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A brief history

I 1691 J. Bernoulli: first characterization of planar elastica

I 1742 D. Bernoulli: proposed variational techniques

I 1744 Euler: characterization using variational methods

I 1984 Langer-Singer: classified elastica on 2-sphere

I 1985 Pinkall: connection between elastica and Willmore tori

I 1991 Goldstein-Petrich: relationship to mKdV

I 2003/04 Arroyo-Garay-Mencia: closed elastica and
generalizations

I 2008 Bohle-Peters-Pinkall: constrained elastica, and
constrained Willmore Hopf-tori

I 2012 L.Heller, J.Zentgraf: PhD theses on constrained
Willmore Hopf-tori etc.



Outline of talk:

I Joint work with F. Pedit and N. Schmitt

I Finite type curves on S2

I Polynomial Killing fields and spectral curves

I Whitham deformation

I Constrained elastic curves

I Moduli space of constrained Willmore Hopf-tori



I If h : S3 → S2 is the Hopf-fibration, then h−1(γ) for a closed
curve γ : R→ S2 is called a Hopf-torus. The curve is called
its profile curve

I A Hopf-torus is a constrained Willmore Hopf-torus iff its
profile curve is a closed constrained elastic curve (area and
length constraint). Its geodesic curvature satisfies

κ′2 + 1
4κ

4 + a κ2 + b κ+ c = 0 .

I When b = 0 we speak of elastic curves (area constraint).

I The torus is a Willmore Hopf-torus iff the profile curve is a
closed free elastic curve (no constraint). Its geodesic
curvature satisfies

κ′2 + 1
4κ

4 + 1
2 κ

2 + c = 0 .



Constrained Willmore Hopf-tori

Figure: A sequence of 3-lobed constrained Willmore Hopf-tori, starting at
the Clifford torus, and ending at a Willmore Hopf-torus



Figure: A deformation through constrained elastic curves, starting near a
1-wrapped equator and ending near a 5-wrapped equator



Theorem
The Willmore energy along each deformation family containing a
Willmore Hopf-torus attains its maximum at this torus. The
2-lobed Willmore Hopf-torus has the least energy among the
Willmore Hopf-tori.

Figure: The 2-lobed Willmore torus, and its free elastic profile curve.



Finite type curves in S2

Curves in S2

Let γ : R→ S2 be a smooth immersed arc-length parametrized
curve with geodesic curvature κ. The frame G : R→ SO3 of γ
with columns

G = (γ, γ′, γ × γ′)

satisfies

G′ = G

0 −1 0
1 0 −κ
0 κ 0

 .

Here prime denotes differentiation with respect to arc-length.



Finite type curves in S2

mKdV hierarchy

The mKdV hierarchy is an infinite hierarchy of evolution equations
with first three equations

κ̇ = −κ′

κ̇ = −k′′′ − 3
2κ

2κ′

κ̇ = −k′′′′′ − 15
8 κ

4κ′ − 5
2κ

2κ′′′ − 10κκ′κ′′

...

A curve is called of finite type if κ is stationary under all but fintely
many of the flows in this hierarchy.



Finite type curves in S2

Reconstruction

Via the double cover SU2 → SO3 the extended frame equation can
be written as

F ′λ = Fλ

(
iλ κ
−κ −iλ

)
where λ ∈ R .

The associate family of curves R→ SU2 ∩ R3 ∼= S2 given by

γλ = Fλ F
−1
−λ

has geodesic curvature λ−1κ, and constant speed |λ|.
Call the evaluation points the sym points (w.l.o.g. take λ = 1).



Polynomial Killing fields and spectral curve Polynomial Killing fields

Polynomial Killing fields

A polynomial Killing field of a curve on S2 is a polynomial

X =

d∑
k=0

Xkλ
k where Xd =

(
i 0
0 −i

)
with Xk : R→ su2 smooth that satisfies a Lax equation

X ′ = 1
2 [X, V (X)] with V (X) := Xd−1 +Xdλ ,

and is twisted (or anti-twisted), so that

X(−λ) = ±
(

0 1
−1 0

)
X(λ)

(
0 1
−1 0

)
.



Polynomial Killing fields and spectral curve Polynomial Killing fields

Finite type curves

A finite type curve R→ S2 is one whose extended frame satisfies

F ′λ = 1
2Fλ V (X) , Fλ(0) = 1

for some polynomial Killing field X.
Let X(0) = X0. Then

F−1λ X0Fλ = X ,

so detX = detX0 is independent of arc-length. By the
twistedness condition detX is an even polynomial.



