Análisis geométrico de la distancia lorentziana en subvariedades marginalmente atrapadas

Luis J. Alías
Departamento de Matemáticas

Trabajo conjunto con G. Pacelli Bessa y Jorge H.S. de Lira Universidade Federal do Ceará, Fortaleza, Brasil

Este trabajo ha sido parcialmente financiado por el proyecto MTM2012-34037, MICINN/FEDER, España

Seminario de Geometría IEMath - Granada
23 de octubre de 2015

Lorentzian distance function

- Consider M^{n} an n-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \geq 2$.

Lorentzian distance function

- Consider M^{n} an n-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \geq 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written $p \ll q$, if there exists a future-directed timelike curve from p to q.

Lorentzian distance function

- Consider M^{n} an n-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \geq 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written $p \ll q$, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written $p<q$, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.

Lorentzian distance function

- Consider M^{n} an n-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \geq 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written $p \ll q$, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written $p<q$, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.
- Obviously, $p \ll q$ implies $p<q$. As usual, $p \leq q$ means that either $p<q$ or $p=q$.

Lorentzian distance function

- Consider M^{n} an n-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \geq 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written $p \ll q$, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written $p<q$, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.
- Obviously, $p \ll q$ implies $p<q$. As usual, $p \leq q$ means that either $p<q$ or $p=q$.
- For a subset $S \subset M$, one defines the chronological future of S as

$$
I^{+}(S)=\{q \in M: p \ll q \text { for some } p \in S\}
$$

and the causal future of S as

$$
J^{+}(S)=\{q \in M: p \leq q \text { for some } p \in S\}
$$

Thus $S \cup I^{+}(S) \subset J^{+}(S)$.

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\} .
$$

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\} .
$$

- $I^{+}(p)$ is always open. $J^{+}(p)$ is neither open nor closed in general.

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\} .
$$

- $I^{+}(p)$ is always open. $J^{+}(p)$ is neither open nor closed in general.
- If $q \in J^{+}(p)$, then the Lorentzian distance $d(p, q)$ is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p, q)=+\infty$).

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\} .
$$

- $I^{+}(p)$ is always open. $J^{+}(p)$ is neither open nor closed in general.
- If $q \in J^{+}(p)$, then the Lorentzian distance $d(p, q)$ is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p, q)=+\infty$).
- If $q \notin J^{+}(p)$, then the Lorentzian distance $d(p, q)=0$ by definition.

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\} .
$$

- $I^{+}(p)$ is always open. $J^{+}(p)$ is neither open nor closed in general.
- If $q \in J^{+}(p)$, then the Lorentzian distance $d(p, q)$ is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p, q)=+\infty$).
- If $q \notin J^{+}(p)$, then the Lorentzian distance $d(p, q)=0$ by definition.
- In particular, $d(p, q)>0$ if and only is $q \in I^{+}(p)$.

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\} .
$$

- $I^{+}(p)$ is always open. $J^{+}(p)$ is neither open nor closed in general.
- If $q \in J^{+}(p)$, then the Lorentzian distance $d(p, q)$ is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p, q)=+\infty$).
- If $q \notin J^{+}(p)$, then the Lorentzian distance $d(p, q)=0$ by definition.
- In particular, $d(p, q)>0$ if and only is $q \in I^{+}(p)$.
- The Lorentzian distance function $d: M \times M \rightarrow[0,+\infty]$ for an arbitrary spacetime may fail to be continuous in general, and may also fail to be finite valued.

Lorentzian distance function

- In particular, the chronological future $I^{+}(p)$ and the causal future $J^{+}(p)$ of a point $p \in M$ are

$$
I^{+}(p)=\{q \in M: p \ll q\}, \quad \text { and } \quad J^{+}(p)=\{q \in M: p \leq q\}
$$

- $I^{+}(p)$ is always open. $J^{+}(p)$ is neither open nor closed in general.
- If $q \in J^{+}(p)$, then the Lorentzian distance $d(p, q)$ is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, $d(p, q)=+\infty$).
- If $q \notin J^{+}(p)$, then the Lorentzian distance $d(p, q)=0$ by definition.
- In particular, $d(p, q)>0$ if and only is $q \in I^{+}(p)$.
- The Lorentzian distance function $d: M \times M \rightarrow[0,+\infty]$ for an arbitrary spacetime may fail to be continuous in general, and may also fail to be finite valued.
- As a matter of fact, globally hyperbolic spacetimes ${ }^{1}$ turn out to be the natural class of spacetimes for which the Lorentzian distance function is finite-valued and continuous.

[^0]
Lorentzian distance function from a point

- Given a point $p \in M$, one can define the Lorentzian distance function from p by $d_{p}: M \rightarrow[0,+\infty]$

$$
d_{p}(q)=d(p, q)
$$

Lorentzian distance function from a point

- Given a point $p \in M$, one can define the Lorentzian distance function from p by $d_{p}: M \rightarrow[0,+\infty]$

$$
d_{p}(q)=d(p, q)
$$

- In order to guarantee the smoothness of d_{p}, we need to restrict this function on certain special subsets of M.

Lorentzian distance function from a point

- Given a point $p \in M$, one can define the Lorentzian distance function from p by $d_{p}: M \rightarrow[0,+\infty]$

$$
d_{p}(q)=d(p, q)
$$

- In order to guarantee the smoothness of d_{p}, we need to restrict this function on certain special subsets of M.
- Let $\left.T_{-1} M\right|_{p}$ be the fiber of the unit future observer bundle of M at p, that is,
$\left.T_{-1} M\right|_{p}=\left\{v \in T_{p} M: v\right.$ is a future-directed timelike unit vector $\}$.

Lorentzian distance function from a point

- Given a point $p \in M$, one can define the Lorentzian distance function from p by $d_{p}: M \rightarrow[0,+\infty]$

$$
d_{p}(q)=d(p, q) .
$$

- In order to guarantee the smoothness of d_{p}, we need to restrict this function on certain special subsets of M.
- Let $\left.T_{-1} M\right|_{p}$ be the fiber of the unit future observer bundle of M at p, that is,

$$
\left.T_{-1} M\right|_{p}=\left\{v \in T_{p} M: v \text { is a future-directed timelike unit vector }\right\} .
$$

- Define the function $s_{p}:\left.T_{-1} M\right|_{p} \rightarrow[0,+\infty]$ by

$$
s_{p}(v)=\sup \left\{t \geq 0: d_{p}\left(\gamma_{v}(t)\right)=t\right\}
$$

where $\gamma_{v}:[0, a) \rightarrow M$ is the future inextendible geodesic starting at p with initial velocity v.

Lorentzian distance function from a point

- Then, one can define the subset $\tilde{\mathcal{I}}^{+}(p) \subset T_{p} M$ given by

$$
\tilde{\mathcal{I}}^{+}(p)=\left\{t v: \text { for all }\left.v \in T_{-1} M\right|_{p} \text { and } 0<t<s_{p}(v)\right\}
$$

and consider the subset $\mathcal{I}^{+}(p) \subset M$ given by

$$
\mathcal{I}^{+}(p)=\exp _{p}\left(\operatorname{int}\left(\tilde{\mathcal{I}}^{+}(p)\right)\right) \subset I^{+}(p)
$$

Lorentzian distance function from a point

- Then, one can define the subset $\tilde{\mathcal{I}}^{+}(p) \subset T_{p} M$ given by

$$
\tilde{\mathcal{I}}^{+}(p)=\left\{t v: \text { for all }\left.v \in T_{-1} M\right|_{p} \text { and } 0<t<s_{p}(v)\right\}
$$

and consider the subset $\mathcal{I}^{+}(p) \subset M$ given by

$$
\mathcal{I}^{+}(p)=\exp _{p}\left(\operatorname{int}\left(\tilde{\mathcal{I}}^{+}(p)\right)\right) \subset I^{+}(p) .
$$

- Observe that $\exp _{p}: \operatorname{int}\left(\tilde{\mathcal{I}}^{+}(p)\right) \rightarrow \mathcal{I}^{+}(p)$ is a diffeomorphism and $\mathcal{I}^{+}(p)$ is an open subset (possible empty).

