### Minimal surfaces in $\mathbf{H}^2 \times \mathbf{R}$ with finite total curvature and related problems

Magdalena Rodríguez

Universidad de Granada

Granada, June 2013



#### Table of contents

- Introduction
- 2 New examples
- Classification results
- 4 Embedded Calabi-Yau problem

#### Theorem (Hauswirth-Rosenberg, 2006)

 $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$  compl. or. min. surf.  $|\int_{\Sigma} K| < +\infty$ ,  $K = Gauss \ curv. \ of \ \Sigma$ 

$$|\int_{\Sigma} K| < +\infty$$
,  $K = Gauss curv. or$ 

- $\bullet \Sigma \stackrel{com}{\cong} \mathbb{M} \{p_1, \cdots, p_k\}.$
- Q = Hopf diff. of  $\Sigma \to \mathbb{H}^2$  extiends meromorphically to  $\mathbb{M}$ ,  $Q(z) = z^{2m_i} (dz)^2$  at  $p_i$ ,  $m_i \ge 0$ .
- $N_3 \rightarrow 0$  at  $p_i$
- $\bullet \int_{\Sigma} K = 2\pi (2 2g 2k \sum_{i=1}^{k} m_i)$

#### Theorem (Hauswirth-Rosenberg, 2006)

 $\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$  compl. or. min. surf.

$$|\int_{\Sigma} K| < +\infty$$
,  $K =$ Gauss curv. of  $\Sigma$ 

- $\bullet \; \Sigma \stackrel{conf}{\cong} \; \mathbb{M} \{p_1, \cdots, p_k\}.$
- $Q = Hopf \ diff. \ of \ \Sigma \to \mathbb{H}^2 \ extiends \ meromorphically \ to \ \mathbb{M};$   $Q(z) = z^{2m_i} (dz)^2 \ at \ p_i, \ m_i \ge 0.$
- $N_3 \rightarrow 0$  at  $p_i$
- $\int_{\Sigma} K = 2\pi(2 2g 2k \sum_{i=1}^{k} m_i)$

#### Theorem (Hauswirth-Rosenberg, 2006)

 $\begin{array}{l} \Sigma\subset \mathbb{H}^2\times \mathbb{R} \ \text{compl. or. min. surf.} \\ |\int_\Sigma K|<+\infty, \quad K= \text{Gauss curv. of } \Sigma \end{array}$ 

- $\bullet \; \Sigma \stackrel{conf}{\cong} \mathbb{M} \{p_1, \cdots, p_k\}.$
- Q = Hopf diff. of  $\Sigma \to \mathbb{H}^2$  extiends meromorphically to  $\mathbb{M}$ ;  $Q(z) = z^{2m_i} (dz)^2$  at  $p_i$ ,  $m_i \geq 0$ .
- $N_3 \rightarrow 0$  at  $p_i$ .
- $\int_{\Sigma} K = 2\pi(2 2g 2k \sum_{i=1}^{k} m_i)$

#### Theorem (Hauswirth-Rosenberg, 2006)

$$\begin{array}{l} \Sigma\subset \mathbb{H}^2\times \mathbb{R} \ \text{compl. or. min. surf.} \\ |\int_\Sigma K|<+\infty, \quad K= \ \text{Gauss curv. of } \Sigma \end{array}$$

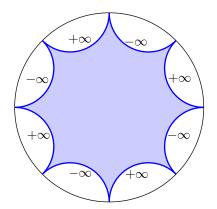
- $\bullet \; \Sigma \stackrel{conf}{\cong} \mathbb{M} \{p_1, \cdots, p_k\}.$
- Q = Hopf diff. of  $\Sigma \to \mathbb{H}^2$  extiends meromorphically to  $\mathbb{M}$ ;  $Q(z) = z^{2m_i} (dz)^2$  at  $p_i$ ,  $m_i \geq 0$ .
- $N_3 \rightarrow 0$  at  $p_i$ .
- $\int_{\Sigma} K = 2\pi(2 2g 2k \sum_{i=1}^{k} m_i).$