Polynomial Killing fields and spectral curve Spectral curve

Spectral curve

I Suppose X is a polynomial Killing field of degree d, and
X0 = X(0).

I Since X0 ∈ su2 conclude that detX is a real, even polynomial
of degree 2d.

I Assume all the roots of detX are simple.

I The spectral curve Σ of X is the hyperelliptic curve over C
with branchpoints only at the roots of detX. It is a compact
Riemann surface of genus g = d− 1.

I The genus g of Σ is called spectral genus.



Polynomial Killing fields and spectral curve Spectral curve

Closing conditions

Let X be a periodic polynomial Killing field with period ρ, and
extended frame Fλ. Then the corresponding curve is closed if and
only if the monodromy Mλ = Fλ(ρ) satisfies

M1 = M−1 = 1 or M1 = M−1 = −1 .

From F−1λ X0Fλ = X and X0 = X(ρ) it follows that

[X0, Mλ] = 0 .

An eigenvalue µ of Mλ is a meromorphic function on Σ whose only
poles are simple poles over the two points ∞±.



Whitham deformation Polynomials A, B and C

Whitham deformation

Hence d logµ is an abelian differential of the 2nd kind on Σ, so of
the form

d logµ =
B√
A
dλ

where A = detX and λ 7→ B(λ) is a real polynomial of degree
d = g + 1.
Suppose A and B depend on an additional parameter t ∈ R. Can
write

d

dt
logµ =

C√
A

where λ 7→ C(λ) is a polynomial of degree at most g.



Whitham deformation Polynomials A, B and C

The deformation in the parameter t is subject to the integrability
condition

d2

dλ dt
logµ =

d2

dt dλ
logµ ,

or equivalently in terms of the polynomials A,B and C that

2AḂ − ȦB = 2AC ′ −A′C . (3.1)

The variables in the flow are the 2g + 2 coefficients of A, and the
g + 1 coefficients of B. The g + 1 coefficients of C can be chosen
freely.



Whitham deformation Polynomials A, B and C

To preserve closing conditions µ(λ) = µ(−λ) = ±1 at λ = 1
during the deformation, also require

d
dt logµ

∣∣
λ=±1 =

(
( d
dλ logµ) λ̇+ d

dt logµ
)∣∣∣
λ=±1

= 0 ,

or equivalently

λ̇
∣∣∣
λ=±1

= − C

B

∣∣∣∣
λ=±1

. (3.2)

Thus we may fix the sym points at λ = ±1 during the flow by
picking C to have fixed zeroes there. Equations (3.1) and (3.2)
define a meromorphic vector field on the parameter space of
coefficients of A and B.



Whitham deformation Increasing the spectral genus

Increasing the spectral genus

Lemma
Let X be a polynomial Killing field. Then (λ2 − a2)X for a ∈ R is
a polynomial Killing field, and both induce the same curve.

Opening double points:

I Suppose a ∈ R is a double point on Σ.

I Then µ(a) = ±1 and write

d logµ =
(λ2 − a2)B

(λ2 − a2)
√
A
dλ .

I Now can pick initial condition for the flow at t = 0 such that
when t > 0 the roots ±a move vertically off the real axis.



Whitham deformation Example

Circles
The simplest polynomial Killing field is

X =

(
iλ κ
−κ −iλ

)
with κ ∈ R constant. The corresponding curves are circles with
(geodesic) curvature κ, and the branchpoints of the spectral curve
are located at ±iκ. Since logµ = πi

√
λ2 + κ2, doublepoints are

a ∈ R with a2 + κ2 ∈ Z2.

Figure: The spectral curve of a bifurcating circle.



Whitham deformation Example

The branchpoints of the spectral curve of an elastic curve are the
roots of the real even quartic polynomial

m4 +m2λ
2 + λ4 .

With discriminant ∆ = 1
4m2 −m4, away from degenerate

situations, there are two cases

wave-like if ∆ < 0: distinct branchpoints ±p1, ±p2 with p2 = p̄1

orbit-like if ∆ > 0: distinct branchpoints on iR×.

In the case ∆ = 0 the spectral curve is singular.

Figure: Spectral curves of wave-like and orbit-like elastic curves.



