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Area

Let Σ be a surface, for example, the unit disc B ⊂ C. The area, A(r),

of a map

r : Σ → R
n

is given by the formula

A(r) :=

∫

Σ

(

‖rx‖
2‖ry‖

2 − 〈rx, ry〉
2)1/2

dx dy.

The map r is minimal if it is stationary for the area functional A and

its image is then a minimal surface.



First Variation of Area

Let

rt : Σ → R
n, t ∈ (−ε, ε), ε > 0

be a 1-parameter family of maps such that

r0 = r and rt|∂Σ = r|∂Σ ∀ t.

This is a variation of r and the associated variation vector field s is

defined by

s :=
∂rt
∂t

∣

∣

∣

∣

t=0
.



(δA)(s) :=
∂A(rt)

∂t

∣

∣

∣

∣

t=0
= −

∫

Σ
H · s dA

where H is the mean curvature vector of r.

In 1776, Meusnier gave an (incomplete) argument which established

the vanishing of the mean curvature of a surface of least area. But he

did not have the first variation of area formula as written above.

In any case, a minimal surface is characterised differential geometrically

by having zero mean curvature.

A minimal surface need not minimize area! (e. g. thin catenoid.)



Conformal representation

According to a fundamental theorem (on the existence of isothermal

coordinates) in the theory of surfaces, an immersion r : Σ → R
n can

always be precomposed with a diffeomeorphism of Σ so as to make it

conformal, i. e., so as to satisfy

‖rx‖
2 = ‖ry‖

2 and 〈rx, ry〉 = 0.

The surface Σ can then be viewed as a Riemann surface with local

complex coordinate z = x + iy.



With respect to isothermal coordinates, the mean curvature vanishes if,

and only if, each component of r is a harmonic function.

Plateau Problem as formulated at the time of Weierstrass:

Given a Jordan curve Γ ⊂ R
3, find

r : B → R
3

such that

(i) r is harmonic and conformal,

(ii) r|∂B : ∂B → Γ is a homeomorphism.



The solution of this problem that is usually presented is based on the

following fundamental relation between energy and area:

g(r) :=
(

‖rx‖
2‖ry‖

2 − 〈rx, ry〉
2)1/2

6
1
2

(

‖rx‖
2 + ‖ry‖

2) =: e(r)

with equality if, and only if, r is conformal.

The Dirichlet energy E(r) of r is defined by

E(r) :=

∫

B

e(r) dx dy .



The conformal representation (if it exists) of an area minimizer has

least Dirichlet energy among all maps of B whose restriction to ∂B

parameterises Γ.

This suggests the following procedure for establishing the existence of a

solution to the Plateau problem.

One can write down the harmonic extension (energy minimiser) rg of a

parameterisation g : ∂B → Γ by means of the Poisson integral formula.



One then seeks a special parameterisation g∗ such that

E(rg∗) 6 E(rg)

for all parameterisations g of Γ. The existence of g∗ is established

using a 3-point condition (to overcome the conformal invariance of E)

and the Courant-Lebesgue Lemma (to obtain equicontinuity of an

E-minimizing sequence rgj). This solution of the Plateau Problem is

often attributed to Douglas. This is wrong! It is Courant’s solution!



Douglas’s first full account of his solution of the Plateau problem

appears in his 59-page paper ‘Solution of the Problem of Plateau’,

published in the Transactions of the American Mathematical

Society in January 1931. In this paper he sought g∗ as the minimiser

of his famous A-functional:

A(g) :=
1

4π

∫ 2π

0

∫ 2π

0

∑n
i=1[gi(θ) − gi(ϕ)]2

4 sin2 θ−ϕ
2

dθdϕ. (1)



How did Douglas anticipate that the harmonic extension of a minimiser

of his A-functional would be conformal?

In Part III of his paper, Douglas shows that A(g) is equal to the

Dirichlet energy of the harmonic extension rg of g. It has always been

assumed that this was Douglas’s starting point but his announcements

in the Bulletin, which have essentially been forgotten, indicate

otherwise.



In these announcements, Douglas sought g∗ as a solution of an integral

equation which, as we shall see, is very natural to derive.

In an Abstract published in 1927 Douglas claimed that, if

t 7→ g(t) : R ∪ {∞} → Γ ⊂ R
3

is a parameterisation of Γ and if

ϕ : R ∪ {∞} → R ∪ {∞}

is a homeomorphism which solves the following integral equation,
∫

Γ

K(t, τ )

ϕ(t) − ϕ(τ )
dτ = 0, where K(t, τ ) = g′(t) · g′(τ ) (2)

then the harmonic extension of g ◦ ϕ−1 to the upper half plane



defined by means of Poisson’s integral is the required conformal

harmonic representation of a minimal surface spanning Γ.