#### Theorem (Hauswirth-Rosenberg, 2006)

$$\Sigma \subset \mathbb{H}^2 \times \mathbb{R} \ \text{compl. or. min. surf.}$$
 
$$|\int_{\Sigma} K| < +\infty, \quad K = \text{Gauss curv. of } \Sigma$$

- $\bullet \; \Sigma \stackrel{conf}{\cong} \; \mathbb{M} \{p_1, \cdots, p_k\}.$
- Q = Hopf diff. of  $\Sigma \to \mathbb{H}^2$  extiends meromorphically to  $\mathbb{M}$ ;  $Q(z) = z^{2m_i} (dz)^2$  at  $p_i$ ,  $m_i \geq 0$ .
- $N_3 \rightarrow 0$  at  $p_i$ .
- $\int_{\Sigma} K = 2\pi(2 2g 2k \sum_{i=1}^{k} m_i).$

Examples: Scherk graphs over ideal polygons with 2k edges,  $k \geq 2$  (J-S condition)  $\leadsto \int_{\Sigma} K = 2\pi(1-k)$ 



#### Question [Hauswirth-Rosenberg]:

Are there non-symply connected examples of f.t.c.?

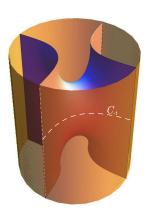
An annulus  $\Sigma$  with  $\int_{\Sigma} K = -4\pi$ ?

#### Theorem (Pyo, Morabito - \_\_)

For any  $k \geq 2$ ,  $\exists \Sigma_k \subset \mathbb{H}^2 \times \mathbb{R}$  PEMS with genus 0, k vertical planar ends and

$$\int_{\Sigma} K = 4\pi(1-k).$$

 $(\exists a (2k-3)$ -parameter family)

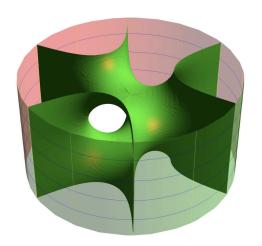


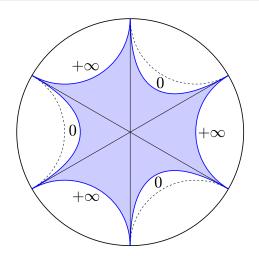
Parameter = dist. between the asymptotic vertical planes



### New examples

*k*-noids





We can take limits of k-noids,  $k \to +\infty$ 

Question [Ros]: Is there a PEMS for any genus 0 topology?

Theorem (Martín - 🚅

 $\forall \Sigma = \textit{planar domain}, \ \exists f : \Sigma \to \mathbb{H}^2 \times \mathbb{R} \ \textit{prop. min. embedding}$  Finite topology  $\Rightarrow f.t.c.$ 

We can take limits of k-noids,  $k \to +\infty$ 

Question [Ros]: Is there a PEMS for any genus 0 topology?

Theorem (Martín - 🚅

 $orall \Sigma=$  planar domain,  $\exists f:\Sigma o\mathbb{H}^2 imes\mathbb{R}$  prop. min. embedding. Finite topology  $\Rightarrow$  f.t.c.

We can take limits of k-noids,  $k \to +\infty$ 

Question [Ros]: Is there a PEMS for any genus 0 topology?

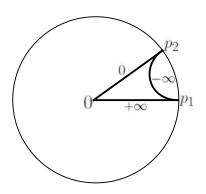
#### Theorem (Martín - \_\_)

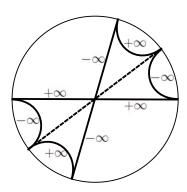
 $\forall \Sigma = \textit{planar domain}, \ \exists f: \Sigma \to \mathbb{H}^2 \times \mathbb{R} \ \textit{prop. min. embedding}.$  Finite topology  $\Rightarrow f.t.c.$ 

### New examples

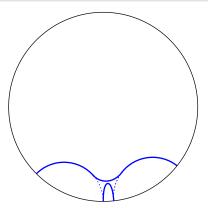
Twisted-Scherk examples

Question: Are the geodesics defining the ends "ordered"?

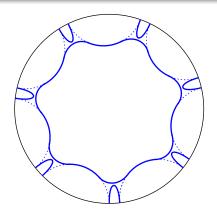




Question: Examples with higher genus?



Question: Examples with higher genus?



#### Theorem (Martín - Mazzeo - 🔔

For any  $g \geq 0$  and k > 1 large,  $\exists \Sigma_{g,k} \subset \mathbb{H}^2 \times \mathbb{R}$  PEMS with f.t.c., genus g and k vertical planar ends.