Whitham deformation Flow of elastic curves in S2

Flowing off a great circle by opening up a pair of branchpoints
increases the spectral genus from g = 0 to g = 1. The flow
through closed elastic curves of spectral genus g = 1 are given by

ṗ1 = (1− p21)(p2 + p1β) ,

ṗ2 = (1− p22)(p1 + p2β) .

Qualitative analysis of these equations yield a picture of the moduli
space of closed elastic curves on S2.



Whitham deformation Flow of elastic curves in S2

Properties of elastic curves

I Wave-like elastica bifurcate off great circles.

I Free elastic curves (no area or length constraint) are wave-like.

I Orbit-like elastica bifurcate off non-great, at least twice
wrapped circles. They are never embedded, and always end in
a singular limit.

I Some wave-like families deform between ω1–wrapped and
ω2–wrapped equators. Denote the the lobe number by l.
Then for l/ω1 ∈ (1/2, 1) ∩Q have

ω1 + ω2 = 2l .

I Free elastica are only contained in families with
l/ω1 ∈ (1/2, 1/

√
2).



Whitham deformation The moduli space of closed wavelike elastic curves in S2.

Figure: Closed wave-like elastica lie on a discrete dense set of curves. The
position of the branchpoint in the first quadrant is shown. All
1-parameter family of closed wave-like elastica start at a multiwrapped
equator (along the real axis). The semicircle-like curves represent families
which end at multiwrapped equators, those to the left of the thick line
end in a singular limit. The thick curve marks the boundary between
these two types. The dashed curve represents the free elastica.



Whitham deformation The moduli space of closed wavelike elastic curves in S2.

Figure: Orbit-like example with orbit-like elastic profile curve.



Whitham deformation The moduli space of closed wavelike elastic curves in S2.

Constrained elastica on S2 arise from anti-twisted polynomial
Killing fields of degree 3:

X =

(
iA B
−B∗ −iA

)
where

A = 1
2(m2 − κ2)λ+ λ3

B = −(κ′′ + 1
2κ

3 − 1
2m2κ) + iκ′λ+ κλ2 .

The branchpoints of the spectral curve are the zeros of

detX = m6 +m4λ
2 +m2λ

4 + λ6

where the curvature κ satisfies

κ′
2

+ 1
4κ

4 − 1
2m2κ

2 + 2
√
m6κ+ 1

4m
2
2 −m4 = 0 .



Whitham deformation The moduli space of closed wavelike elastic curves in S2.

Assuming that none of the zeros of detX are real, three classes of
curves in S2 with curvature κ can be distinguished:

I constrained elastic: area and length constraint. no conditions;

I elastic: area constraint, but no length constraint, m6 = 0;

I free elastic: no area or length constraint, m6 = 0 and
m2 = −1.

Figure: Spectral curves of wave-like and orbit-like constrained elastica.



Moduli space of constrained elastica

Constrained elastica all arise from a simple ’translational’ Whitham
flow of elastica.

Theorem
The moduli space of closed constrained elastica is the cartesian
product of the 1-dimensional moduli space of closed elastica with
the half-open interval [0, 1).

Corollary

The moduli space of closed constrained elastica has two connected
components, one for each homotopy type.



Moduli space of constrained elastica

Lemma
The conformal type of a constrained Willmore Hopf-torus is

τ =
A
4π

+
iL
4π

=

{
ω
2 + iL

4π for wave-like ,
ω−l
2 + iL

4π for orbit-like

Proof.
Computing A using Gauss-Bonnet gives

A = 2πω − l
∫ ρ

0
κ

where ρ is the period of κ. A computation gives∫ ρ

0
κ =

{
0 for wave-like ,
2π for orbit-like



Moduli space of constrained elastica

Theorem
Amongst the constrained Willmore Hopf-tori with conformal type
near the Clifford torus, the 2-lobed constrained Willmore Hopf-tori
have the least Willmore energy amongst the constrained Willmore
Hopf-tori.



Moduli space of constrained elastica

Figure: Spectral genus g = 2 constrained wave-like elastic profile curve,
and corresponding constrained Willmore-Hopf-torus.



Moduli space of constrained elastica

Figure: Nonembedded example. Spectral genus g = 2 constrained
wave-like elastic profile curve, and corresponding constrained
Willmore-Hopf-torus.



Moduli space of constrained elastica

Figure: Willmore Hopf-torus with a singular spectral curve. The profile
curve is a dressed circle.
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