Almost complex surfaces in the nearly Kähler $S^{3} \times S^{3}$

Luc Vrancken
Joint work with John Bolton (Durham), Franki Dillen and Bart Dioos (Leuven)

Granada, May 2012

Abstract

We will discuss almost complex surfaces in $S^{3} \times S^{3}$. The main results to discuss are the following:
(1) Classification of totally geodesic almost complex surfaces.

Abstract

We will discuss almost complex surfaces in $S^{3} \times S^{3}$. The main results to discuss are the following:
(1) Classification of totally geodesic almost complex surfaces.
(2) Construction of a holomorphic differential

Abstract

We will discuss almost complex surfaces in $S^{3} \times S^{3}$. The main results to discuss are the following:
(1) Classification of totally geodesic almost complex surfaces.
(2) Construction of a holomorphic differential
(3) An almost complex topological 2-sphere in $S^{3} \times S^{3}$ is totally geodesic.

Contents

(1) Nearly Kähler manifolds
(2) The nearly Kähler $S^{3} \times S^{3}$
(3) Some results
(4) Main theorems

Nearly Kähler manifolds and almost complex submanifolds

Nearly Kähler manifolds
 Definitions

- An almost Hermitian manifold (M, g, J) is a manifold M with metric g and almost complex structure J (endomorphism s.t. $J^{2}=-\mathrm{Id}$) satisfying

$$
g(J X, J Y)=g(X, Y), \quad X, Y \in T M .
$$

- A nearly Kähler manifold is an almost Hermitian manifold (M, g, J) with the extra assumption that ∇J is skew-symmetric:

$$
\left(\nabla_{X} J\right) Y+\left(\nabla_{Y} J\right) X=0, \quad X, Y \in T M .
$$

Nearly Kähler manifolds
 Identities

- For convenience, we will write $G(X, Y)=\left(\nabla_{X} J\right) Y$.
- Some identities:

$$
\begin{aligned}
& G(X, Y)+G(Y, X)=0 \\
& G(X, J Y)+J G(X, Y)=0, \\
& g(G(X, Y), Z) \text { and } g(G(X, Y), J Z) \text { are totally anti symmetric. } \\
& \bar{\nabla} J=0 .
\end{aligned}
$$

Here $\bar{\nabla}_{X} Y=\nabla_{X} Y-\frac{1}{2} J G(X, Y)$ is the canonical Hermitian connection.

Almost complex submanifolds

- An almost complex submanifold of a nearly Kähler manifold is a submanifold N such that

$$
J T N=T N \quad \text { or } \quad J \text { maps tangent vectors on tangent ones. }
$$

- Useful identities:

$$
\begin{aligned}
\nabla_{X} J X & =J \nabla_{X} X, & h(X, J Y) & =J h(X, Y), \\
A_{J \xi} X & =J A_{\xi} X=-A_{\xi} J X, & G(X, \xi) & =\nabla \frac{1}{X} J \xi-J \nabla \frac{1}{X} \xi .
\end{aligned}
$$

for tangent X, Y and normal ξ.

Recently it has been shown by Butruille that the only homogeneous 6 -dimensional nearly Kähler manifolds are
(1) the nearly Kähler 6 -sphere,

Recently it has been shown by Butruille that the only homogeneous 6 -dimensional nearly Kähler manifolds are
(1) the nearly Kähler 6 -sphere,
(2) $S^{3} \times S^{3}$,

Recently it has been shown by Butruille that the only homogeneous 6 -dimensional nearly Kähler manifolds are
(1) the nearly Kähler 6 -sphere,
(2) $S^{3} \times S^{3}$,
(0) the projective space $\mathbb{C} P^{3}$ (but not with the usual metric and complex structure)

Recently it has been shown by Butruille that the only homogeneous 6 -dimensional nearly Kähler manifolds are
(1) the nearly Kähler 6 -sphere,
(c) $S^{3} \times S^{3}$,
(0) the projective space $\mathbb{C} P^{3}$ (but not with the usual metric and complex structure)

- $M=S U(3) / U(1) \times U(1)$, the space of flags of \mathbb{C}^{3}.

Recently it has been shown by Butruille that the only homogeneous 6 -dimensional nearly Kähler manifolds are
(1) the nearly Kähler 6 -sphere,
(2) $S^{3} \times S^{3}$,
(0) the projective space $\mathbb{C} P^{3}$ (but not with the usual metric and complex structure)

- $M=S U(3) / U(1) \times U(1)$, the space of flags of \mathbb{C}^{3}.

All these spaces are compact.

