
Análisis geométrico de la distancia
lorentziana en subvariedades marginalmente

atrapadas

Luis J. Aĺıas
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Lorentzian distance function

Consider Mn an n-dimensional spacetime, that is, a time-oriented
Lorentzian manifold of dimension n ≥ 2.

Let p, q be points in M. Using the standard terminology and
notation from Lorentzian geometry, one says that q is in the
chronological future of p, written p � q, if there exists a
future-directed timelike curve from p to q.

Similarly, q is in the causal future of p, written p < q, if there exists
a future-directed causal (i.e., nonspacelike) curve from p to q.

Obviously, p � q implies p < q. As usual, p ≤ q means that either
p < q or p = q.

For a subset S ⊂ M, one defines the chronological future of S as

I+(S) = {q ∈ M : p � q for some p ∈ S},

and the causal future of S as

J+(S) = {q ∈ M : p ≤ q for some p ∈ S}.

Thus S ∪ I+(S) ⊂ J+(S).
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Lorentzian distance function

In particular, the chronological future I+(p) and the causal future
J+(p) of a point p ∈ M are

I+(p) = {q ∈ M : p � q}, and J+(p) = {q ∈ M : p ≤ q}.

I+(p) is always open. J+(p) is neither open nor closed in general.

If q ∈ J+(p), then the Lorentzian distance d(p, q) is the supremum
of the Lorentzian lengths of all the future-directed causal curves
from p to q (possibly, d(p, q) = +∞).

If q /∈ J+(p), then the Lorentzian distance d(p, q) = 0 by definition.

In particular, d(p, q) > 0 if and only is q ∈ I+(p).

The Lorentzian distance function d : M ×M → [0,+∞] for an
arbitrary spacetime may fail to be continuous in general, and may
also fail to be finite valued.
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Luis J. Aĺıas Análisis geométrico de la distancia lorentziana



Lorentzian distance function

In particular, the chronological future I+(p) and the causal future
J+(p) of a point p ∈ M are

I+(p) = {q ∈ M : p � q}, and J+(p) = {q ∈ M : p ≤ q}.

I+(p) is always open. J+(p) is neither open nor closed in general.

If q ∈ J+(p), then the Lorentzian distance d(p, q) is the supremum
of the Lorentzian lengths of all the future-directed causal curves
from p to q (possibly, d(p, q) = +∞).

If q /∈ J+(p), then the Lorentzian distance d(p, q) = 0 by definition.

In particular, d(p, q) > 0 if and only is q ∈ I+(p).

The Lorentzian distance function d : M ×M → [0,+∞] for an
arbitrary spacetime may fail to be continuous in general, and may
also fail to be finite valued.
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The Lorentzian distance function d : M ×M → [0,+∞] for an
arbitrary spacetime may fail to be continuous in general, and may
also fail to be finite valued.

As a matter of fact, globally hyperbolic spacetimes1 turn out to be
the natural class of spacetimes for which the Lorentzian distance
function is finite-valued and continuous.

1M is globally hyperbolic provided (a) J+(p) ∩ J−(q) is compact for any p, q ∈ M,
and (b) M is causal, i.e, there are no closed causal curves in M.
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Lorentzian distance function from a point

Given a point p ∈ M, one can define the Lorentzian distance
function from p by dp : M → [0,+∞]

dp(q) = d(p, q).

In order to guarantee the smoothness of dp, we need to restrict this
function on certain special subsets of M.

Let T−1M|p be the fiber of the unit future observer bundle of M at
p, that is,

T−1M|p = {v ∈ TpM : v is a future-directed timelike unit vector}.

Define the function sp : T−1M|p → [0,+∞] by

sp(v) = sup{t ≥ 0 : dp(γv (t)) = t},

where γv : [0, a)→ M is the future inextendible geodesic starting at
p with initial velocity v .
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Lorentzian distance function from a point

Then, one can define the subset Ĩ+(p) ⊂ TpM given by

Ĩ+(p) = {tv : for all v ∈ T−1M|p and 0 < t < sp(v)}
and consider the subset I+(p) ⊂ M given by

I+(p) = expp(int(Ĩ+(p))) ⊂ I+(p).

Observe that expp : int(Ĩ+(p))→ I+(p) is a diffeomorphism and
I+(p) is an open subset (possible empty).

Lemma 1 (Erkekoglu, Garćıa-Ŕıo and Kupeli, 2003)

Let M be a spacetime and p ∈ M.

