup_{\Sigma} |\mathbf{H}_0| \geq \frac{h_c'(u_*)}{h_c(u_*)}.$$

∃ >

• Applying again the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v_* = \inf_{\Sigma} v = \phi_c(u_*)$, we have

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'_c(u(p_k)) + mh_c(u(p_k)) \sup_{\Sigma} |\mathbf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k \to \infty} v(p_k) = v_*$ and $\lim_{k \to \infty} u(p_k) = u_*$.

• Letting $k \to +\infty$ we conclude that

$$\sup_{\Sigma} |\mathbf{H}_0| \geq \frac{h_c'(u_*)}{h_c(u_*)}.$$

• The last assertion follows from the fact that $h_c(0) = 0$ and $h'_c(0) = 1$.

< 重 ▶

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \leq c$

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \leq c$

Theorem 3

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \leq c, c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally future trapped submanifold contained in $\mathcal{I}^+(p) \cap B^+(p, \delta)$ for some $\delta > 0$ (with $\delta \leq \pi/\sqrt{-c}$ when c < 0). Then

$$\inf_{\Sigma} |\mathbf{H}_0| \leq \frac{h_c'}{h_c}(u^*),$$

where \mathbf{H}_0 stands for the spacelike component of the lightlike vector field \mathbf{H} which is orthogonal to $\overline{\nabla}r$, and $u^* = \sup_{\Sigma} u$.

• Since $K_M(\Pi) \leq c$ and $\langle \mathbf{H}, \overline{\nabla} r \rangle = |\mathbf{H}_0| > 0$ on Σ , we have $\Delta v \geq -mh'_c(u) + mh_c(u)|\mathbf{H}_0|.$

< 注▶ 注

- Since $K_M(\Pi) \leq c$ and $\langle \mathbf{H}, \overline{\nabla} r \rangle = |\mathbf{H}_0| > 0$ on Σ , we have $\Delta v \geq -mh'_c(u) + mh_c(u)|\mathbf{H}_0|.$
- If $\inf_{\Sigma} |\mathbf{H}_0| = -\infty$ then there is nothing to prove.

< 臣 ▶ □ 臣

- Since $K_M(\Pi) \leq c$ and $\langle \mathbf{H}, \overline{\nabla}r \rangle = |\mathbf{H}_0| > 0$ on Σ , we have $\Delta v \geq -mh'_c(u) + mh_c(u)|\mathbf{H}_0|.$
- If $\inf_{\Sigma} |\mathbf{H}_0| = -\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \geq -mh_c'(u)+mh_c(u)|\mathbf{H}_0|\geq -mh_c'(u)+mh_c(u)\inf_{\Sigma}|\mathbf{H}_0|.$$

- Since $K_M(\Pi) \leq c$ and $\langle \mathbf{H}, \overline{\nabla}r \rangle = |\mathbf{H}_0| > 0$ on Σ , we have $\Delta v \geq -mh'_c(u) + mh_c(u)|\mathbf{H}_0|.$
- If $\inf_{\Sigma} |\mathbf{H}_0| = -\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathbf{H}_0| \geq -mh_c'(u) + mh_c(u)\inf_{\Sigma}|\mathbf{H}_0|.$$

• Applying the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v^* = \sup_{\Sigma} v = \phi_c(u^*)$, we have

$$\frac{1}{k} > \Delta v(p_k) \ge -mh'_c(u(p_k)) + mh_c(u(p_k)) \inf_{\Sigma} |\mathbf{H}_0|,$$

 $\text{for } \{p_k\} \subset \Sigma \text{ with } \lim_{k \to \infty} v(p_k) = v^* \text{ and } \lim_{k \to \infty} u(p_k) = u^*.$

< 三→

- Since $K_M(\Pi) \leq c$ and $\langle \mathbf{H}, \overline{\nabla}r \rangle = |\mathbf{H}_0| > 0$ on Σ , we have $\Delta v \geq -mh'_c(u) + mh_c(u)|\mathbf{H}_0|.$
- If $\text{inf}_{\Sigma} \left| \boldsymbol{H}_{0} \right| = -\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathbf{H}_0| \geq -mh_c'(u) + mh_c(u)\inf_{\Sigma}|\mathbf{H}_0|.$$

• Applying the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v^* = \sup_{\Sigma} v = \phi_c(u^*)$, we have

$$\frac{1}{k} > \Delta v(p_k) \geq -mh'_c(u(p_k)) + mh_c(u(p_k)) \inf_{\Sigma} |\mathbf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v^*$ and $\lim_{k\to\infty} u(p_k) = u^*$. • Making $k \to +\infty$ we conclude that

$$\inf_{\Sigma} |\mathbf{H}_0| \leq \frac{h_c'(u^*)}{h_c(u^*)}$$

Marginally future trapped submanifolds in Lorentzian space forms

• In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 1, 2 and 3 we obtain the following consequence.

Marginally future trapped submanifolds in Lorentzian space forms

• In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 1, 2 and 3 we obtain the following consequence.

Theorem 4

Let M_c^n be a Lorentzian space form of constant sectional curvature c and let $p \in M_c^n$. Let Σ be a stochastically complete, marginally trapped submanifold of M_c^n which is contained in $\mathcal{I}^+(p) \cap B^+(p, \delta)$ for some $\delta > 0$ (with $\delta \le \pi/2\sqrt{-c}$ if c < 0). Then

$$\inf_{\Sigma} |\mathbf{H}_0| \leq \frac{h_c'(u^*)}{h_c(u^*)} \leq \frac{h_c'(u_*)}{h_c(u_*)} \leq \sup_{\Sigma} |\mathbf{H}_0|,$$

where $u_* = \inf_{\Sigma} u$ and $u^* = \sup_{\Sigma} u$.