Lorentzian distance function from a point

- Then, one can define the subset $\tilde{\mathcal{I}}^{+}(p) \subset T_{p} M$ given by

$$
\tilde{\mathcal{I}}^{+}(p)=\left\{t v: \text { for all }\left.v \in T_{-1} M\right|_{p} \text { and } 0<t<s_{p}(v)\right\}
$$

and consider the subset $\mathcal{I}^{+}(p) \subset M$ given by

$$
\mathcal{I}^{+}(p)=\exp _{p}\left(\operatorname{int}\left(\tilde{\mathcal{I}}^{+}(p)\right)\right) \subset I^{+}(p) .
$$

- Observe that $\exp _{p}: \operatorname{int}\left(\tilde{\mathcal{I}}^{+}(p)\right) \rightarrow \mathcal{I}^{+}(p)$ is a diffeomorphism and $\mathcal{I}^{+}(p)$ is an open subset (possible empty).

Lemma 1 (Erkekoglu, García-Río and Kupeli, 2003)

Let M be a spacetime and $p \in M$.
(1) If M is strongly causal at p^{a}, then $s_{p}(v)>0$ for all $\left.v \in T_{-1} M\right|_{p}$ and $\mathcal{I}^{+}(p) \neq \emptyset$.
(2) If $\mathcal{I}^{+}(p) \neq \emptyset$, then the Lorentzian distance function d_{p} is smooth on $\mathcal{I}^{+}(p)$ and its gradient $\bar{\nabla} d_{p}$ is a past-directed timelike (geodesic) unit vector field on $\mathcal{I}^{+}(p)$.
${ }^{a}$ Given any neighborhood U of p there is a neighborhood $V \subset U$ of p such that every causal curve segment with endpoints in V is entirely contained in U.

Hessian comparison results for the Lorentzian distance

- For every $c \in \mathbb{R}$, let us define

$$
h_{c}(t)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{c}} \sinh (\sqrt{c} t) & \text { if } c>0 \text { and } t>0 \\
t & \text { if } c=0 \text { and } t>0 \\
\frac{1}{\sqrt{-c}} \sin (\sqrt{-c} t) & \text { if } c<0 \text { and } 0<t<\pi / \sqrt{-c}
\end{array}\right.
$$

Hessian comparison results for the Lorentzian distance

- For every $c \in \mathbb{R}$, let us define

$$
h_{c}(t)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{c}} \sinh (\sqrt{c} t) & \text { if } c>0 \text { and } t>0 \\
t & \text { if } c=0 \text { and } t>0 \\
\frac{1}{\sqrt{-c}} \sin (\sqrt{-c} t) & \text { if } c<0 \text { and } 0<t<\pi / \sqrt{-c} .
\end{array}\right.
$$

- Observe that the index of a Jacobi field along a timelike geodesic in a Lorentzian space form of constant curvature c is given by

$$
I_{\gamma_{c}}\left(J_{c}, J_{c}\right)=-\frac{h_{c}^{\prime}(t)}{h_{c}(t)}\langle x, x\rangle .
$$

Hessian comparison results for the Lorentzian distance

- For every $c \in \mathbb{R}$, let us define

$$
h_{c}(t)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{c}} \sinh (\sqrt{c} t) & \text { if } c>0 \text { and } t>0 \\
t & \text { if } c=0 \text { and } t>0 \\
\frac{1}{\sqrt{-c}} \sin (\sqrt{-c} t) & \text { if } c<0 \text { and } 0<t<\pi / \sqrt{-c} .
\end{array}\right.
$$

- Observe that the index of a Jacobi field along a timelike geodesic in a Lorentzian space form of constant curvature c is given by

$$
I_{\gamma_{c}}\left(J_{c}, J_{c}\right)=-\frac{h_{c}^{\prime}(t)}{h_{c}(t)}\langle x, x\rangle .
$$

- On the other hand, $\frac{h_{c}^{\prime}(t)}{h_{c}(t)}$ is the future mean curvature of the level set

$$
\Sigma_{c}(t)=\left\{q \in \mathcal{I}^{+}(p): d_{p}(q)=t\right\} \subset M_{c}^{n} .
$$

Hessian comparison results for the Lorentzian distance

Lemma 2 (Alías, Hurtado, Palmer, 2010)

Let M be a spacetime such that $K_{M}(\Pi) \geq c, c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and let $q \in \mathcal{I}^{+}(p)$ (with $d_{p}(q)<\pi / \sqrt{-c}$ when $\left.c<0\right)$. Then for every spacelike vector $x \in T_{q} M$ orthogonal to $\bar{\nabla} d_{p}(q)$

$$
\bar{\nabla}^{2} d_{p}(x, x) \leq-\frac{h_{c}^{\prime}}{h_{c}}\left(d_{p}(q)\right)\langle x, x\rangle,
$$

where $\bar{\nabla}^{2}$ stands for the Hessian operator on M.

Hessian comparison results for the Lorentzian distance

Lemma 2 (Alías, Hurtado, Palmer, 2010)

Let M be a spacetime such that $K_{M}(\Pi) \geq c, c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and let $q \in \mathcal{I}^{+}(p)$ (with $d_{p}(q)<\pi / \sqrt{-c}$ when $c<0$). Then for every spacelike vector $x \in T_{q} M$ orthogonal to $\bar{\nabla} d_{p}(q)$

$$
\bar{\nabla}^{2} d_{p}(x, x) \leq-\frac{h_{c}^{\prime}}{h_{c}}\left(d_{p}(q)\right)\langle x, x\rangle,
$$

where $\bar{\nabla}^{2}$ stands for the Hessian operator on M.

- The proof of Lemma 2 follows from the fact that

$$
\bar{\nabla}^{2} d_{p}(x, x)=I_{\gamma}(J, J)
$$

where γ is the radial future directed unit timelike geodesic from p to q and J is the Jacobi field along γ with $J(0)=0$ and $J(s)=x$, and is strongly based on the maximality of the index of Jacobi fields.

Hessian comparison results for the Lorentzian distance

- On the other hand, under the assumption that the sectional curvatures of the timelike planes of M are bounded from above by a constant c, we get the following result.

Lemma 3 (Alías, Hurtado, Palmer, 2010)

Let M be a spacetime such that $K_{M}(\Pi) \leq c c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and let $q \in \mathcal{I}^{+}(p)$ (with $d_{p}(q)<\pi / \sqrt{-c}$ when $c<0$). Then for every spacelike vector $x \in T_{q} M$ orthogonal to $\bar{\nabla} d_{p}(q)$ it holds that

$$
\bar{\nabla}^{2} d_{p}(x, x) \geq-\frac{h_{c}^{\prime}}{h_{c}}\left(d_{p}(q)\right)\langle x, x\rangle,
$$

where $\bar{\nabla}^{2}$ stands for the Hessian operator on M.

