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In this talk I shall consider the following

Problem
Given a compact Riemannian manifold M without boundary, and
an isoperimetric region of “large” volume E ⊂ M × Rk , prove that
E = M × B, where B ⊂ Rk is an Euclidean ball

More formal statement
There exists v0 > 0, depending on M, such that any isoperimetric
region E ⊂ M × Rk with volume |E | ≥ v0 is of the form M × B,
where B ⊂ Rk is an Euclidean ball

Remark
M × B is a tubular neighborhood of M × {x0}, where x0 ∈ Rk
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Problem actually solved

M. Ritoré, E. Vernadakis, Large isoperimetric regions in the
product of a compact manifold with Euclidean space,
arXiv:1312.1581, 5 Dec 2013
Also available at http://www.ugr.es/˜ritore



Introduction Preliminaries Convergence of isoperimetric regions Stability of tubes Proof of the Theorem

Problem posed by W.-Y. Hsiang

• Gonzalo (1991, Ph.D. Thesis UC berkeley)

• Duzaar-Steffen (1996), M × R
• Morgan observed that the monotonicity formula and some

properties of the isoperimetric profile can be used to prove this
result

• Ritoré-Vernadakis (2014), C × R, C ⊂ Rn is a convex body
with non-smooth boundary

• Pedrosa-Ritoré (1999), S1 × Rk , obtained a classification of
isoperimetric regions, from which the result follows

• Eichmair-Menzger (2013), classification of large isoperimetric
regions in asymptotically flat manifolds

• Gonzalo (25 Dec 2013), gave a proof of the result using soap
bubble geometry
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Background

N = M × Rk , where M is a compact m-dimensional Riemannian
manifold without boundary. n = m + k . Given E ⊂ N, |E | will be
its volume and P(E ) its perimeter

Anisotropic dilations

ϕt(p, x) = (p, tx), p ∈ M, x ∈ Rk , t > 0
Volume

|ϕt(E )| = tk |E |

Perimeter

tk−1P(E ) ≥ P(ϕt(E )) ≥ tkP(E ), t ≤ 1

Equality holds at the left side inequality when the normal ξ at
regular points of ∂E is tangent to the Rk factor, as for tubes
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Symmetrization

Given E ⊂ N, there exists sym(E ) such that

sym(E ) ∩ ({p} × Rk) = {p} × Bp,

where Bp ⊂ Rk is a ball centered at 0 ∈ Rk with the same
k-volume as E ∩ ({p} × Rk). It satisfies

• |sym(E )| = |E |
• P(sym(E )) ≤ P(E )

Equality characterized in some cases (Chebĺık-Cianchi-Fusco, Ann.
Math. (2005) for Steiner’s)

Normalized sets
E ⊂ N is normalized if E = sym(E )
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Tubes
For tubes T (x , r) = M × D(x , r) we have

P(T (r)) = k (ωkH
m(M))1/k |T (r)|(k−1)/k

The isoperimetric profile

It is defined by I (v) = inf{P(E );E ⊂ N, |E | = v}
• I is non-decreasing and continuous (use the anisotropic

dilations)

• I (v) ≤ k (ωkH
m(M))1/kv (k−1)/k (compare with tubes)
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Existence and regularity of isoperimetric regions

Existence proven by Morgan. Regularity is well-known
(Gonzalez-Massari-Tamanini)

Simple isoperimetric inequalities

• (on M) given 0 < v0 < Hm(M), there exists a(v0) > 0 s. t.
Hm−1(∂E ) ≥ a(v0)Hm(E ) for E ⊂ M with 0 < Hm(E ) < v0

• (on N) given v0 > 0, there exists c(v0) > 0 such that
I (v) ≥ c(v0) v (n−1)/n for any 0 < v < v0
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Sketch of the proof

Take Ei ⊂ N normalized isoperimetric regions with |Ei | → ∞.
Scale down so that |ϕti (Ei )| = |T |, where T is a tube

• A geometric argument shows that ϕti (Ei )
L1

→ T . Equivalently
|ϕti (Ei )4T | → 0

• Improve the convergence to Hausdorff’s using uniform density
estimates for isoperimetric regions of large volume

• Tubes are strictly O(k)-stable for large radius. White (1994)
⇒ ϕti (Ei ) = T for large i . Hence Ei is a tube. This proves
the result for normalized isoperimetric regions

• If E is a general (not normalized) isoperimetric region, replace
it by a normalized one using symmetrization. Prove that, if
sym(E ) is a tube and E is isoperimetric, then E is a tube
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Proposition

Let {Ei}i∈N normalized |Ei | → ∞. Scale down so that
|ϕti (Ei )| = v0 for all i ∈ N. T =normalized tube of volume v0.