If Γ is parameterised by a map from the unit circle C (and a surface S

spanning Γ is parameterised by a map from the disc) then the integral

equation (2) becomes
∫ 2π

0
K(t, τ ) cot(1

2ϕ(t) − 1
2ϕ(τ )) dτ = 0. (3)

Douglas never published a proof of his claim but it is not hard to

guess what his proof might have been.



But first, what is the connection between (3) and the A-functional?

Douglas was stuck for a while on how to solve (3) for a general contour.

His important breakthrough, which he announced in an Abstract

published in the July-August 1928 issue of the Bulletin of the

American Mathematical Society, came when he realised that (3) is

the Euler-Lagrange equation of the first version of his

later-to-be-famous A-functional:

A(ϕ) := −

∫ 2π

0

∫ 2π

0
K(t, τ ) log sin 1

2|ϕ(t) − ϕ(τ )| dt dτ . (4)

Furthermore, he stated that he could use Fréchet’s compactness theory

of curves to assert the existence of a minimizer ϕ∗ of the A-functional,



at least in the case that K(t, τ ) is positive for all values of t and τ .

This positivity requirement on K rendered this variational problem

inapplicable to the Plateau problem but he overcame this problem

when he discovered, late in 1929, that he could employ the functional

(1) instead of (4). This was essentially achieved by integrating by parts

and completing the square.



Douglas was a National Research Fellow between 1926 and 1930.

During this time he travelled widely, visiting Princeton and Harvard in

1927, Chicago in 1928, and Paris from 1928 to 1930, with trips to

Göttingen, Hamburg, and Rome.

He described a solution of the Plateau problem at Hadamard’s seminar

in Paris on January 18, 1929, at the Courant-Herglotz seminar in

Göttingen on June 4, 11, and 18, 1929, and at Blaschke’s seminar in

Hamburg on July 26, 1929.



Hadamard was impressed but the Göttingen gang was not. At this

time, Douglas would have been proposing to solve (3) by minimising

(4) but the German analysts were not convinced he had sorted out all

the details.

He spoke again at Hadamard’s seminar on December 17, 1929. This

presentation was in the form of his 59-page paper in the January 1931

issue of the Transactions.



Derivation of (3)

Let Γ be a contour in R
n parameterised by

σ 7→ g(σ) : [0, 2π] → R
n.

The harmonic surface r : B → R
n whose restriction to ∂B

parameterises Γ by g is given by

r(ρeiθ) =

∫ 2π

0
K(ρ, θ − σ)g(σ) dσ ,

where K is the Poisson kernel of B, i. e.,

K(ρ, α) =
1 − ρ2

1 − 2ρ cosα + ρ2
= Re

eiσ + w

eiσ − w
,

w = ρeiθ, α := θ − σ.



It is convenient to think of g as a 2π-periodic map

g : R → Γ ⊂ R
n.

If f : R → R
n is another 2π-periodic parameterisation of Γ, then there

exists a 2π-periodic homeomorphism

ϕ : R → R such that f ◦ ϕ = g.

We shall denote g ◦ ϕ−1 by gϕ and we shall denote by rϕ the

harmonic surface whose restriction to ∂B parameterises Γ by gϕ. Thus

rϕ(ρeiθ) =

∫ 2π

0
K(ρ, θ − σ)g(ϕ−1(σ)) dσ . (5)



We seek ϕ so that rϕ is conformal, i. e.,
∥

∥

∥

∥

∂rϕ
∂ρ

∥

∥

∥

∥

2

=
1

ρ2

∥

∥

∥

∥

∂rϕ
∂θ

∥

∥

∥

∥

2

(6)

and
∂rϕ
∂ρ

·
∂rϕ
∂θ

= 0. (7)

We start by calculating the left hand side of (7):

∂rϕ
∂ρ

·
∂rϕ
∂θ

=

∫ 2π

0

∫ 2π

0

(

∂

∂ρ
K(ρ, θ − σ)

) (

∂

∂θ
K(ρ, θ − λ)

)

g(ϕ−1(σ)) · g(ϕ−1(λ)) dσ dλ . (8)

Now
∂

∂ρ
K(ρ, θ − σ) =

1

ρ

∂

∂θ
K∗(ρ, θ − σ)



where K∗ is the harmonic conjugate of K, i. e.,

K∗(ρ, α) =
2ρ sinα

1 − 2ρ cosα + ρ2
.