Hessian comparison results for the Lorentzian distance

- On the other hand, under the assumption that the sectional curvatures of the timelike planes of M are bounded from above by a constant c, we get the following result.

Lemma 3 (Alías, Hurtado, Palmer, 2010)

Let M be a spacetime such that $K_{M}(\Pi) \leq c c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and let $q \in \mathcal{I}^{+}(p)$ (with $d_{p}(q)<\pi / \sqrt{-c}$ when $c<0$). Then for every spacelike vector $x \in T_{q} M$ orthogonal to $\bar{\nabla} d_{p}(q)$ it holds that

$$
\bar{\nabla}^{2} d_{p}(x, x) \geq-\frac{h_{c}^{\prime}}{h_{c}}\left(d_{p}(q)\right)\langle x, x\rangle,
$$

where $\bar{\nabla}^{2}$ stands for the Hessian operator on M.

- The proof is similar to that of Lemma 2.

Spacelike submanifolds contained in $\mathcal{I}^{+}(p)$

- Consider $\psi: \Sigma^{m} \rightarrow M^{n}$ an m-dimensional spacelike submanifold immersed into a spacetime M.

Spacelike submanifolds contained in $\mathcal{I}^{+}(p)$

- Consider $\psi: \Sigma^{m} \rightarrow M^{n}$ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$ and that $\psi(\Sigma) \subset \mathcal{I}^{+}(p)$.

Spacelike submanifolds contained in $\mathcal{I}^{+}(p)$

- Consider $\psi: \Sigma^{m} \rightarrow M^{n}$ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$ and that $\psi(\Sigma) \subset \mathcal{I}^{+}(p)$.
- Let $r=d_{p}$ denote the Lorentzian distance function with respect to p, and let $u=r \circ \psi: \Sigma \rightarrow(0, \infty)$ be the function r along the submanifold, which is a smooth function on Σ.

Spacelike submanifolds contained in $\mathcal{I}^{+}(p)$

- Consider $\psi: \Sigma^{m} \rightarrow M^{n}$ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$ and that $\psi(\Sigma) \subset \mathcal{I}^{+}(p)$.
- Let $r=d_{p}$ denote the Lorentzian distance function with respect to p, and let $u=r \circ \psi: \Sigma \rightarrow(0, \infty)$ be the function r along the submanifold, which is a smooth function on Σ.
- Our first objective is to compute the Hessian of u. To do that, observe that

$$
\bar{\nabla} r=\nabla u+(\bar{\nabla} r)^{\perp}
$$

along Σ, where $\nabla u=(\bar{\nabla} r)^{\top}$ stands for the gradient of u on Σ and $(\bar{\nabla} r)^{\perp}$ denotes the normal component of $\bar{\nabla} r$.

Spacelike submanifolds contained in $\mathcal{I}^{+}(p)$

- Consider $\psi: \Sigma^{m} \rightarrow M^{n}$ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$ and that $\psi(\Sigma) \subset \mathcal{I}^{+}(p)$.
- Let $r=d_{p}$ denote the Lorentzian distance function with respect to p, and let $u=r \circ \psi: \Sigma \rightarrow(0, \infty)$ be the function r along the submanifold, which is a smooth function on Σ.
- Our first objective is to compute the Hessian of u. To do that, observe that

$$
\bar{\nabla} r=\nabla u+(\bar{\nabla} r)^{\perp}
$$

along Σ, where $\nabla u=(\bar{\nabla} r)^{\top}$ stands for the gradient of u on Σ and $(\bar{\nabla} r)^{\perp}$ denotes the normal component of $\bar{\nabla} r$.

- By Gauss and Weingarten formulae we get

$$
\bar{\nabla}_{x} \bar{\nabla} r=\nabla_{x} \nabla u-A_{\left(\nabla_{r}\right)^{\perp}} X+\mathrm{II}(X, \nabla u)+\nabla \frac{1}{X}(\bar{\nabla} r)^{\perp},
$$

for every tangent vector $X \in T \Sigma$, where II denotes the second fundamental form of the submanifold and, for every normal vector η, A_{η} denotes the Weingarten endomorphism with respect to η.

- It follows from here that

$$
\nabla^{2} u(X, Y)=\bar{\nabla}^{2} r(X, Y)+\langle\mathrm{II}(X, Y), \bar{\nabla} r\rangle
$$

for every tangent vector fields $X, Y \in T \Sigma$, where $\bar{\nabla}^{2} r$ and $\nabla^{2} u$ stand for the Hessian of r and u in M and Σ, respectively.

- It follows from here that

$$
\nabla^{2} u(X, Y)=\bar{\nabla}^{2} r(X, Y)+\langle\mathrm{II}(X, Y), \bar{\nabla} r\rangle
$$

for every tangent vector fields $X, Y \in T \Sigma$, where $\bar{\nabla}^{2} r$ and $\nabla^{2} u$ stand for the Hessian of r and u in M and Σ, respectively.

- Tracing this expression, one gets that the Laplacian of u is given by

$$
\Delta u=\sum_{i=1}^{m} \bar{\nabla}^{2} r\left(E_{i}, E_{i}\right)+m\langle\mathbf{H}, \bar{\nabla} r\rangle,
$$

where $\left\{E_{1}, \ldots, E_{m}\right\}$ is a local orthonormal frame on Σ, and

$$
\mathbf{H}:=\frac{1}{m} \operatorname{tr}(\mathrm{II})=\frac{1}{m} \sum_{i=1}^{m} \mathrm{II}\left(E_{i}, E_{i}\right)
$$

defines the mean curvature vector field of the submanifold.

- It follows from here that

$$
\nabla^{2} u(X, Y)=\bar{\nabla}^{2} r(X, Y)+\langle\mathrm{II}(X, Y), \bar{\nabla} r\rangle
$$

for every tangent vector fields $X, Y \in T \Sigma$, where $\bar{\nabla}^{2} r$ and $\nabla^{2} u$ stand for the Hessian of r and u in M and Σ, respectively.

- Tracing this expression, one gets that the Laplacian of u is given by

$$
\Delta u=\sum_{i=1}^{m} \bar{\nabla}^{2} r\left(E_{i}, E_{i}\right)+m\langle\mathbf{H}, \bar{\nabla} r\rangle,
$$

where $\left\{E_{1}, \ldots, E_{m}\right\}$ is a local orthonormal frame on Σ, and

$$
\mathbf{H}:=\frac{1}{m} \operatorname{tr}(\mathrm{II})=\frac{1}{m} \sum_{i=1}^{m} \operatorname{II}\left(E_{i}, E_{i}\right)
$$

defines the mean curvature vector field of the submanifold.