Moreover, the c.c. of

$$\mathcal{M}_{g,k} = \left\{ egin{array}{ll} \Sigma \subset \mathbb{H}^2 imes \mathbb{R} \ \textit{PEMS with f.t.c.,} \ \textit{genus g and k vertical planar ends} \end{array} 
ight\}$$

containing  $\Sigma_{g,k}$  is a real analytic space of dimension 2k-3

#### Theorem (Martín - Mazzeo - \_)

For any  $g \geq 0$  and k > 1 large,  $\exists \Sigma_{g,k} \subset \mathbb{H}^2 \times \mathbb{R}$  PEMS with f.t.c., genus g and k vertical planar ends.

Moreover, the c.c. of

$$\mathcal{M}_{g,k} = \left\{ egin{array}{l} \Sigma \subset \mathbb{H}^2 imes \mathbb{R} \ \textit{PEMS with f.t.c.,} \ \textit{genus g and k vertical planar ends} \end{array} 
ight\}$$

containing  $\Sigma_{g,k}$  is a real analytic space of dimension 2k-3.

$$\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$$
 with f.t.c.  $\Rightarrow \int_{\Sigma} K = 2\pi (2 - 2g - 2k - \sum_{i=1}^k m_i)$ 

#### Theorem (Hauswirth - Sa Earp - Toubiana

 $\Sigma = min. \ surf. \ in \ \mathbb{H}^2 \times \mathbb{R} \ with \ \int_{\Sigma} K = 0 \ \Rightarrow \ \Sigma = vert. \ plane$ 

#### Theorem (Pyo - \_\_)

 $\Sigma=$  min. surf. in  $\mathbb{H}^2 imes\mathbb{R}$  with f.t.c.  $\int_\Sigma K=-2\pi$ 

 $\Rightarrow$   $\Sigma =$  a Scherk minimal graph over an ideal quadrilateral

#### Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)

 $\Sigma =$  min. surf. in  $\mathbb{H}^2 \times \mathbb{R}$  with f.t.c. and 2 vertical planar ends

$$\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$$
 with f.t.c.  $\Rightarrow \int_{\Sigma} K = 2\pi (2 - 2g - 2k - \sum_{i=1}^k m_i)$ 

#### Theorem (Hauswirth - Sa Earp - Toubiana)

$$\Sigma=$$
 min. surf. in  $\mathbb{H}^2 imes \mathbb{R}$  with  $\int_{\Sigma} K=0 \ \Rightarrow \ \Sigma=$  vert. plane

#### Theorem (Pyo - \_\_)

 $\Sigma=$  min. surf. in  $\mathbb{H}^2 imes\mathbb{R}$  with f.t.c.  $\int_{\Sigma}K=-2\pi$ 

 $\Rightarrow$   $\Sigma =$  a Scherk minimal graph over an ideal quadrilateral

#### Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)

 $\Sigma = \min$  surf. in  $\mathbb{H}^2 \times \mathbb{R}$  with f.t.c. and 2 vertical planar ends

$$\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$$
 with f.t.c.  $\Rightarrow \int_{\Sigma} K = 2\pi (2 - 2g - 2k - \sum_{i=1}^k m_i)$ 

#### Theorem (Hauswirth - Sa Earp - Toubiana)

 $\Sigma = min. \ surf. \ in \ \mathbb{H}^2 \times \mathbb{R} \ with \ \int_{\Sigma} K = 0 \ \Rightarrow \ \Sigma = vert. \ plane$ 

#### Theorem (Pyo - \_\_)

 $\Sigma=$  min. surf. in  $\mathbb{H}^2 imes\mathbb{R}$  with f.t.c.  $\int_{\Sigma} K=-2\pi$ 

 $\Rightarrow$   $\Sigma = a$  Scherk minimal graph over an ideal quadrilateral

#### Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)

 $\Sigma = \min$  surf. in  $\mathbb{H}^2 \times \mathbb{R}$  with f.t.c. and 2 vertical planar ends

$$\Sigma \subset \mathbb{H}^2 \times \mathbb{R}$$
 with f.t.c.  $\Rightarrow \int_{\Sigma} K = 2\pi (2 - 2g - 2k - \sum_{i=1}^k m_i)$ 