1 If M is strongly causal at pa, then sp(v) > 0 for all v ∈ T−1M|p and
I+(p) 6= ∅.

2 If I+(p) 6= ∅, then the Lorentzian distance function dp is smooth on
I+(p) and its gradient ∇dp is a past-directed timelike (geodesic)
unit vector field on I+(p).

aGiven any neighborhood U of p there is a neighborhood V ⊂ U of p such that
every causal curve segment with endpoints in V is entirely contained in U.
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Hessian comparison results for the Lorentzian distance

For every c ∈ R, let us define

hc(t) =


1√
c

sinh(
√
c t) if c > 0 and t > 0

t if c = 0 and t > 0
1√
−c sin(

√
−c t) if c < 0 and 0 < t < π/

√
−c .

Observe that the index of a Jacobi field along a timelike geodesic in
a Lorentzian space form of constant curvature c is given by

Iγc (Jc , Jc) = −h′c(t)

hc(t)
〈x , x〉.

On the other hand,
h′c(t)

hc(t)
is the future mean curvature of the level

set
Σc(t) = {q ∈ I+(p) : dp(q) = t} ⊂ Mn

c .
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Hessian comparison results for the Lorentzian distance

Lemma 2 (Aĺıas, Hurtado, Palmer, 2010)

Let M be a spacetime such that KM(Π) ≥ c , c ∈ R, for all timelike
planes in M. Assume that there exists a point p ∈ M such that
I+(p) 6= ∅, and let q ∈ I+(p) (with dp(q) < π/

√
−c when c < 0). Then

for every spacelike vector x ∈ TqM orthogonal to ∇dp(q)

∇2
dp(x , x) ≤ −h′c

hc
(dp(q))〈x , x〉,

where ∇2
stands for the Hessian operator on M.

The proof of Lemma 2 follows from the fact that

∇2
dp(x , x) = Iγ(J, J)

where γ is the radial future directed unit timelike geodesic from p to
q and J is the Jacobi field along γ with J(0) = 0 and J(s) = x , and
is strongly based on the maximality of the index of Jacobi fields.
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Hessian comparison results for the Lorentzian distance

On the other hand, under the assumption that the sectional
curvatures of the timelike planes of M are bounded from above by a
constant c , we get the following result.

Lemma 3 (Aĺıas, Hurtado, Palmer, 2010)

Let M be a spacetime such that KM(Π) ≤ c c ∈ R, for all timelike planes
in M. Assume that there exists a point p ∈ M such that I+(p) 6= ∅, and
let q ∈ I+(p) (with dp(q) < π/

√
−c when c < 0). Then for every

spacelike vector x ∈ TqM orthogonal to ∇dp(q) it holds that

∇2
dp(x , x) ≥ −h′c

hc
(dp(q))〈x , x〉,

where ∇2
stands for the Hessian operator on M.

The proof is similar to that of Lemma 2.
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Spacelike submanifolds contained in I+(p)

Consider ψ : Σm → Mn an m-dimensional spacelike submanifold
immersed into a spacetime M.

We will assume that there exists a point p ∈ M such that I+(p) 6= ∅
and that ψ(Σ) ⊂ I+(p).

Let r = dp denote the Lorentzian distance function with respect to
p, and let u = r ◦ ψ : Σ→(0,∞) be the function r along the
submanifold, which is a smooth function on Σ.

Our first objective is to compute the Hessian of u. To do that,
observe that

∇r = ∇u + (∇r)⊥

along Σ, where ∇u = (∇r)> stands for the gradient of u on Σ and
(∇r)⊥ denotes the normal component of ∇r .

By Gauss and Weingarten formulae we get

∇X∇r = ∇X∇u − A
(∇r)⊥

X + II(X ,∇u) +∇⊥X (∇r)⊥,

for every tangent vector X ∈ TΣ, where II denotes the second
fundamental form of the submanifold and, for every normal vector η,
Aη denotes the Weingarten endomorphism with respect to η.
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It follows from here that

∇2u(X ,Y ) = ∇2
r(X ,Y ) + 〈II(X ,Y ),∇r〉

for every tangent vector fields X ,Y ∈ TΣ, where ∇2
r and ∇2u

stand for the Hessian of r and u in M and Σ, respectively.

Tracing this expression, one gets that the Laplacian of u is given by

∆u =
m∑
i=1

∇2
r(Ei ,Ei ) + m〈H,∇r〉,

where {E1, . . . ,Em} is a local orthonormal frame on Σ, and

H :=
1

m
tr(II) =

1

m

m∑
i=1

II(Ei ,Ei )

defines the mean curvature vector field of the submanifold.