- Consider the function $v=\phi_{c}(u)$, where $\phi_{c}(t)$ is a primitive of $h_{c}(t)$:

$$
\phi_{c}(t)=\left\{\begin{array}{cl}
\frac{1}{c} \cosh (\sqrt{c} t) & \text { if } c>0 \text { and } t>0 \\
\frac{t^{2}}{2} & \text { if } c=0 \text { and } t>0 \\
\frac{1}{c} \cos (\sqrt{-c} t) & \text { if } c<0 \text { and } 0<t<\pi / \sqrt{-c} .
\end{array}\right.
$$

- Then, the Laplacian of v is given by

$$
\begin{aligned}
\Delta v & =\phi_{c}^{\prime}(u) \Delta u+\phi_{c}^{\prime \prime}(u)|\nabla u|^{2} \\
& =h_{c}(u) \sum_{i=1}^{m} \bar{\nabla}^{2} r\left(E_{i}, E_{i}\right)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle+h_{c}^{\prime}(u)|\nabla u|^{2} .
\end{aligned}
$$

- Then, the Laplacian of v is given by

$$
\begin{aligned}
\Delta v & =\phi_{c}^{\prime}(u) \Delta u+\phi_{c}^{\prime \prime}(u)|\nabla u|^{2} \\
& =h_{c}(u) \sum_{i=1}^{m} \bar{\nabla}^{2} r\left(E_{i}, E_{i}\right)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle+h_{c}^{\prime}(u)|\nabla u|^{2} .
\end{aligned}
$$

- Assume now that $K_{M}(\Pi) \geq c$ (resp. $\left.K_{M}(\Pi) \leq c\right)$ for all timelike planes in M. Then by the Hessian comparison results for r given in Lemma 2 (resp. Lemma 3), one gets that

$$
\bar{\nabla}^{2} r(X, X) \leq(\geq)-\frac{h_{c}^{\prime}}{h_{c}}(u)\left(1+\langle X, \nabla u\rangle^{2}\right)
$$

for every unit tangent vector field $X \in T \Sigma$.

- Then, the Laplacian of v is given by

$$
\begin{aligned}
\Delta v & =\phi_{c}^{\prime}(u) \Delta u+\phi_{c}^{\prime \prime}(u)|\nabla u|^{2} \\
& =h_{c}(u) \sum_{i=1}^{m} \bar{\nabla}^{2} r\left(E_{i}, E_{i}\right)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle+h_{c}^{\prime}(u)|\nabla u|^{2} .
\end{aligned}
$$

- Assume now that $K_{M}(\Pi) \geq c$ (resp. $\left.K_{M}(\Pi) \leq c\right)$ for all timelike planes in M. Then by the Hessian comparison results for r given in Lemma 2 (resp. Lemma 3), one gets that

$$
\bar{\nabla}^{2} r(X, X) \leq(\geq)-\frac{h_{c}^{\prime}}{h_{c}}(u)\left(1+\langle X, \nabla u\rangle^{2}\right)
$$

for every unit tangent vector field $X \in T \Sigma$.

- Therefore,

$$
h_{c}(u) \sum_{i=1}^{m} \bar{\nabla}^{2} r\left(E_{i}, E_{i}\right) \leq(\geq)-h_{c}^{\prime}(u)\left(m+|\nabla u|^{2}\right),
$$

which, jointly with the expression above, gives the following inequality for the Laplacian of v

$$
\Delta v \leq(\geq)-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle .
$$

- Summarizing:
- $K_{M}(\Pi) \geq c$ implies that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle
$$

- $K_{M}(\Pi) \leq c$ implies that

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle
$$

where $v=\phi_{c}(u)$ and u is the Lorentzian distance function of M restricted on the spacelike submanifold Σ.

- Summarizing:
- $K_{M}(\Pi) \geq c$ implies that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle
$$

- $K_{M}(\Pi) \leq c$ implies that

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle
$$

where $v=\phi_{c}(u)$ and u is the Lorentzian distance function of M restricted on the spacelike submanifold Σ.

- Before stating our main results, we need to introduce some terminology about:
- Our analytical tool: the weak maximum principle.
- Our geometric objects: trapped submanifolds.
- Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an n-dimensional Riemannian manifold Σ if, for any smooth function $u \in \mathcal{C}^{2}(\Sigma)$ with $u^{*}=\sup _{\Sigma} u<+\infty$ there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ with the properties

$$
\text { (i) } u\left(p_{k}\right)>u^{*}-\frac{1}{k}, \text { (ii) }\left|\nabla u\left(p_{k}\right)\right|<\frac{1}{k} \text {, and (iii) } \Delta u\left(p_{k}\right)<\frac{1}{k} \text {. }
$$

- Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an n-dimensional Riemannian manifold Σ if, for any smooth function $u \in \mathcal{C}^{2}(\Sigma)$ with $u^{*}=\sup _{\Sigma} u<+\infty$ there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ with the properties
(i) $u\left(p_{k}\right)>u^{*}-\frac{1}{k}$,
(ii) $\left|\nabla u\left(p_{k}\right)\right|<\frac{1}{k}$, and
(iii) $\Delta u\left(p_{k}\right)<\frac{1}{k}$.
- Equivalently, for any $u \in \mathcal{C}^{2}(\Sigma)$ with $u_{*}=\inf _{\Sigma} u>-\infty$ there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ satisfying

$$
\text { (i) } u\left(p_{k}\right)<u_{*}+\frac{1}{k}, \text { (ii) }\left|\nabla u\left(p_{k}\right)\right|<\frac{1}{k} \text {, and (iii) } \Delta u\left(p_{k}\right)>-\frac{1}{k} \text {. }
$$

The Omori-Yau maximum principle

- Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an n-dimensional Riemannian manifold Σ if, for any smooth function $u \in \mathcal{C}^{2}(\Sigma)$ with $u^{*}=\sup _{\Sigma} u<+\infty$ there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ with the properties
(i) $u\left(p_{k}\right)>u^{*}-\frac{1}{k}$,
(ii) $\left|\nabla u\left(p_{k}\right)\right|<\frac{1}{k}$, and
(iii) $\Delta u\left(p_{k}\right)<\frac{1}{k}$.
- Equivalently, for any $u \in \mathcal{C}^{2}(\Sigma)$ with $u_{*}=\inf _{\Sigma} u>-\infty$ there exists a sequence of points $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ satisfying

$$
\text { (i) } u\left(p_{k}\right)<u_{*}+\frac{1}{k} \text {, (ii) }\left|\nabla u\left(p_{k}\right)\right|<\frac{1}{k} \text {, and (iii) } \Delta u\left(p_{k}\right)>-\frac{1}{k} \text {. }
$$

- In this sense, the classical maximum principle given by Omori (1967) and Yau (1975) stays that the Omori-Yau maximum principle holds on every complete Riemannian manifold with Ricci curvature bounded from below.

The weak maximum principle

- The weak maximum principle is said to hold on Σ if, for any $u \in \mathcal{C}^{2}(\Sigma)$ with $u^{*}<+\infty$ there is a sequence $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ with

$$
\text { (i) } \quad u\left(p_{k}\right)>u^{*}-\frac{1}{k}, \quad \text { and } \quad \text { (iii) } \quad \Delta u\left(p_{k}\right)<\frac{1}{k} \text {. }
$$

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1 . In other words,

$$
\int_{\Sigma} p(x, y, t) d y=1 \text { for any }(x, t) \in \Sigma \times(0,+\infty)
$$

where $p(x, y, t)$ is the heat kernel of the Laplacian operator ${ }^{2}$.

[^1]
The weak maximum principle

- The weak maximum principle is said to hold on Σ if, for any $u \in \mathcal{C}^{2}(\Sigma)$ with $u^{*}<+\infty$ there is a sequence $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ with

$$
\begin{array}{ll}
\text { (i) } \quad u\left(p_{k}\right)>u^{*}-\frac{1}{k}, \quad \text { and } \quad \text { (iii) } \quad \Delta u\left(p_{k}\right)<\frac{1}{k} \text {. }
\end{array}
$$

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1 . In other words,

$$
\int_{\Sigma} p(x, y, t) d y=1 \text { for any }(x, t) \in \Sigma \times(0,+\infty)
$$

where $p(x, y, t)$ is the heat kernel of the Laplacian operator ${ }^{2}$.