The nearly Kähler $S^{3} \times S^{3}$
The nearly Kähler structure

- The almost complex structure J on $S^{3} \times S^{3}$ is defined by

$$
J Z_{(p, q)}=\frac{1}{\sqrt{3}}\left(2 p q^{-1} Y-X,-2 q p^{-1} X+Y\right)
$$

- If $\langle\cdot, \cdot\rangle$ is the product metric on $S^{3} \times S^{3}$, the metric g is given by

$$
\begin{aligned}
g\left(Z, Z^{\prime}\right)= & \frac{\sqrt{3}}{4}\left(\left\langle Z, Z^{\prime}\right\rangle+\left\langle J Z, J Z^{\prime}\right\rangle\right) \\
= & \frac{2}{\sqrt{3}}\left(\left\langle X, X^{\prime}\right\rangle+\left\langle Y, Y^{\prime}\right\rangle\right) \\
& -\frac{1}{\sqrt{3}}\left(\left\langle p^{-1} X, q^{-1} Y^{\prime}\right\rangle+\left\langle p^{-1} X^{\prime}, q^{-1} Y\right\rangle\right) .
\end{aligned}
$$

The nearly Kähler $S^{3} \times S^{3}$

Isometries

- For unit quaternions a, b and c the map

$$
F(p, q)=\left(a p c^{-1}, b q c^{-1}\right)
$$

is an isometry.

The nearly Kähler $S^{3} \times S^{3}$
An almost product structure P

- We define the almost product structure P as

$$
P(X, Y)_{(p, q)}=\left(p q^{-1} Y, q p^{-1} X\right) .
$$

The nearly Kähler $S^{3} \times S^{3}$

An almost product structure P

- We define the almost product structure P as

$$
P(X, Y)_{(p, q)}=\left(p q^{-1} Y, q p^{-1} X\right)
$$

- Properties:

$$
\begin{aligned}
P^{2} & =\mathrm{Id}, \\
P J & =-J P, \\
g\left(P Z, P Z^{\prime}\right) & =g\left(Z, Z^{\prime}\right) .
\end{aligned}
$$

The nearly Kähler $S^{3} \times S^{3}$

An almost product structure P

- We define the almost product structure P as

$$
P(X, Y)_{(p, q)}=\left(p q^{-1} Y, q p^{-1} X\right) .
$$

- Properties:

$$
\begin{aligned}
P^{2} & =\mathrm{Id}, \\
P J & =-J P, \\
g\left(P Z, P Z^{\prime}\right) & =g\left(Z, Z^{\prime}\right) .
\end{aligned}
$$

However, $\nabla P \neq 0$.

The nearly Kähler $S^{3} \times S^{3}$

Curvature tensor

- The Riemann curvature tensor of $S^{3} \times S^{3}$ is

$$
\begin{aligned}
\tilde{R}(U, V) W= & \frac{5}{6 \sqrt{3}}(g(V, W) U-g(U, W) V) \\
& +\frac{1}{6 \sqrt{3}}(g(J V, W) J U-g(J U, W) J V-2 g(J U, V) J W) \\
& +\frac{2}{3 \sqrt{3}}(g(P V, W) P U-g(P U, W) P V \\
& +g(J P V, W) J P U-g(J P U, W) J P V)
\end{aligned}
$$

Some results

Totally geodesic surfaces

The curvature of a totally geodesic almost complex curve is either 0 or $\frac{4}{3 \sqrt{3}}$.

Some results

- Let $\phi: M \rightarrow S^{3} \times S^{3}:(u, v) \mapsto(p(u, v), q(u, v))$ be a.c. immersion, with isothermal coordinates (u, v). Write

$$
\phi_{u}=\left(p_{u}, q_{u}\right) \quad \text { and } \phi_{v}=\left(p_{v}, q_{v}\right) .
$$

Then $J \phi_{u}=\phi_{V}$, since the coordinates are isothermal.

- There are local functions $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ and $\tilde{\delta}$ from M to \mathbb{R}^{3} such that

$$
\begin{array}{ll}
p_{u}=p \tilde{\alpha}, & p_{v}=p \tilde{\beta}, \\
q_{u}=q \tilde{\gamma}, & q_{v}=q \tilde{\delta} .
\end{array}
$$

Some results

- Then $\phi_{v}=J \phi_{u}$ gives

$$
\begin{aligned}
& \tilde{\gamma}=\frac{\sqrt{3}}{3} \tilde{\beta}+\frac{1}{2} \tilde{\alpha}, \\
& \tilde{\delta}=\frac{1}{2} \tilde{\beta}-\frac{\sqrt{3}}{2} \tilde{\alpha} .
\end{aligned}
$$

- The integrability conditions $p_{u v}=p_{v u}$ and $q_{u v}=q_{v u}$ yield

$$
\begin{aligned}
& \tilde{\alpha}_{v}-\tilde{\beta}_{u}=2 \tilde{\alpha} \times \tilde{\beta}, \\
& \tilde{\alpha}_{u}+\tilde{\beta}_{v}=\frac{2}{\sqrt{3}} \tilde{\alpha} \times \tilde{\beta}
\end{aligned}
$$

- Now write

$$
\begin{array}{r}
\alpha=\cos \theta \tilde{\alpha}+\sin \theta \tilde{\beta}, \\
\beta=-\sin \theta \tilde{\alpha}+\cos \theta \tilde{\beta},
\end{array}
$$

where $\theta=2 \pi / 3$.