Therefore, (8) can be rewritten as:

∂rϕ
∂ρ

·
∂rϕ
∂θ

=

∫ 2π

0

∫ 2π

0

1

ρ

(

∂

∂σ
K∗(ρ, θ − σ)

) (

∂

∂λ
K(ρ, θ − λ)

)

g(ϕ−1(σ)) · g(ϕ−1(λ)) dσ dλ . (9)



Assuming ϕ to be differentiable and ϕ′ > 0, integration by parts in (9)

yields:

∂rϕ
∂ρ

·
∂rϕ
∂θ

=

∫ 2π

0

∫ 2π

0

2 sin(θ − σ)

1 − 2ρ cos(θ − σ) + ρ2
K(ρ, θ − λ)

g′(ϕ−1(σ)) · g′(ϕ−1(λ))

ϕ′(ϕ−1(σ))ϕ′(ϕ−1(λ))
dσ dλ . (10)

By changing variables t = ϕ−1(σ), µ = ϕ−1(λ) in (10) we obtain:

∂rϕ
∂ρ

·
∂rϕ
∂θ

=

∫ 2π

0

∫ 2π

0

2 sin(θ − ϕ(t))

1 − 2ρ cos(θ − ϕ(t)) + ρ2
K(ρ, θ − ϕ(µ))

g′(t) · g′(µ) dt dµ . (11)

Now Fϕ(ρeiθ) :=
∂rϕ
∂ρ − i

ρ
∂rϕ
∂θ is a holomorphic Cn-valued map because



rϕ is harmonic. Therefore,

Fϕ · Fϕ =

∥

∥

∥

∥

∂rϕ
∂ρ

∥

∥

∥

∥

2

−
1

ρ2

∥

∥

∥

∥

∂rϕ
∂θ

∥

∥

∥

∥

2

−
2i

ρ

∂rϕ
∂ρ

·
∂rϕ
∂θ

is a holomorphic function. It follows that (7) holds everywhere on B if,

and only if, it holds on ∂B. Thus we let ρ ↑ 1 in (11) and, using the

fact that

lim
ρ↑1

K(ρ, θ − α) = δθ(α) ,

we obtain:
(

∂rϕ
∂ρ

·
∂rϕ
∂θ

)

(eiθ) =

∫ 2π

0

sin(θ − ϕ(t))

1 − cos(θ − ϕ(t))
g′(t) · g′(ϕ−1(θ)) dt .

The change of variables τ = ϕ−1(θ) in the above equation enables us



to rewrite it as:
(

∂rϕ
∂ρ

·
∂rϕ
∂θ

)

(eiϕ(τ )) =

∫ 2π

0
cot(1

2ϕ(τ ) − 1
2ϕ(t))g′(t) · g′(τ ) dt . (12)

The integrand on the right is not integrable but, if ϕ is a 2π-periodic

diffeomorphism of R to itself then a principal value may be assigned to

it in a straightforward way.



Once a continuously differentiable 2π-periodic parameterisation

g : R → R
n of Γ has been fixed, the problem of finding a 2π-periodic

diffeomorphism ϕ : R → R so that rϕ is conformal now has become to

seek ϕ which satisfies the integral equation
∫ 2π

0
cot(1

2ϕ(τ ) − 1
2ϕ(t))g′(t) · g′(τ ) dt = 0 . (13)

By construction, if ϕ satisfies (13) then rϕ satisfies (7).



One still has to check whether rϕ also satisfies (6), but this turns out

to be easy.

If ϕ satisfies (13), then so does ψ defined by ψ(θ) := ϕ(θ) − π/4.

Furthermore, rψ(ρeiθ) = rϕ(ρei(θ+π/4)) and therefore,

(Fψ · Fψ)(ρeiθ) = i(Fϕ · Fϕ)(ρei(θ+π/4)).

But Fϕ · Fϕ and Fψ · Fψ are both real constants. Therefore Fϕ · Fϕ

and Fψ · Fψ are both zero and (6) is satisfied.



Douglas made no mention of the integral equation (3) in his 1931

paper. He showed directly that the harmonic extension of an

A-minimiser is conformal. This is the stage at which Douglas

connected the A-functional with Dirichlet’s integral. He was then able

to express A in terms of the Fourier coefficients of g. The conformality

of rg∗ was established by a variation of these Fourier coefficients.