Consider the function v = φc(u), where φc(t) is a primitive of hc(t):

φc(t) =


1
c cosh(

√
c t) if c > 0 and t > 0

t2

2 if c = 0 and t > 0
1
c cos(

√
−c t) if c < 0 and 0 < t < π/

√
−c .
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Then, the Laplacian of v is given by

∆v = φ′c(u)∆u + φ′′c (u)|∇u|2

= hc(u)
m∑
i=1

∇2
r(Ei ,Ei ) + mhc(u)〈H,∇r〉+ h′c(u)|∇u|2.

Assume now that KM(Π) ≥ c (resp. KM(Π) ≤ c) for all timelike
planes in M. Then by the Hessian comparison results for r given in
Lemma 2 (resp. Lemma 3), one gets that

∇2
r(X ,X ) ≤ (≥)− h′c

hc
(u)(1 + 〈X ,∇u〉2)

for every unit tangent vector field X ∈ TΣ.
Therefore,

hc(u)
m∑
i=1

∇2
r(Ei ,Ei ) ≤ (≥)− h′c(u)(m + |∇u|2),

which, jointly with the expression above, gives the following
inequality for the Laplacian of v

∆v ≤ (≥)−mh′c(u) + mhc(u)〈H,∇r〉.
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Summarizing:

KM(Π) ≥ c implies that

∆v ≤ −mh′c(u) + mhc(u)〈H,∇r〉.

KM(Π) ≤ c implies that

∆v ≥ −mh′c(u) + mhc(u)〈H,∇r〉.

where v = φc(u) and u is the Lorentzian distance function of M
restricted on the spacelike submanifold Σ.

Before stating our main results, we need to introduce some
terminology about:

Our analytical tool: the weak maximum principle.
Our geometric objects: trapped submanifolds.
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The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti
(2005), the Omori-Yau maximum principle is said to hold on an
n-dimensional Riemannian manifold Σ if, for any smooth function
u ∈ C2(Σ) with u∗ = supΣ u < +∞ there exists a sequence of points
{pk}k∈N in Σ with the properties

(i) u(pk) > u∗ − 1

k
, (ii) |∇u(pk)| < 1

k
, and (iii) ∆u(pk) <

1

k
.

Equivalently, for any u ∈ C2(Σ) with u∗ = infΣ u > −∞ there exists
a sequence of points {pk}k∈N in Σ satisfying

(i) u(pk) < u∗ +
1

k
, (ii) |∇u(pk)| < 1

k
, and (iii) ∆u(pk) > − 1

k
.

In this sense, the classical maximum principle given by Omori (1967)
and Yau (1975) stays that the Omori-Yau maximum principle holds
on every complete Riemannian manifold with Ricci curvature
bounded from below.
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The weak maximum principle
The weak maximum principle is said to hold on Σ if, for any
u ∈ C2(Σ) with u∗ < +∞ there is a sequence {pk}k∈N in Σ with

(i) u(pk) > u∗ − 1

k
, and (iii) ∆u(pk) <

1

k
.

Pigola, Rigoli and Setti (2003) proved that the weak maximum
principle holds on Σ if and only if Σ is stochastically complete.
Σ is said to be stochastically complete if its Brownian motion is
stochastically complete, i.e, the probability of a particle to be found
in the state space is constantly equal to 1. In other words,∫

Σ

p(x , y , t)dy = 1 for any (x , t) ∈ Σ× (0,+∞),

where p(x , y , t) is the heat kernel of the Laplacian operator2.

This is equivalent (among other conditions) to the fact that for
every λ > 0, the only non-negative bounded smooth solution u of
∆u ≥ λu on Σ is the constant u = 0.
In particular, every parabolic manifold is stochastically complete.
Hence, the weak max principle holds on every parabolic manifold.

2For any open Ω ⊂ Σ,
∫

Ω p(x , y , t)dy is the probability that a random path
starting at x lies in Ω at finite time t. Hence

∫
Σ p(x , y , t)dy < 1 means that there is a

positive probability that a random path will reach infinity in finite time t.
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Trapped submanifolds in a spacetime

Following the standard terminology in General Relativity, a spacelike
submanifold Σm (of arbitrary codimension) of a spacetime Mn is
said to be a future trapped submanifold if its mean curvature vector
field H is timelike and future-pointing everywhere on Σ.

Similarly, Σm is said to be a past trapped submanifold if H is
timelike and past-pointing everywhere on Σ.

On the other hand, if H is lightlike and future-pointing everywhere
on Σ then the spacelike submanifold is said to be marginally future
trapped.

Similarly, Σ is said to be marginally past trapped if H is lightlike and
past-pointing on Σ.

Finally, Σ is said to be weakly future trapped if H is causal (that is,
timelike or lightlike) and future-pointing everywhere.