- This is equivalent (among other conditions) to the fact that for every $\lambda>0$, the only non-negative bounded smooth solution u of $\Delta u \geq \lambda u$ on Σ is the constant $u=0$.

[^2]
The weak maximum principle

- The weak maximum principle is said to hold on Σ if, for any $u \in \mathcal{C}^{2}(\Sigma)$ with $u^{*}<+\infty$ there is a sequence $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ in Σ with

$$
\begin{array}{ll}
\text { (i) } \quad u\left(p_{k}\right)>u^{*}-\frac{1}{k}, \quad \text { and } \quad \text { (iii) } \quad \Delta u\left(p_{k}\right)<\frac{1}{k} \text {. }
\end{array}
$$

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1 . In other words,

$$
\int_{\Sigma} p(x, y, t) d y=1 \text { for any }(x, t) \in \Sigma \times(0,+\infty)
$$

where $p(x, y, t)$ is the heat kernel of the Laplacian operator ${ }^{2}$.

- This is equivalent (among other conditions) to the fact that for every $\lambda>0$, the only non-negative bounded smooth solution u of $\Delta u \geq \lambda u$ on Σ is the constant $u=0$.
- In particular, every parabolic manifold is stochastically complete. Hence, the weak max principle holds on every parabolic manifold.
${ }^{2}$ For any open $\Omega \subset \Sigma, \int_{\Omega} p(x, y, t) d y$ is the probability that a random path starting at x lies in Ω at finite time t. Hence $\int_{\Sigma} p(x, y, t) d y<1$ means that there is a positive probability that a random path will reach infinity in 'finite time \bar{t}.
- Following the standard terminology in General Relativity, a spacelike submanifold Σ^{m} (of arbitrary codimension) of a spacetime M^{n} is said to be a future trapped submanifold if its mean curvature vector field \mathbf{H} is timelike and future-pointing everywhere on Σ.
- Following the standard terminology in General Relativity, a spacelike submanifold Σ^{m} (of arbitrary codimension) of a spacetime M^{n} is said to be a future trapped submanifold if its mean curvature vector field \mathbf{H} is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^{m} is said to be a past trapped submanifold if \mathbf{H} is timelike and past-pointing everywhere on Σ.
- Following the standard terminology in General Relativity, a spacelike submanifold Σ^{m} (of arbitrary codimension) of a spacetime M^{n} is said to be a future trapped submanifold if its mean curvature vector field \mathbf{H} is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^{m} is said to be a past trapped submanifold if \mathbf{H} is timelike and past-pointing everywhere on Σ.
- On the other hand, if \mathbf{H} is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.

Trapped submanifolds in a spacetime

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^{m} (of arbitrary codimension) of a spacetime M^{n} is said to be a future trapped submanifold if its mean curvature vector field \mathbf{H} is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^{m} is said to be a past trapped submanifold if \mathbf{H} is timelike and past-pointing everywhere on Σ.
- On the other hand, if \mathbf{H} is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if \mathbf{H} is lightlike and past-pointing on Σ.

Trapped submanifolds in a spacetime

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^{m} (of arbitrary codimension) of a spacetime M^{n} is said to be a future trapped submanifold if its mean curvature vector field \mathbf{H} is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^{m} is said to be a past trapped submanifold if \mathbf{H} is timelike and past-pointing everywhere on Σ.
- On the other hand, if \mathbf{H} is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if \mathbf{H} is lightlike and past-pointing on Σ.
- Finally, Σ is said to be weakly future trapped if \mathbf{H} is causal (that is, timelike or lightlike) and future-pointing everywhere.

Trapped submanifolds in a spacetime

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^{m} (of arbitrary codimension) of a spacetime M^{n} is said to be a future trapped submanifold if its mean curvature vector field \mathbf{H} is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^{m} is said to be a past trapped submanifold if \mathbf{H} is timelike and past-pointing everywhere on Σ.
- On the other hand, if \mathbf{H} is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if \mathbf{H} is lightlike and past-pointing on Σ.
- Finally, Σ is said to be weakly future trapped if \mathbf{H} is causal (that is, timelike or lightlike) and future-pointing everywhere.
- Analogously, $\boldsymbol{\Sigma}$ is said to be weakly past trapped if \mathbf{H} is causal and past-pointing on Σ.

Weakly trapped submanifolds in the chronological future of

 a point. Case $K_{M}(\Pi) \geq c$
Weakly trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \geq c$

Theorem 1

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and assume $K_{M}(\Pi) \geq c, c \in \mathbb{R}$, for all timelike planes in M.
(1) If $c \geq 0$ there exists no stochastically complete, weakly past trapped submanifold contained in $\mathcal{I}^{+}(p)$.
(2) If $c<0$ and Σ is a stochastically complete, weakly past trapped submanifold contained in $\mathcal{I}^{+}(p) \cap B^{+}(p, \pi / \sqrt{-c})$, then

$$
u_{*}=\inf _{\Sigma} u \geq \frac{\pi}{2 \sqrt{-c}}
$$

where u denotes the Lorentzian distance d_{p} along the hypersurface. In other words, Σ is contained in $B^{+}(p, \pi / \sqrt{-c}) \cap O^{+}(p, \pi / 2 \sqrt{-c})$.

Weakly trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \geq c$

Theorem 1

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and assume $K_{M}(\Pi) \geq c, c \in \mathbb{R}$, for all timelike planes in M.
(1) If $c \geq 0$ there exists no stochastically complete, weakly past trapped submanifold contained in $\mathcal{I}^{+}(p)$.
(2) If $c<0$ and Σ is a stochastically complete, weakly past trapped submanifold contained in $\mathcal{I}^{+}(p) \cap B^{+}(p, \pi / \sqrt{-c})$, then

$$
u_{*}=\inf _{\Sigma} u \geq \frac{\pi}{2 \sqrt{-c}}
$$

where u denotes the Lorentzian distance d_{p} along the hypersurface. In other words, Σ is contained in $B^{+}(p, \pi / \sqrt{-c}) \cap O^{+}(p, \pi / 2 \sqrt{-c})$.

- Here, for $\delta>0$, the subsets $B^{+}(p, \delta)$ and $O^{+}(p, \delta)$ denote the future inner ball and the future outer ball of radius δ, that is,

$$
\begin{aligned}
& B^{+}(p, \delta)=\left\{q \in I^{+}(p): d_{p}(q)<\delta\right\} \\
& O^{+}(p, \delta)=\left\{q \in I^{+}(p): d_{p}(q)>\delta\right\} .
\end{aligned}
$$

Proof of Theorem 1

- As $K_{M}(\Pi) \geq c$, we know that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle .
$$

- As $K_{M}(\Pi) \geq c$, we know that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle .
$$

- Applying the weak max principle to the function v, which satisfies $v_{*}=\inf _{\Sigma v}=\phi_{c}\left(u_{*}\right)$ with $u_{*}=\inf _{\Sigma u \geq 0}$, we get that

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h^{\prime}\left(u\left(p_{k}\right)\right)+m h\left(u\left(p_{k}\right)\right)\langle\mathbf{H}, \bar{\nabla} r\rangle\left(p_{k}\right),
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- As $K_{M}(\Pi) \geq c$, we know that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle .
$$

- Applying the weak max principle to the function v, which satisfies $v_{*}=\inf _{\Sigma} v=\phi_{c}\left(u_{*}\right)$ with $u_{*}=\inf _{\Sigma} u \geq 0$, we get that

