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Question (doCarmo1980’s)

Is a noncompact complete stable constant mean curvature
hypersurface of Rn+1, for n ≥ 3, necessarily minimal ?

Some positive answers

I n = 2 : [DaSilveira89], [LopezRos89], [Palmer86]...

I n = 3, 4 : [Cheng06], [ElbertNelliRosenberg07] , using a
Bonnet-Myers’s type method.
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we give a positive answer to do Carmo’s question if:

I The volume entropy of M is zero (the ambient manifold being
arbitrary).

I The hypersurface M has bounded curvature and is properly
embedded (the ambient manifold being a simply-connected
manifold with bounded geometry and with zero volume
entropy)

I The entropy of the total curvature of M is zero and n ≤ 5
(the ambient manifold being a space-form).
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Stability of Schrödinger operators

Quadratic form associated to L := ∆M + V

Q(f , f ) := −
∫
M

fLf =

∫
M
|∇f |2dv −

∫
M

Vf 2dv f ∈ C∞0 (M)

Let Ω ⊂ M be rel. compact.

iLΩ := #neg. eigenvals of Lu + λu = 0, u|∂Ω = 0

Index(L) := sup
Ω⊂M

iLΩ
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Q(f , f ) := −
∫
M

fLf =

∫
M
|∇f |2dv −

∫
M

Vf 2dv f ∈ C∞0 (M)

Let Ω ⊂ M be rel. compact.

WiLΩ := #neg. eigenvals of Lu + λu = 0, u|∂Ω = 0,

∫
M

udv = 0

WIndex(L) := sup
Ω⊂M

WiLΩ
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Q(f , f ) := −
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∫
M
|∇f |2dv −

∫
M

Vf 2dv f ∈ C∞0 (M)

Let Ω ⊂ M be rel. compact.

iLΩ := #neg. eigenvals of Lu + λu = 0, u|∂Ω = 0

Index(L) := sup
Ω⊂M

iLΩ

M is stable (w.r.t. L) if Index(L) = 0.
M is weakly stable if WIndex(L) = 0.
M has finite index if Index(L) or WIndex(L) is finite [BarbBer00].
M has finite index iff M \ K is stable for some K .
[FischerColbrie85],[Devyver11]
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Stability of Schrödinger operators
Quadratic form associated to L := ∆M + V

Q(f , f ) := −
∫
M

fLf =

∫
M
|∇f |2dv −

∫
M

Vf 2dv f ∈ C∞0 (M)

Let Ω ⊂ M be rel. compact.

iLΩ := #neg. eigenvals of Lu + λu = 0, u|∂Ω = 0

Index(L) := sup
Ω⊂M

iLΩ

When V = |A|2 + RicN (ν, ν), and M ⊂ N has cmc, Q(f , f ) is
the second derivative of the volume in the direction of f ν, and
Index(M) measures the # of linearly independent normal
deformations with compact supp. of M that decrease area.
[BarbosadoCarmoEschenburg88]
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Entropies

Definition

I Entropy of w where w is a positive non-decreasing function.

µw := lim sup
r−→∞

(
ln w(r)

r

)
.

I Volume entropy of M
µM := µw1

w1(r) := |BM
p (r)| , volume of a geodesic ball in M of rad. r

around a fixed p ∈ M.
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Entropies

Definition (2)

I Extrinsic volume entropy of M ⊂ N

µNM := µw2

w2(r) := |BNp (r) ∩Mp|M
(Mp is the connected component of M ∩ Bp(r) containing p)

I Total p-curvature entropy of M ⊂ N , p > 0 :

µTp := µw3

w3(r) :=
∫
Bp(r) |A0|2pdvM where A0 is the traceless shape

operator.
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Bottom of the essential spectrum of ∆M

Definition
If M ′ ⊂ M unbounded

λ0(M ′) := inf
Ω⊂M′

λ0(Ω) = inf
f ∈C∞

0 (M′)

f 6=0

(∫
M′ |∇f |2∫

M f 2

)
.

λess0 (M) := sup
K⊂M

λ0(M \ K )
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Volume entropy & essential spectrum

Theorem ([Brooks-Cheeger])

If M has infinite volume, then

h2
M

4
≤ λ0(M) ≤ λ0(M \ K ) ≤ λess0 (M) ≤

µ2
M

4

where K is any compact subset of M and hM = inf
Ω

|Ω|
|int(Ω)| (where

Ω runs over all compact codimension one submanifolds of M
dividing M into two components and int(Ω) denotes the bounded
component).
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Stable ends with suffic. large H have exp. volume growth
A positive answer to the question when µM = 0

Theorem
There is no complete, noncompact, finite index M ⊂ N , provided

H satisfies nH2 + Ric(ν, ν) ≥ ε > µ2
M
4 for some positive ε.

Corollary

If M is CMC hypersurface of finite index immersed in a space of

constant curvature k then n(H2 + k) ≤ µ2
M
4 .

=⇒ if H2 + k > 0, the volume growth of M is exponential.

Related results : [Higuchi], [Karp], [BarbosadoCarmo],
[doCarmoZhou]...
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Stable ends with suffic. large H have exp. volume growth

Proof.
M has finite index ⇐⇒ ∃K ⊂ M such that M \ K is stable.

0 ≤ Q(f , f ) =

∫
M\K
|∇f |2− (|A|2 + Ric(ν, ν))f 2 ∀f ∈ C∞0 (M \K ).