Analogously, Σ is said to be weakly past trapped if H is causal and
past-pointing on Σ.
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Weakly trapped submanifolds in the chronological future of
a point. Case KM(Π) ≥ c

Theorem 1

Let M be a spacetime with a reference point p ∈ M such that
I+(p) 6= ∅, and assume KM(Π) ≥ c , c ∈ R, for all timelike planes in M.

1 If c ≥ 0 there exists no stochastically complete, weakly past trapped
submanifold contained in I+(p).

2 If c < 0 and Σ is a stochastically complete, weakly past trapped
submanifold contained in I+(p) ∩ B+(p, π/

√
−c), then

u∗ = inf
Σ

u ≥ π

2
√
−c

,

where u denotes the Lorentzian distance dp along the hypersurface.
In other words, Σ is contained in B+(p, π/

√
−c) ∩O+(p, π/2

√
−c).

Here, for δ > 0, the subsets B+(p, δ) and O+(p, δ) denote the
future inner ball and the future outer ball of radius δ, that is,

B+(p, δ) = {q ∈ I+(p) : dp(q) < δ}
O+(p, δ) = {q ∈ I+(p) : dp(q) > δ}.
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B+(p, δ) = {q ∈ I+(p) : dp(q) < δ}
O+(p, δ) = {q ∈ I+(p) : dp(q) > δ}.
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Proof of Theorem 1

As KM(Π) ≥ c , we know that

∆v ≤ −mh′c(u) + mhc(u)〈H,∇r〉.

Applying the weak max principle to the function v , which satisfies
v∗ = infΣ v = φc(u∗) with u∗ = infΣ u ≥ 0, we get that

− 1

k
< ∆v(pk) ≤ −mh′(u(pk)) + mh(u(pk))〈H,∇r〉(pk),

for {pk} ⊂ Σ with limk→∞ v(pk) = v∗ and limk→∞ u(pk) = u∗.

Observe that, since Σ is weakly past trapped, then

〈H,∇r〉 < 0 everywhere on Σ.

Therefore,
− 1

k
< ∆v(pk) ≤ −mh′(u(pk))

and, making k →∞ here we get h′c(u∗) ≤ 0.

The result then follows by observing that, when c ≥ 0 then
h′c(t) > 0, and if c < 0 then h′c(t) ≤ 0 when
π/2
√
−c ≤ t < π/

√
−c .
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Marginally trapped submanifolds in the chronological
future of a point. Case KM(Π) ≥ c

Theorem 2

Let M be a spacetime with a reference point p ∈ M such that
I+(p) 6= ∅, and assume KM(Π) ≥ c , c ∈ R, for all timelike planes in M.
Let Σ be a stochastically complete, marginally trapped submanifold
contained in I+(p) (with u∗ < π/2

√
−c in the case c < 0). Then

sup
Σ
|H0| ≥

h′c
hc

(u∗),

where H0 stands for the spacelike component of the lightlike vector field
H which is orthogonal to ∇r , and u∗ = infΣ u. In particular, if u∗ = 0
then supM |H0| = +∞.

Corollary 1

Under the assumptions of Theorem 2, if |H0| is bounded from above on
Σ, then there exists some δ > 0 such that Σ ⊂ O+(p, δ), where O+(p, δ)
denotes the future outer ball of radius δ.
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Proof of Theorem 2

We know from Theorem 1 that Σ must be in fact marginally future
trapped.

Let us write
H = H0 − 〈H,∇r〉∇r ,

with 〈H0,∇r〉 = 0.

Since H is lightlike and future-pointing we derive from here that

〈H,∇r〉 = |H0| > 0 on Σ.

Therefore, as KM(Π) ≥ c , we have

∆v ≤ −mh′c(u) + mhc(u)|H0|.

If supΣ |H0| = +∞ then there is nothing to prove.

Otherwise, let us write

∆v ≤ −mh′c(u) + mhc(u)|H0| ≤ −mh′c(u) + mhc(u) sup
Σ
|H0|.
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Proof of Theorem 2

Applying again the weak maximum principle on Σ to the function
v = φc(u), with v∗ = infΣ v = φc(u∗), we have

− 1

k
< ∆v(pk) ≤ −mh′c(u(pk)) + mhc(u(pk)) sup

Σ
|H0|,

for {pk} ⊂ Σ with limk→∞ v(pk) = v∗ and limk→∞ u(pk) = u∗.

Letting k → +∞ we conclude that

sup
Σ
|H0| ≥

h′c(u∗)

hc(u∗)
.