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h^{\prime}\left(u\left(p_{k}\right)\right)+m h\left(u\left(p_{k}\right)\right)\langle\mathbf{H}, \bar{\nabla} r\rangle\left(p_{k}\right),
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- Observe that, since Σ is weakly past trapped, then

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle<0 \quad \text { everywhere on } \Sigma .
$$

- As $K_{M}(\Pi) \geq c$, we know that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle .
$$

- Applying the weak max principle to the function v, which satisfies $v_{*}=\inf _{\Sigma} v=\phi_{c}\left(u_{*}\right)$ with $u_{*}=\inf _{\Sigma} u \geq 0$, we get that

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h^{\prime}\left(u\left(p_{k}\right)\right)+m h\left(u\left(p_{k}\right)\right)\langle\mathbf{H}, \bar{\nabla} r\rangle\left(p_{k}\right),
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- Observe that, since Σ is weakly past trapped, then

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle<0 \quad \text { everywhere on } \Sigma .
$$

- Therefore,

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h^{\prime}\left(u\left(p_{k}\right)\right)
$$

and, making $k \rightarrow \infty$ here we get $h_{c}^{\prime}\left(u_{*}\right) \leq 0$.

- As $K_{M}(\Pi) \geq c$, we know that

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\langle\mathbf{H}, \bar{\nabla} r\rangle
$$

- Applying the weak max principle to the function v, which satisfies $v_{*}=\inf _{\Sigma v}=\phi_{c}\left(u_{*}\right)$ with $u_{*}=\inf _{\Sigma} u \geq 0$, we get that

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h^{\prime}\left(u\left(p_{k}\right)\right)+m h\left(u\left(p_{k}\right)\right)\langle\mathbf{H}, \bar{\nabla} r\rangle\left(p_{k}\right)
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- Observe that, since Σ is weakly past trapped, then

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle<0 \quad \text { everywhere on } \Sigma
$$

- Therefore,

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h^{\prime}\left(u\left(p_{k}\right)\right)
$$

and, making $k \rightarrow \infty$ here we get $h_{c}^{\prime}\left(u_{*}\right) \leq 0$.

- The result then follows by observing that, when $c \geq 0$ then $h_{c}^{\prime}(t)>0$, and if $c<0$ then $h_{c}^{\prime}(t) \leq 0$ when $\pi / 2 \sqrt{-c} \leq t<\pi / \sqrt{-c}$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \geq c$

Marginally trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \geq c$

Theorem 2

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and assume $K_{M}(\Pi) \geq c, c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally trapped submanifold contained in $\mathcal{I}^{+}(p)$ (with $u_{*}<\pi / 2 \sqrt{-c}$ in the case $c<0$). Then

$$
\sup _{\Sigma}\left|\mathbf{H}_{0}\right| \geq \frac{h_{c}^{\prime}}{h_{c}}\left(u_{*}\right),
$$

where \mathbf{H}_{0} stands for the spacelike component of the lightlike vector field H which is orthogonal to $\bar{\nabla} r$, and $u_{*}=\inf _{\Sigma} u$. In particular, if $u_{*}=0$ then $\sup _{M}\left|\mathbf{H}_{0}\right|=+\infty$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \geq c$

Theorem 2

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and assume $K_{M}(\Pi) \geq c, c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally trapped submanifold contained in $\mathcal{I}^{+}(p)$ (with $u_{*}<\pi / 2 \sqrt{-c}$ in the case $c<0$). Then

$$
\sup _{\Sigma}\left|\mathbf{H}_{0}\right| \geq \frac{h_{c}^{\prime}}{h_{c}}\left(u_{*}\right)
$$

where \mathbf{H}_{0} stands for the spacelike component of the lightlike vector field H which is orthogonal to $\bar{\nabla} r$, and $u_{*}=\inf _{\Sigma} u$. In particular, if $u_{*}=0$ then $\sup _{M}\left|\mathbf{H}_{0}\right|=+\infty$.

Corollary 1

Under the assumptions of Theorem 2, if $\left|\mathbf{H}_{0}\right|$ is bounded from above on Σ, then there exists some $\delta>0$ such that $\Sigma \subset O^{+}(p, \delta)$, where $O^{+}(p, \delta)$ denotes the future outer ball of radius δ.

- We know from Theorem 1 that Σ must be in fact marginally future trapped.

Proof of Theorem 2

- We know from Theorem 1 that Σ must be in fact marginally future trapped.
- Let us write

$$
\mathbf{H}=\mathbf{H}_{0}-\langle\mathbf{H}, \bar{\nabla} r\rangle \bar{\nabla} r,
$$

with $\left\langle\mathbf{H}_{0}, \bar{\nabla} r\right\rangle=0$.

Proof of Theorem 2

- We know from Theorem 1 that Σ must be in fact marginally future trapped.
- Let us write

$$
\mathbf{H}=\mathbf{H}_{0}-\langle\mathbf{H}, \bar{\nabla} r\rangle \bar{\nabla} r,
$$

with $\left\langle\mathbf{H}_{0}, \bar{\nabla} r\right\rangle=0$.

- Since \mathbf{H} is lightlike and future-pointing we derive from here that

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0 \quad \text { on } \Sigma .
$$

- We know from Theorem 1 that Σ must be in fact marginally future trapped.
- Let us write

$$
\mathbf{H}=\mathbf{H}_{0}-\langle\mathbf{H}, \bar{\nabla} r\rangle \bar{\nabla} r,
$$

with $\left\langle\mathbf{H}_{0}, \bar{\nabla} r\right\rangle=0$.

- Since \mathbf{H} is lightlike and future-pointing we derive from here that

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0 \quad \text { on } \Sigma .
$$

- Therefore, as $K_{M}(\Pi) \geq c$, we have

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- We know from Theorem 1 that Σ must be in fact marginally future trapped.
- Let us write

$$
\mathbf{H}=\mathbf{H}_{0}-\langle\mathbf{H}, \bar{\nabla} r\rangle \bar{\nabla} r,
$$

with $\left\langle\mathbf{H}_{0}, \bar{\nabla} r\right\rangle=0$.

- Since \mathbf{H} is lightlike and future-pointing we derive from here that

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0 \quad \text { on } \Sigma .
$$

- Therefore, as $K_{M}(\Pi) \geq c$, we have

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- If $\sup _{\Sigma}\left|\mathbf{H}_{0}\right|=+\infty$ then there is nothing to prove.
- We know from Theorem 1 that Σ must be in fact marginally future trapped.
- Let us write

$$
\mathbf{H}=\mathbf{H}_{0}-\langle\mathbf{H}, \bar{\nabla} r\rangle \bar{\nabla} r,
$$

with $\left\langle\mathbf{H}_{0}, \bar{\nabla} r\right\rangle=0$.