- The two previous equations become

$$
\begin{aligned}
\alpha_{v} & =\beta_{u} \\
\alpha_{u}+\beta_{v} & =-\frac{4}{\sqrt{3}} \alpha \times \beta .
\end{aligned}
$$

Some results

- Hence there is a function ε such that

Differential equation

$$
\begin{array}{r}
\varepsilon_{u u}+\varepsilon_{v v}=-\frac{4}{\sqrt{3}} \varepsilon_{u} \times \varepsilon_{v} \\
\varepsilon_{u}=\alpha, \quad \varepsilon_{v}=\beta
\end{array}
$$

Some results

A holomorphic differential

Lemma

The following Cauchy-Riemann equations hold:

$$
\begin{aligned}
& (\alpha \cdot \beta)_{u}=\frac{1}{2}(\alpha \cdot \alpha-\beta \cdot \beta)_{v}, \\
& (\alpha \cdot \beta)_{v}=-\frac{1}{2}(\alpha \cdot \alpha-\beta \cdot \beta)_{u} .
\end{aligned}
$$

Corollary
The differential $\wedge d z^{2}=g\left(P \phi_{z}, \phi_{z}\right) d z^{2}$ is a holomorphic globally defined differential.

Some results

Lemma

$P T M \subset T^{\perp} M$ if and only if $\alpha \cdot \alpha=\beta \cdot \beta$ and $\alpha \cdot \beta=0$.

Proof.

$P T M \subset T^{\perp} M$ if and only if $g\left(P \phi_{u}, \phi_{u}\right)=0$ and $g\left(P \phi_{u}, \phi_{v}\right)=0$. The equations $\phi_{u}=(p \alpha, q((\sqrt{3} / 2) \beta+1 / 2 \alpha)$ and $\phi_{v}=(p \beta, q(1 / 2 \beta-(\sqrt{3} / 2) \alpha))$ and the definition of P then give the lemma.

Some results

Corollary

If M is an almost complex surface, then $P T M \subset T^{\perp} M$ if and only if $\Lambda d z^{2}=0$.

Corollary

If we have an almost complex 2-sphere S^{2} in $S^{3} \times S^{3}$, then $P T M \subset T^{\perp} M$.

Some results

Key results

Proof of the key results.

- Since $\varepsilon_{u}=\alpha$ and $\varepsilon_{v}=\beta$ and $\Lambda d z^{2}=0$, the coordinates are isothermal. We also have

$$
2 H \varepsilon_{u} \times \varepsilon_{v}=\varepsilon_{u u}+\varepsilon_{v v}=-\frac{4}{\sqrt{3}} \varepsilon_{u} \times \varepsilon_{v}
$$

from the DE on a previous slide.

- If $g=\lambda\left(d u^{2}+d v^{2}\right)$ is the induced metric on M, then

$$
g\left(\phi_{u}, \phi_{u}\right)=\frac{\sqrt{3}}{2}(\alpha \cdot \alpha+\beta \cdot \beta)
$$

which is equal to $\sqrt{3} \alpha \cdot \alpha$ since $\alpha \cdot \alpha=\beta \cdot \beta$ if $\Lambda d z^{2}=0$. Since $\varepsilon_{u}=\alpha, \varepsilon_{v}=\beta$ we have $g=\sqrt{3} g^{\prime}$.

Proofs of the main theorems

Theorem

Theorem

Every almost complex topological 2-sphere in $S^{3} \times S^{3}$ is totally geodesic.

Proof.

By a corollary, $\Lambda d z^{2} \equiv 0$, so we have a CMC 2-sphere in \mathbb{R}^{3}. This is a round sphere (by a theorem of Alexandrov), hence it is totally umbilical. Therefore the Gauss curvature of the CMC 2-sphere is $H^{2}=4 / 3$. Hence the Gauss curvature of the almost complex sphere in $S^{3} \times S^{3}$ is $4 /(3 \sqrt{3})$. The Gauss equation then says

$$
2\|h(v, v)\|^{2}=\frac{4}{3 \sqrt{3}}-K=0
$$