The A-functional is invariant under Möbius transformations of B.

Douglas showed this by a direct calculation, not by exploiting the

well-known conformal invariance of Dirichlet’s integral.

The relation between the A-functional and Dirichlet’s integral led Radó

and Courant to criticise Douglas’s method as being unnecessarily

complicated and not much more than an implementation of Dirichlet’s

principle.



Douglas repeatedly refuted these claims. In 1931, Dirichlet’s principle

was not yet firmly established and Douglas was keen to emphasize that

his A-functional, being a 1-dimensional integral which did not involve

any derivatives, did not suffer from all the difficulties that plagued

Dirichlet’s integral at the time. As Douglas remarked, the Dirichlet

integral could not be shown to attain its lower bound, whereas his

A-functional, being lower semi-continuous on a sequentially compact

space, necessarily attained its minimum. More on the exchanges

between Radó and Douglas and Courant in the forthcoming book with

Jeremy Gray.



Radó’s solution

Radó based his solution of the Plateau problem (published in July

1930) on the uniformisation theorem of Koebe.

Given a polygonal contour Γ ⊂ R
3, define

λ := inf{Area(Π) | Π is a polyhedral surface spanning Γ}.

Then, for each σ > 0, there exists a polyhedron Πσ spanning Γ whose

area is less than λ + σ. By the uniformisation theorem of Koebe, Πσ

admits an isothermic parameterisation r̄σ : B → R
3.



Let rσ be the harmonic extension of r̄σ restricted to ∂B. By a lemma

on harmonic surfaces, Radó asserted the existence of a polyhedron Π∗
σ

whose area differs from that of rσ(B) by no more than σ. The

following chain of inequalities results:

λ + σ >

∫∫

B

√

ĒḠ− F̄ 2 =
1

2

∫∫

B

Ē + Ḡ

>
1

2

∫∫

B

E +G >

∫∫

B

√

EG− F 2 > Area(Π∗
σ) − σ > λ− σ.



Therefore, by taking σ sufficiently small, one can find, for each ε > 0, a

harmonic vector rε : B → R
3 which

(i) extends continuously to the closed unit disc B so that its

restriction to ∂B parameterises Γ and

(ii) is approximately conformal in the sense that
∫∫

B

|F | < ε and

∫∫

B

(E1/2 −G1/2)2 < ε. (14)

Let (εn) be a sequence of positive numbers decreasing to 0 and denote

rεn more simply by rn.



Radó showed that a subsequence of (rn) converges, up to

reparameterisation by Möbius transformations of B, to a generalised

minimal surface spanning Γ. This limiting argument is one of Radó’s

major achievements.

Approximation Theorem Let Γn be a sequence of simple closed

curves of uniformly bounded length, for each of which the Plateau

Problem is solvable. If Γn converges (in the sense of Fréchet) to a

simple closed curve Γ then the Plateau problem for Γ is solvable.

The proof of this Approximation Theorem was not only much simpler

than Garnier’s limiting argument but, together with the approximation



procedure just described, it also provided a solution to Plateau’s

problem for any rectifiable contour.

Radó’s use of polyhedral surfaces is highly reminiscent of Lebesgue’s

definition of area of a surface as the infimum, over all sequences, of

lim inf of the areas of a sequence of polyhedra tending to the surface.



It is surprising that Radó did not connect his method of proof with

Lebesgue’s definition of area until he gave a colloquium on his result at

Harvard. Once Radó made this connection, he wrote another paper,

also published in 1930, in which he showed that his solution of the

Plateau problem has least area among discs spanning Γ.

Radó’s strategy marked a total departure from the

Riemann-Weierstrass-Darboux programme and it was strikingly

original at the time.



Main deficiency of Douglas’s solution

Douglas was justifiably proud that his solution avoided the use of

Koebe’s theorem. However, he did have to resort to this theorem in

order to prove that it had least area. He tried to overcome this

deficiency but could not. That was done later by Morrey. A more

recent and more elementary proof has been given by Hildebrandt and

von der Mosel.



Advantages of Douglas’s solution

There are several.

(i) The Riemann-Carathéodory-Osgood Theorem. Douglas’s proof

works for Γ ⊂ R
n, for any n, in particular for n = 2. (A little

work using the argument principle is required to establish

univalency of the map.)