- Since \mathbf{H} is lightlike and future-pointing we derive from here that

$$
\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0 \quad \text { on } \Sigma .
$$

- Therefore, as $K_{M}(\Pi) \geq c$, we have

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- If $\sup _{\Sigma}\left|\mathbf{H}_{0}\right|=+\infty$ then there is nothing to prove.
- Otherwise, let us write

$$
\Delta v \leq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| \leq-m h_{c}^{\prime}(u)+m h_{c}(u) \sup _{\Sigma}\left|\mathbf{H}_{0}\right| .
$$

Proof of Theorem 2

- Applying again the weak maximum principle on Σ to the function $v=\phi_{c}(u)$, with $v_{*}=\inf _{\Sigma} v=\phi_{c}\left(u_{*}\right)$, we have

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h_{c}^{\prime}\left(u\left(p_{k}\right)\right)+m h_{c}\left(u\left(p_{k}\right)\right) \sup _{\Sigma}\left|\mathbf{H}_{0}\right|,
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- Applying again the weak maximum principle on Σ to the function $v=\phi_{c}(u)$, with $v_{*}=\inf _{\Sigma} v=\phi_{c}\left(u_{*}\right)$, we have

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h_{c}^{\prime}\left(u\left(p_{k}\right)\right)+m h_{c}\left(u\left(p_{k}\right)\right) \sup _{\Sigma}\left|\mathbf{H}_{0}\right|
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- Letting $k \rightarrow+\infty$ we conclude that

$$
\sup _{\Sigma}\left|\mathbf{H}_{0}\right| \geq \frac{h_{c}^{\prime}\left(u_{*}\right)}{h_{c}\left(u_{*}\right)} .
$$

- Applying again the weak maximum principle on Σ to the function $v=\phi_{c}(u)$, with $v_{*}=\inf _{\Sigma} v=\phi_{c}\left(u_{*}\right)$, we have

$$
-\frac{1}{k}<\Delta v\left(p_{k}\right) \leq-m h_{c}^{\prime}\left(u\left(p_{k}\right)\right)+m h_{c}\left(u\left(p_{k}\right)\right) \sup _{\Sigma}\left|\mathbf{H}_{0}\right|,
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v_{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u_{*}$.

- Letting $k \rightarrow+\infty$ we conclude that

$$
\sup _{\Sigma}\left|\mathbf{H}_{0}\right| \geq \frac{h_{c}^{\prime}\left(u_{*}\right)}{h_{c}\left(u_{*}\right)} .
$$

- The last assertion follows from the fact that $h_{c}(0)=0$ and $h_{c}^{\prime}(0)=1$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \leq c$

Marginally trapped submanifolds in the chronological future of a point. Case $K_{M}(\Pi) \leq c$

Theorem 3

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^{+}(p) \neq \emptyset$, and assume $K_{M}(\Pi) \leq c, c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally future trapped submanifold contained in $\mathcal{I}^{+}(p) \cap B^{+}(p, \delta)$ for some $\delta>0$ (with $\delta \leq \pi / \sqrt{-c}$ when $c<0$). Then

$$
\inf _{\Sigma}\left|\mathbf{H}_{0}\right| \leq \frac{h_{c}^{\prime}}{h_{c}}\left(u^{*}\right)
$$

where \mathbf{H}_{0} stands for the spacelike component of the lightlike vector field \mathbf{H} which is orthogonal to $\bar{\nabla} r$, and $u^{*}=\sup _{\Sigma} u$.

Proof of Theorem 3

- Since $K_{M}(\Pi) \leq c$ and $\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0$ on Σ, we have

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

Proof of Theorem 3

- Since $K_{M}(\Pi) \leq c$ and $\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0$ on Σ, we have

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- If $\inf _{\Sigma}\left|\mathbf{H}_{0}\right|=-\infty$ then there is nothing to prove.

Proof of Theorem 3

- Since $K_{M}(\Pi) \leq c$ and $\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0$ on Σ, we have

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- If $\inf _{\Sigma}\left|\mathbf{H}_{0}\right|=-\infty$ then there is nothing to prove.
- Otherwise, let us write

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| \geq-m h_{c}^{\prime}(u)+m h_{c}(u) \inf _{\Sigma}\left|\mathbf{H}_{0}\right| .
$$

- Since $K_{M}(\Pi) \leq c$ and $\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0$ on Σ, we have

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- If $\inf _{\Sigma}\left|\mathbf{H}_{0}\right|=-\infty$ then there is nothing to prove.
- Otherwise, let us write

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| \geq-m h_{c}^{\prime}(u)+m h_{c}(u) \inf _{\Sigma}\left|\mathbf{H}_{0}\right|
$$

- Applying the weak maximum principle on Σ to the function $v=\phi_{c}(u)$, with $v^{*}=\sup _{\Sigma} v=\phi_{c}\left(u^{*}\right)$, we have

$$
\frac{1}{k}>\Delta v\left(p_{k}\right) \geq-m h_{c}^{\prime}\left(u\left(p_{k}\right)\right)+m h_{c}\left(u\left(p_{k}\right)\right) \inf _{\Sigma}\left|\mathbf{H}_{0}\right|,
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v^{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u^{*}$.

- Since $K_{M}(\Pi) \leq c$ and $\langle\mathbf{H}, \bar{\nabla} r\rangle=\left|\mathbf{H}_{0}\right|>0$ on Σ, we have

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| .
$$

- If $\inf _{\Sigma}\left|\mathbf{H}_{0}\right|=-\infty$ then there is nothing to prove.
- Otherwise, let us write

$$
\Delta v \geq-m h_{c}^{\prime}(u)+m h_{c}(u)\left|\mathbf{H}_{0}\right| \geq-m h_{c}^{\prime}(u)+m h_{c}(u) \inf _{\Sigma}\left|\mathbf{H}_{0}\right|
$$

- Applying the weak maximum principle on Σ to the function $v=\phi_{c}(u)$, with $v^{*}=\sup _{\Sigma} v=\phi_{c}\left(u^{*}\right)$, we have

$$
\frac{1}{k}>\Delta v\left(p_{k}\right) \geq-m h_{c}^{\prime}\left(u\left(p_{k}\right)\right)+m h_{c}\left(u\left(p_{k}\right)\right) \inf _{\Sigma}\left|\mathbf{H}_{0}\right|,
$$

for $\left\{p_{k}\right\} \subset \Sigma$ with $\lim _{k \rightarrow \infty} v\left(p_{k}\right)=v^{*}$ and $\lim _{k \rightarrow \infty} u\left(p_{k}\right)=u^{*}$.

- Making $k \rightarrow+\infty$ we conclude that

$$
\inf _{\Sigma}\left|\mathbf{H}_{0}\right| \leq \frac{h_{c}^{\prime}\left(u^{*}\right)}{h_{c}\left(u^{*}\right)}
$$

Marginally future trapped submanifolds in Lorentzian space forms

- In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 1,2 and 3 we obtain the following consequence.

Marginally future trapped submanifolds in Lorentzian space forms

- In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 1,2 and 3 we obtain the following consequence.

Theorem 4

Let M_{c}^{n} be a Lorentzian space form of constant sectional curvature c and let $p \in M_{c}^{n}$. Let Σ be a stochastically complete, marginally trapped submanifold of M_{c}^{n} which is contained in $\mathcal{I}^{+}(p) \cap B^{+}(p, \delta)$ for some $\delta>0$ (with $\delta \leq \pi / 2 \sqrt{-c}$ if $c<0$). Then

$$
\inf _{\Sigma}\left|\mathbf{H}_{0}\right| \leq \frac{h_{c}^{\prime}\left(u^{*}\right)}{h_{c}\left(u^{*}\right)} \leq \frac{h_{c}^{\prime}\left(u_{*}\right)}{h_{c}\left(u_{*}\right)} \leq \sup _{\Sigma}\left|\mathbf{H}_{0}\right|,
$$

where $u_{*}=\inf _{\sum u} u$ and $u^{*}=\sup _{\Sigma} u$.