#### Theorem (Hauswirth - Sa Earp - Toubiana)

 $\Sigma = min. \ surf. \ in \ \mathbb{H}^2 \times \mathbb{R} \ with \ \int_{\Sigma} K = 0 \ \Rightarrow \ \Sigma = vert. \ plane$ 

#### Theorem (Pyo - \_\_)

 $\Sigma=$  min. surf. in  $\mathbb{H}^2 imes\mathbb{R}$  with f.t.c.  $\int_{\Sigma}K=-2\pi$ 

 $\Rightarrow$   $\Sigma = a$  Scherk minimal graph over an ideal quadrilateral

#### Theorem (Hauswirth - Nelli- Sa Earp - Toubiana)

 $\Sigma = min. \ surf. \ in \ \mathbb{H}^2 \times \mathbb{R}$  with f.t.c. and 2 vertical planar ends

Question: When is a compl. emb. min. surf. proper?

#### Theorem (Colding-Minicozzi)

Any compl. emb. min. surf. with fin. top. in  $\mathbb{R}^3$  must be proper

Generalizations → Meeks-Rosenberg, Meeks-Pérez-Ros

#### Theorem (Coskunuzer)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^3$ .

#### Theorem (\_\_ - Tinaglia)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^2 \times \mathbb{R}$ 

Question: When is a compl. emb. min. surf. proper?

#### $\mathsf{Theorem}\,\,(\mathsf{Colding} ext{-}\mathsf{Minicozzi})$

Any compl. emb. min. surf. with fin. top. in  $\mathbb{R}^3$  must be proper.

 ${\sf Generalizations} \leadsto {\sf Meeks\text{-}Rosenberg}, \ {\sf Meeks\text{-}P\acute{e}rez\text{-}Ros}$ 

#### Theorem (Coskunuzer)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^3$ .

#### Theorem (\_\_ - Tinaglia)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^2 \times \mathbb{R}$ 



Question: When is a compl. emb. min. surf. proper?

#### Theorem (Colding-Minicozzi)

Any compl. emb. min. surf. with fin. top. in  $\mathbb{R}^3$  must be proper.

 ${\sf Generalizations} \leadsto {\sf Meeks\text{-}Rosenberg}, \ {\sf Meeks\text{-}P\acute{e}rez\text{-}Ros}$ 

#### Theorem (Coskunuzer)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^3$ .

#### Theorem (\_\_ - Tinaglia)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^2 \times \mathbb{R}$ 



Question: When is a compl. emb. min. surf. proper?

#### Theorem (Colding-Minicozzi)

Any compl. emb. min. surf. with fin. top. in  $\mathbb{R}^3$  must be proper.

Generalizations → Meeks-Rosenberg, Meeks-Pérez-Ros

#### Theorem (Coskunuzer)

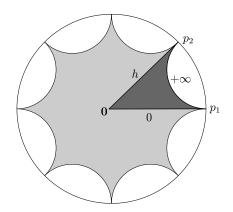
There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^3$ .

#### Theorem (\_\_ - Tinaglia)

There exists a compl. non-proper emb. min. disk in  $\mathbb{H}^2 \times \mathbb{R}$ .



### Calabi-Yau problem



- \* Saddle Towers and minimal k-noids in  $\mathbb{H}^2 \times \mathbb{R}$  (joint work with Filippo Morabito), J. Inst. Math. Jussieu, 11 (2), pp 333-349 (2012).
- $\star$  Minimal surfaces with limit ends in  $\mathbb{H}^2 \times \mathbb{R}$ , to appear in J. Reine Angew. Math. (Crelle's Journal).
- $\star$  Non-simply connected minimal planar domains in  $\mathbb{H}^2 \times \mathbb{R}$  (joint work with Francisco Martín), to appear in Trans. AMS.
- \* Minimal surfaces with positive genus and finite total curvature in  $\mathbb{H}^2 \times \mathbb{R}$  (joint work with Francisco Martín and Rafe Mazzeo), preprint.
- \* Simply-connected minimal surfaces with finite total curvature in  $\mathbb{H}^2 \times \mathbb{R}$  (joint work with Juncheol Pyo), to appear in Int. Math. Res. Not. (IMRN).
- \* Non-proper complete minimal surfaces embedded in  $\mathbb{H}^2 \times \mathbb{R}$  (joint work with Giuseppe Tinaglia), preprint.