(ii) Infinite area Douglas indicated that there are contours for which

every spanning surface has infinite area. Nevertheless, he could

prove the existence of a minimal surface spanning such a contour

Γ as a limit of minimal surfaces spanning polygonal contours



which converge to Γ. Douglas was very cross that Radó regarded

the Plateau problem as meaningless for contours which could only

bound surfaces of infinite area. He compared the situation to that

in Dirichlet’s problem, for which Hadamard had earlier

constructed continuous boundary values for which the boundary

value problem is solvable, even though the Dirichlet functional is

identically +∞.

(iii) Higher Connectivity and Higher Genus Even before working out

all the details for the disc case, Douglas was considering the

Plateau problem for surfaces of higher connectivity and higher



genus. For instance, at the February 1927 meeting of the American

Mathematical Society, he wrote down two integral equations that

have to be satisfied to solve the Plateau problem for the case of

two contours in R
n, n arbitrary. There is a third equation that

has to be solved; it determines the conformal type of the annulus.

As Douglas pointed out, this form of the Plateau problem had

only been raised in very special cases before (Riemann’s

investigation of two parallel circles, and two polygons in parallel

planes) so his was the first general account. Douglas was doing

this work before Teichmuller theory had been developed. He used



theta functions to write down the appropriate functional and to

encode the conformal moduli of Riemann surfaces.

It is also amusing to note that Douglas anticipated a result

reproved by Frank Morgan 50 years later!



The Fields medal

If priority is assigned on the basis of published papers alone, then Radó

was the first to put into print a comprehensible solution of the Plateau

problem in anything like generality. Douglas’s announcements give the

impression that he was occasionally cavalier about what he could

achieve. Most of the time he delivered on his claims, but it may not

always be appropriate to use the timing of his claims to determine

priority issues.

In our forthcoming book, Jeremy and I conclude that Radó and

Douglas share equal credit for solving the Plateau problem for disc-like



surfaces spanning a single contour which bounds at least one disc-like

surface of finite area. Radó deserves full credit for solving the least area

problem. Douglas, however, was the first to solve the Plateau problem

in complete generality, that is, for an arbitrary contour, including ones

that bound only surfaces of infinite area. He was also the only one to

consider more general types of surface than the disc, to which Radó’s

attentions were exclusively confined. Radó’s method for solving the

Plateau problem shifts almost all the difficulty onto problems in

conformal mapping whose solution for higher topological types was

certainly not available at the time. By contrast, Douglas’s method even



helped solve some of these problems in conformal mapping. Thus,

Douglas’s contributions to the Plateau problem are more major,

broader and deeper than those of Radó. Douglas’s ideas, as developed

later by Courant (who brought the Dirichlet integral back to the

forefront), have remained important in the theory of minimal surfaces

up to the present.

Douglas was awarded one of the first Fields Medals for his work on the

Plateau problem. He did not collect the medal at the ceremony in

Oslo; Wiener collected it on his behalf, even though Douglas did attend

the International Congress!



In the address, Carathéodory described a method for finding a minimal

surface that is due to Radó (different from the one sketched above) but

gave the impression that it was due to Douglas!



Brief biography of Jesse Douglas

Born in New York City on 3 July 1897. His father, Louis, was an

immigrant from Poland via Canada (the family name was changed at

Canadian Immigration).

Educated at public schools in New York City. Attended City College

New York, graduated B.Sc.cum laude in February 1916 at the age of

18. Won Belden prize for excellence in pure mathematics. University

scholar, and later fellow at Columbia University.



PhD in 1920 with a thesis under Edward Kasner, who inspired in him

his love of differential geometry. Also influenced by the algebraist and

number theorist Frank Nelson Cole.

Instructor at Columbia from 1920 to 1926.

Travelled widely as National Research Fellow for four years, visiting

Princeton and Harvard in 1927, Chicago in 1928, and Paris from 1928

to 1930, with trips to Gttingen, Hamburg, and Rome.



Hadamard much impressed and wrote to the President of Cornell

University (7 March 1929):

“I hear that Mr. Jesse Douglas would like to come to your university.

Perhaps it may not be useless to let you know how satisfied and

interested I have been in his stay at Paris and his collaboration to my

seminary at the College de France. His exposés on Plateau’s problem

are among the best I have had; the solution he has found is of a

remarkable elgancy [sic] and simplicity, almost unexpected for this

difficult problem, one of the most beatiful [sic] in Mathematical



Physics; moreover he presents it with a perfect clearness, a clever thing

at my seminary, where details must be left aside and only the general

development of ideas brought in full light. Mr. Douglas lies perfectly

succeeded in that difficult achievement, and every auditor has carried

from his lecture a perfectly clear understanding of the question. “He

would be a first rate recruit for any mathematical staff . . . ”



Assistant Professor at MIT in January 1930, where he took leave of

absence for a term in 1932.