Marginally future trapped submanifolds in Lorentzian space forms

- In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 1,2 and 3 we obtain the following consequence.

Theorem 4

Let M_{c}^{n} be a Lorentzian space form of constant sectional curvature c and let $p \in M_{c}^{n}$. Let Σ be a stochastically complete, marginally trapped submanifold of M_{c}^{n} which is contained in $\mathcal{I}^{+}(p) \cap B^{+}(p, \delta)$ for some $\delta>0$ (with $\delta \leq \pi / 2 \sqrt{-c}$ if $c<0$). Then

$$
\inf _{\Sigma}\left|\mathbf{H}_{0}\right| \leq \frac{h_{c}^{\prime}\left(u^{*}\right)}{h_{c}\left(u^{*}\right)} \leq \frac{h_{c}^{\prime}\left(u_{*}\right)}{h_{c}\left(u_{*}\right)} \leq \sup _{\Sigma}\left|\mathbf{H}_{0}\right|,
$$

where $u_{*}=\inf _{\Sigma} u$ and $u^{*}=\sup _{\Sigma} u$.

- The estimates are sharp as proved by considering Σ as a constant mean curvature hypersurface of a level set of the Lorentzian distance in M_{c}^{n}.

Lorentzian distance function from an achronal hypersurface

- Given $S \subset M^{n}$ an achronal spacelike hypersurface, one can define the Lorentzian distance function from $S, d_{S}: M \rightarrow[0,+\infty]$, by

$$
d_{S}(q):=\sup \{d(p, q): p \in S\}
$$

Lorentzian distance function from an achronal hypersurface

- Given $S \subset M^{n}$ an achronal spacelike hypersurface, one can define the Lorentzian distance function from $S, d_{S}: M \rightarrow[0,+\infty]$, by

$$
d_{S}(q):=\sup \{d(p, q): p \in S\}
$$

- As in the previous case, to guarantee the smoothness of d_{S}, we need to restrict this function on certain special subsets of M.

Lorentzian distance function from an achronal hypersurface

- Given $S \subset M^{n}$ an achronal spacelike hypersurface, one can define the Lorentzian distance function from $S, d_{S}: M \rightarrow[0,+\infty]$, by

$$
d_{S}(q):=\sup \{d(p, q): p \in S\} .
$$

- As in the previous case, to guarantee the smoothness of d_{S}, we need to restrict this function on certain special subsets of M.
- Let η be the future-directed Gauss map of S. Then, we can define the function $s: S \rightarrow[0,+\infty]$ by

$$
s(p)=\sup \left\{t \geq 0: d_{S}\left(\gamma_{p}(t)\right)=t\right\}
$$

where $\gamma_{p}:[0, a) \rightarrow M$ is the future inextendible geodesic starting at p with initial velocity η_{p}.

Lorentzian distance function from an achronal hypersurface

- Given $S \subset M^{n}$ an achronal spacelike hypersurface, one can define the Lorentzian distance function from $S, d_{S}: M \rightarrow[0,+\infty]$, by

$$
d_{S}(q):=\sup \{d(p, q): p \in S\} .
$$

- As in the previous case, to guarantee the smoothness of d_{s}, we need to restrict this function on certain special subsets of M.
- Let η be the future-directed Gauss map of S. Then, we can define the function $s: S \rightarrow[0,+\infty]$ by

$$
s(p)=\sup \left\{t \geq 0: d_{S}\left(\gamma_{p}(t)\right)=t\right\}
$$

where $\gamma_{p}:[0, a) \rightarrow M$ is the future inextendible geodesic starting at p with initial velocity η_{p}.

- Then, we can define

$$
\tilde{\mathcal{I}}^{+}(S)=\left\{t \eta_{p}: \text { for all } p \in S \text { and } 0<t<s(p)\right\}
$$

and consider the subset $\mathcal{I}^{+}(S) \subset M$ given by

$$
\mathcal{I}^{+}(S)=\exp _{S}\left(\operatorname{int}\left(\tilde{\mathcal{I}}^{+}(S)\right)\right) \subset I^{+}(S)
$$

where $\exp _{S}$ denotes the exponential map with respect to the hypersurface S.

Lorentzian distance function from an achronal hypersurface

Lemma 4 (Erkekoglu, García-Río and Kupeli, 2003)
Let S be an achronal spacelike hyersurface in a spacetime M.
(1) If S is compact and (M, g) is globally hyperbolic, then $s(p)>0$ for all $p \in S$ and $\mathcal{I}^{+}(S) \neq \emptyset$.
(2) If $\mathcal{I}^{+}(S) \neq \emptyset$, then d_{S} is smooth on $\mathcal{I}^{+}(S)$ and its gradient $\bar{\nabla} d_{S}$ is a past-directed timelike (geodesic) unit vector field on $\mathcal{I}^{+}(S)$.

Lorentzian distance function from an achronal hypersurface

Lemma 4 (Erkekoglu, García-Río and Kupeli, 2003)
Let S be an achronal spacelike hyersurface in a spacetime M.
(1) If S is compact and (M, g) is globally hyperbolic, then $s(p)>0$ for all $p \in S$ and $\mathcal{I}^{+}(S) \neq \emptyset$.
(2) If $\mathcal{I}^{+}(S) \neq \emptyset$, then d_{S} is smooth on $\mathcal{I}^{+}(S)$ and its gradient $\bar{\nabla} d_{S}$ is a past-directed timelike (geodesic) unit vector field on $\mathcal{I}^{+}(S)$.

- Doing a similar analysis of the Lorentzian distance function to an achronal hypersurface S, we can derive also sharp estimates for the mean curvature of marginally trapped submanifolds which are contained in the chronological future of S.

Lorentzian distance function from an achronal hypersurface

Lemma 4 (Erkekoglu, García-Río and Kupeli, 2003)
Let S be an achronal spacelike hyersurface in a spacetime M.
(1) If S is compact and (M, g) is globally hyperbolic, then $s(p)>0$ for all $p \in S$ and $\mathcal{I}^{+}(S) \neq \emptyset$.
(2) If $\mathcal{I}^{+}(S) \neq \emptyset$, then d_{S} is smooth on $\mathcal{I}^{+}(S)$ and its gradient $\bar{\nabla} d_{S}$ is a past-directed timelike (geodesic) unit vector field on $\mathcal{I}^{+}(S)$.

- Doing a similar analysis of the Lorentzian distance function to an achronal hypersurface S, we can derive also sharp estimates for the mean curvature of marginally trapped submanifolds which are contained in the chronological future of S.
That's all !!
Muchas gracias.

[^0]: ${ }^{1} M$ is globally hyperbolic provided (a) $J^{+}(p) \cap J^{-}(q)$ is compact for any $p, q \in M$, and (b) M is causal, i.e, there are no closed causal curves in M.

[^1]: ${ }^{2}$ For any open $\Omega \subset \Sigma, \int_{\Omega} p(x, y, t) d y$ is the probability that a random path starting at x lies in Ω at finite time t. Hence $\int_{\Sigma} p(x, y, t) d y<1$ means that there is a positive probability that a random path will reach infinity in finite time \bar{t}.

[^2]: ${ }^{2}$ For any open $\Omega \subset \Sigma, \int_{\Omega} p(x, y, t) d y$ is the probability that a random path starting at x lies in Ω at finite time t. Hence $\int_{\Sigma} p(x, y, t) d y<1$ means that there is a positive probability that a random path will reach infinity in 'finite time \bar{t}.