If ϕti (Ei )
L1

6→ T , there exists c > 0, only depending on {Ei}i∈N, so
that, passing to a subsequence we get,

Hn−1(∂Ei ) ≥ c |Ei |.

This implies

L1-convergence of scaled isoperimetric regions

Let {Ei}i∈N normalized isoperimetric sets with |Ei | → ∞. Scale
down so that |ϕti (Ei )| = v0 for all i ∈ N. T =normalized tube of

volume v0. Then ϕti (Ei )
L1

→ T

Proof of Corollary

c |Ei | ≤ P(Ei ) ≤ k
(
ωkH

m(M)
)1/k |Ei |(k−1)/k
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Proof of Proposition

Given E ⊂ N normalized, let T (E ) be the normalized tube of the
same volume as E and E+ = E \ T (E ).

The fact that ϕti (Ei )
L1

6→ T implies

1. lim supi→∞
|E+

i |
|Ei | > c1 > 0

2. lim inf i→∞Hm((ϕti (Ei ) ∩ ∂T )∗) < Hm(M)
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Hence

Hn−1(∂Ei ) ≥ Hn−1(∂Ei ∩ (N \ T (ri )))

≥
∫ ∞
ri

Hn−2(∂Ei ∩ ∂T (s)) ds

≥
∫ ∞
ri

Hn−2(∂(Ei ∩ ∂T (s))) ds

=

∫ ∞
ri

Hm−1(∂(Ei ∩ ∂T (s))∗)Hk−1(∂D(s)) ds

≥
∫ ∞
ri

aHm((Ei ∩ ∂T (s))∗)Hk−1(∂D(s)) ds

= a

∫ ∞
ri

Hn−1(Ei ∩ ∂T (s)) ds = a |E+
i | > a c1|Ei |,
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Improvement of convergence

Define

h(E , x ,R) =
min

{
|E ∩ T (x ,R)|, |T (x ,R) \ E |

}
Rn

Density estimates

E ⊂ N isoperimetric region |E | > v0. τ > 1 such that
|Ω| = |ϕ−1

τ (E )| = v0. Choose

0 < ε <

{
v0,

(
c(v0) v

1/k
0

2Hm(M)

)n

,

(
c(v0)

8n

)n}
,

For any x ∈ Rk and R ≤ 1 so that h(Ω, x ,R) ≤ ε, we get

h(Ω, x ,R/2) = 0.
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Hausdorff convergence of scaled isoperimetric regions

Ei ⊂ N normalized isoperimetric with |Ei | → ∞. Scale down so
that |Ωi | = |ϕti (Ei )| = v0. Then for every r > 0, ∂Ωi ⊂ (∂T )r , for
large enough i ∈ N, where T is the tube of volume v0.
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Theorem (White)

Let T be a normalized tube so that Σ = ∂T is a strictly
O(k)-stable cylinder. Then there exists r > 0 so that any
O(k)-invariant finite perimeter set E with |E | = |T | and
∂E ⊂ (∂T )r has larger perimeter than T unless E = T .

Strict stability of tubes with large volume

The cylinder Σ(s) is strictly O(k)-stable if and only if

s2 >
k

λ1(M)
,

where λ1(M) is the first positive eigenvalue of the Laplacian in M.
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Proof of the Theorem

1. Get a sequence {Ei}i∈N of isoperimetric regions with
|Ei | → ∞. Replace each set Ei by sym(Ei ).

2. The previous results imply that sym(Ei ) are normalized tubes
for i large enough. This implies that there exists a constant
v0 > 0 such that I (v) = k (ωkH

m(M))1/k v (k−1)/k for v ≥ v0.

3. In particular I (tkv) = tk−1I (v), whenever t ≤ 1, tkv ≥ v0.

4. Let E ⊂ N be isoperimetric with |E | > v0. Then

I (tk |E |) ≤ P(ϕt(E )) ≤ tk−1P(E ) = tk−1I (|E |)

and equality holds. This implies that the normal ξ to the
regular part of ∂E is tangent to the Rk factor.

5. Since E is isoperimetric and has the same perimeter as the
tube of the same volume, Federer’s coarea formula implies
that E ∩ ({p} × Rk) is a disc Hm-a.e. p ∈ M.

6. Hence E is a tube.
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Final comments

• An equivariant version of a result of Morgan and Ros implies
(modulo L1-convergence) our result for small dimension

• It is an open problem to prove a similar result in M ×Hn

• The result follows when ∂M is smooth enough

• It would be interesting to find an explicit dependence of v0 in
terms of the geometry of M
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Thanks for your attention!
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