Associate Professor at MIT in 1934, and almost at once took leave of

absence again to be a Research Worker at the Institute for Advanced

Study in Princeton from 1934 to 1935.

In December 1934 there was a chance Douglas might obtain a

professorship at Columbia, and C.J. Keyser wrote to President Butler

partly in these terms:



1. “Douglas’s academic record as student and as teacher both of

undergraduates and of the most advanced students is one of the

highest excellence.

2. His personal appearance is pleasing; his personality virile and

wholesome.

3. There is in him none of the narrowness of the mere specialist. On

the contrary, he is a man of general culture notable for its range and

fineness. Suffice it to say in this connection that his discourse,

spoken or written, is distinguished by its clarity and dignity; that

his lectures, which are always inspiring, are models alike in content



and in form; that he has lectured in Paris in French; in Göttingen

and Hamburg in German; and in Rome in Italian.”

Noting that Douglas was later to teach at Yeshiva, it seems likely that

the extra-ordinary remark in (2) was written in the genteel anti-Semitic

code of the day, and signals that Douglas was socially acceptable.



Awarded the first Fields Medal, together with Lars Ahlfors, in 1936.

Ahlfors went on to enjoy a successful, high-profile career at Harvard,

but Douglas has all but disappeared from the record.

There is, for example, no biography of him in the Biographies of

Members of the National Academy of Sciences, of which he was elected

a Fellow in 1946.



Took leave of absence again from MIT in 1936, and on 1 July 1938, he

resigned. Struik, in his reminiscence of MIT, wrote that Douglas “had

his own lifestyle which did not include coming to class on a regular

schedule, so that Phillips (the Head of Department), who stuck to the

Runkle discipline of conscientious teaching, had to let him go, to my

and others’ regret.”

Guggenheim fellow at Columbia in 1940 and 1941. Marston Morse

tried hard to hire him on a tenured basis at this time, but failed.

Taught at Brooklyn College from 1942 to 1946. His teaching during

these war years went well and he received a Distinguished Service



Award. Lt. Col. Henry A. Robinson of the Mathematics Department

of the U.S. Military Academy wrote to Douglas:

“I just wish to drop you an informal note, and state you have done an

excellent job with your pupils. They have spoken of you in glowing

terms. They are all in classes with doctors and they compete quite

well. I do not know who are your pupils, but the following have given

praise to you: Gerard Washnitzer (who has now gone to the army), E.

S. Krendel, Julius Jackson, Samuel Karp, and Albert Blank. It is

usually a rare thing for students so young to give praise to their

teacher. Hence I wanted to pass the information on to you, and to



congratulate you on inspiring so many to higher study.”

There is a blank in Douglas’s career from 1946 to 1950, and the later

part of Douglass life seems to have been troubled. His marriage ended

in divorce in 1950.



In 1955 he moved to City College, New York. In May 1954, Paul

Smith, from Columbia, wrote to Garrison, the Department Head at

City College: “Why not appoint Jesse Douglas? He came to us after a

protracted illness, and there was simply no major position vacant in

our staff at that time. The result was that he has never found at

College the sort of position he ought to have . . . [he] is in good health

and vigor — teaches 18 hours a week . . . travels to various institutions,

does research.”



Norman Schaumberger describes a man who could be a good teacher

when he chose, and who liked to get up late so he often taught the

elementary classes, which were held in the evenings.

Took sick leave in 1959-60, in 1961-62, and in May 1965, but this time

he did not recover and he died in hospital from a heart attack on 7

October 1965 at the age of 68.

Douglas harboured dislikes to the end of his life, not only of Radó and

Courant, but of J.F. Ritt at Columbia, and he could be cutting to

people who did not work hard. To one student who asked what he had

to do to get an A grade, Douglas is said to have replied “Get better



parents”. But, the following anecdote balances the picture: Some

students went to the Head of the Mathematics Department of City

College to complain about one of their teachers. They were assured

that whatever the mans failings as an instructor, he was a

distinguished mathematician with a fine research record, and it was a

privilege to be taught by him. The students were not impressed. “We

dont want someone like that”, they said, “we want a real

mathematician, someone like Douglas!”