The last assertion follows from the fact that hc(0) = 0 and
h′c(0) = 1.
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Marginally trapped submanifolds in the chronological
future of a point. Case KM(Π) ≤ c

Theorem 3

Let M be a spacetime with a reference point p ∈ M such that
I+(p) 6= ∅, and assume KM(Π) ≤ c , c ∈ R, for all timelike planes in M.
Let Σ be a stochastically complete, marginally future trapped
submanifold contained in I+(p) ∩ B+(p, δ) for some δ > 0 (with
δ ≤ π/

√
−c when c < 0). Then

inf
Σ
|H0| ≤

h′c
hc

(u∗),

where H0 stands for the spacelike component of the lightlike vector field
H which is orthogonal to ∇r , and u∗ = supΣ u.
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Proof of Theorem 3

Since KM(Π) ≤ c and 〈H,∇r〉 = |H0| > 0 on Σ, we have

∆v ≥ −mh′c(u) + mhc(u)|H0|.

If infΣ |H0| = −∞ then there is nothing to prove.

Otherwise, let us write

∆v ≥ −mh′c(u) + mhc(u)|H0| ≥ −mh′c(u) + mhc(u) inf
Σ
|H0|.

Applying the weak maximum principle on Σ to the function
v = φc(u), with v∗ = supΣ v = φc(u∗), we have

1

k
> ∆v(pk) ≥ −mh′c(u(pk)) + mhc(u(pk)) inf

Σ
|H0|,

for {pk} ⊂ Σ with limk→∞ v(pk) = v∗ and limk→∞ u(pk) = u∗.

Making k → +∞ we conclude that
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Σ
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Marginally future trapped submanifolds in Lorentzian space
forms

In particular, when the ambient spacetime is a Lorentzian space
form, by putting together Theorems 1, 2 and 3 we obtain the
following consequence.

Theorem 4

Let Mn
c be a Lorentzian space form of constant sectional curvature c and

let p ∈ Mn
c . Let Σ be a stochastically complete, marginally trapped

submanifold of Mn
c which is contained in I+(p) ∩ B+(p, δ) for some

δ > 0 (with δ ≤ π/2
√
−c if c < 0). Then

inf
Σ
|H0| ≤

h′c(u∗)

hc(u∗)
≤ h′c(u∗)

hc(u∗)
≤ sup

Σ
|H0|,

where u∗ = infΣ u and u∗ = supΣ u.

The estimates are sharp as proved by considering Σ as a constant
mean curvature hypersurface of a level set of the Lorentzian distance
in Mn

c .
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inf
Σ
|H0| ≤

h′c(u∗)

hc(u∗)
≤ h′c(u∗)

hc(u∗)
≤ sup

Σ
|H0|,

where u∗ = infΣ u and u∗ = supΣ u.

The estimates are sharp as proved by considering Σ as a constant
mean curvature hypersurface of a level set of the Lorentzian distance
in Mn

c .
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Lorentzian distance function from an achronal hypersurface

Given S ⊂ Mn an achronal spacelike hypersurface, one can define
the Lorentzian distance function from S , dS : M → [0,+∞], by

dS(q) := sup{d(p, q) : p ∈ S}.

As in the previous case, to guarantee the smoothness of dS , we need
to restrict this function on certain special subsets of M.
Let η be the future-directed Gauss map of S . Then, we can define
the function s : S → [0,+∞] by

s(p) = sup{t ≥ 0 : dS(γp(t)) = t},
where γp : [0, a)→ M is the future inextendible geodesic starting at
p with initial velocity ηp.
Then, we can define

Ĩ+(S) = {tηp : for all p ∈ S and 0 < t < s(p)}
and consider the subset I+(S) ⊂ M given by

I+(S) = expS(int(Ĩ+(S))) ⊂ I+(S),

where expS denotes the exponential map with respect to the
hypersurface S .
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Lorentzian distance function from an achronal hypersurface

Lemma 4 (Erkekoglu, Garćıa-Ŕıo and Kupeli, 2003)

Let S be an achronal spacelike hyersurface in a spacetime M.

1 If S is compact and (M, g) is globally hyperbolic, then s(p) > 0 for
all p ∈ S and I+(S) 6= ∅.

2 If I+(S) 6= ∅, then dS is smooth on I+(S) and its gradient ∇dS is a
past-directed timelike (geodesic) unit vector field on I+(S).

Doing a similar analysis of the Lorentzian distance function to an
achronal hypersurface S , we can derive also sharp estimates for the
mean curvature of marginally trapped submanifolds which are
contained in the chronological future of S .

That’s all !!
Muchas gracias.
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