Marginally future trapped submanifolds in Lorentzian space forms

• In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 1, 2 and 3 we obtain the following consequence.

Theorem 4

Let M_c^n be a Lorentzian space form of constant sectional curvature c and let $p \in M_c^n$. Let Σ be a stochastically complete, marginally trapped submanifold of M_c^n which is contained in $\mathcal{I}^+(p) \cap B^+(p, \delta)$ for some $\delta > 0$ (with $\delta \le \pi/2\sqrt{-c}$ if c < 0). Then

$$\inf_{\Sigma} |\mathbf{H}_0| \leq \frac{h_c'(u^*)}{h_c(u^*)} \leq \frac{h_c'(u_*)}{h_c(u_*)} \leq \sup_{\Sigma} |\mathbf{H}_0|,$$

where $u_* = \inf_{\Sigma} u$ and $u^* = \sup_{\Sigma} u$.

 The estimates are sharp as proved by considering Σ as a constant mean curvature hypersurface of a level set of the Lorentzian distance in Mⁿ_c.

< ∃⇒

 Given S ⊂ Mⁿ an achronal spacelike hypersurface, one can define the Lorentzian distance function from S, d_S : M → [0, +∞], by

 $d_S(q) := \sup\{d(p,q) : p \in S\}.$

 Given S ⊂ Mⁿ an achronal spacelike hypersurface, one can define the Lorentzian distance function from S, d_S : M → [0, +∞], by

$$d_S(q) := \sup\{d(p,q) : p \in S\}.$$

• As in the previous case, to guarantee the smoothness of d_S , we need to restrict this function on certain special subsets of M.

 Given S ⊂ Mⁿ an achronal spacelike hypersurface, one can define the Lorentzian distance function from S, d_S : M → [0, +∞], by

$$d_S(q) := \sup\{d(p,q) : p \in S\}.$$

- As in the previous case, to guarantee the smoothness of d_S , we need to restrict this function on certain special subsets of M.
- Let η be the future-directed Gauss map of S. Then, we can define the function $s: S \to [0, +\infty]$ by

$$s(p) = \sup\{t \ge 0 : d_S(\gamma_p(t)) = t\},$$

where $\gamma_p : [0, a) \to M$ is the future inextendible geodesic starting at p with initial velocity η_p .

 Given S ⊂ Mⁿ an achronal spacelike hypersurface, one can define the Lorentzian distance function from S, d_S : M → [0, +∞], by

$$d_{\mathcal{S}}(q) := \sup\{d(p,q) : p \in \mathcal{S}\}.$$

- As in the previous case, to guarantee the smoothness of d_S , we need to restrict this function on certain special subsets of M.
- Let η be the future-directed Gauss map of S. Then, we can define the function $s: S \to [0, +\infty]$ by

$$s(p) = \sup\{t \ge 0 : d_S(\gamma_p(t)) = t\},$$

where $\gamma_p : [0, a) \to M$ is the future inextendible geodesic starting at p with initial velocity η_p .

• Then, we can define

$$ilde{\mathcal{I}}^+(\mathcal{S}) = \{ t\eta_{\mathcal{P}}: ext{ for all } \mathcal{p} \in \mathcal{S} ext{ and } 0 < t < s(\mathcal{p}) \}$$

and consider the subset $\mathcal{I}^+(S) \subset M$ given by

$$\mathcal{I}^+(S) = \exp_S(\operatorname{int}(\tilde{\mathcal{I}}^+(S))) \subset I^+(S),$$

where \exp_S denotes the exponential map with respect to the hypersurface S.

Lemma 4 (Erkekoglu, García-Río and Kupeli, 2003)

Let S be an achronal spacelike hyersurface in a spacetime M.

- If S is compact and (M,g) is globally hyperbolic, then s(p) > 0 for all p ∈ S and I⁺(S) ≠ Ø.
- If I⁺(S) ≠ Ø, then d_S is smooth on I⁺(S) and its gradient \$\overline{\nabla}d_S\$ is a past-directed timelike (geodesic) unit vector field on I⁺(S).

Lemma 4 (Erkekoglu, García-Río and Kupeli, 2003)

Let S be an achronal spacelike hyersurface in a spacetime M.

- If S is compact and (M,g) is globally hyperbolic, then s(p) > 0 for all p ∈ S and I⁺(S) ≠ Ø.
- If I⁺(S) ≠ Ø, then d_S is smooth on I⁺(S) and its gradient \$\overline{\nabla}d_S\$ is a past-directed timelike (geodesic) unit vector field on I⁺(S).
 - Doing a similar analysis of the Lorentzian distance function to an achronal hypersurface *S*, we can derive also sharp estimates for the mean curvature of marginally trapped submanifolds which are contained in the chronological future of *S*.

Lemma 4 (Erkekoglu, García-Río and Kupeli, 2003)

Let S be an achronal spacelike hyersurface in a spacetime M.

- If S is compact and (M,g) is globally hyperbolic, then s(p) > 0 for all p ∈ S and I⁺(S) ≠ Ø.
- If I⁺(S) ≠ Ø, then d_S is smooth on I⁺(S) and its gradient \$\overline{\nabla}d_S\$ is a past-directed timelike (geodesic) unit vector field on I⁺(S).
 - Doing a similar analysis of the Lorentzian distance function to an achronal hypersurface *S*, we can derive also sharp estimates for the mean curvature of marginally trapped submanifolds which are contained in the chronological future of *S*.

That's all !! Muchas gracias.