But
|A|2 + Ric(ν, ν) ≥ nH2 + Ric(ν, ν) ≥ ε > µ2

M
4 (or λess0 (M)) =⇒

0 ≤
∫
M\K
|∇f |2 − ε

∫
M\K

f 2

Hence λ0(M \K ) ≥ ε > µ2
M
4 . This contradicts Brooks Theorem
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A question

Stable ends with suffic. large H have exp. volume growth
Let us find a bound for the H of a sub. with finite index, that is independent of M

Last result is not satisfying.

Remark
As extrinsic distance is bounded by intrinsic distance

BM
p (R) ⊂ M ∩ BNp (R) =⇒ |BM

p (R)|M ≤ |M ∩ BNp (R)|M

Hence

µM ≤ jM := inf
{N :M isometrically immersed in N}

µNM (1)
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A question

Volume comparison

In the whole section we will suppose that :
Curvatures of M and N are bounded : |RM,N |, |∇RM,N | ≤ c1.

Claim:
Suppose M is prop. embedded in a N with π1(N ) = {1} and s.t.
M and N are of bounded curvature. If H ≥ ε > 0 then there is a
constant c , depending on c1 such that

|BM
p (R)| ≤|BNp (R) ∩M|M ≤ c |BNp (R)|N

=⇒ µM ≤µNM ≤ µN
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A question

Extrinsic upperbounds for λess
0 (M)

M is prop. emb. in N and H ≥ ε > 0

µM ≤µNM ≤ µN
Brooks
=⇒ λess0 (M) ≤ µ2

N
4

Example

RiccN ≥ 0 : Bishop comparison theorem =⇒ µN = 0.
=⇒ λess0 (M) = λ0(M) = hM = 0 (and discrete L2 spec(∆) = ∅).

RiccN ≥ −nk : (k is a positive constant). BCT =⇒ µN ≤ n
√

k

=⇒ λess0 (M) ≤ n2k
4 (Compare with [Karp85]).

Upperbounds for the Cheeger constant are similarly obtained.
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A question

Properly embedded stable ends with bounded curvature

Theorem
There is no complete, noncompact, finite index M prop. emb. in a
s.c N where M and N have bounded curvature provided

H ≥ ε > 0 and nH2 + Ric(ν, ν) >
µ2
N
4 for some positive ε.
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A question

Properly embedded stable ends with bounded curvature

Theorem
There is no complete, noncompact, finite index M prop. emb. in a
s.c N where M and N have bounded curvature provided

H ≥ ε > 0 and nH2 + Ric(ν, ν) >
µ2
N
4 for some positive ε.

Proof.
µM ≤ µNM ≤ µN

Brooks
=⇒ λess0 (M) ≤ µ2

N
4

finite index
=⇒ λess0 (M) >

µ2
N
4 ,

contradiction.
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A question

Properly embedded stable cmc ends of bounded curvature
in Rn are minimal

Theorem
There is no complete, noncompact, finite index M prop. emb. in a
s.c N where M and N have bounded curvature provided

H ≥ ε > 0 and nH2 + Ric(ν, ν) >
µ2
N
4 for some positive ε.

Corollary

If M is a prop. emb. CMC hypersurface of bounded curvature in a
space form of curvature k ≥ 0 of finite index, then k = 0 and M is
minimal.
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A question

A uniform bound for the mean curvature of prop. emb.
stable cmc ends of bounded curvature in Hn

Theorem
There is no complete, noncompact, finite index M prop. emb. in a
s.c N where M and N have bounded curvature provided

H ≥ ε > 0 and nH2 + Ric(ν, ν) >
µ2
N
4 for some positive ε.

Corollary

If M is a prop. emb. CMC hypersurface of bounded curvature in a
space form of curvature −k < 0 of finite index, then H2 ≤ kn

4 + k
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A question

Definition of Halftubes

We consider the normal exponential map of M defined by

exp : M × R −→ N
(p, r) 7→ expp(rν)

Let
T +(r0) := exp (M × (0, r0))

be the halftube in N around M of radius r0.
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A question

Embedded halftube theorem

Theorem
Let M be prop. embedded in a s.c. N , where M and N are spaces
of bounded curvature. Suppose H ≥ ε > 0.
If ∂M = ∅, there exists an embedded half-tube T +(ρ), ρ > 0
contained in the mean-convex side of M.
If ∂M is compact, then there exists a compact subset K of M and
an embedded half-tube T +(ρ′), ρ′ > 0 of M \ K contained in the
mean-convex side of M

See also [MeeksTinaglia]
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A question

Embedded halftube theorem =⇒ volume comparison
Weyl tube formula [Gray82] & expansion w.r.t. ρ =⇒
T +(D) ∼ ρ|D|M (fig 1)

Apply to fig2 : |T +(ρ) ∩ BNp (R)| ∼ ρ|M ∩ BNp (R)|M EHT

=⇒ |T +(ρ) ∩ BNp (R)|N ≤ |BNp (R)| =⇒ |BNR ∩M|M ∼
1
ρ |T

+(ρ) ∩ BNR | ≤
1
ρ |B
N
r |
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A question

Sketch of proof of the embedded halftube theorem

Two cases :

1. either M ∩ T +(ρ) = ∅ for some ρ

2. or ∀ suff. small ρ > 0, T +(ρ) ∩M 6= ∅.
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A question

Sketch of proof of the EHT : case 1
M ∩ T+(ρ) = ∅ =⇒ T+(ρ/2) embedded

Figure : Self-intersection of a halftube of M in N
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A question

Sketch of proof of the EHT : case 2
Suppose ∀ suff. small ρ > 0, T+(ρ) ∩M 6= ∅.; then contradiction

T +(ρ) ∩M defines a graph of a section φ of the normal bundle of
M on Ω ⊂ M. Ω := {p ∈ M : t ≤ ρ} and φ(p) = t.
P := {(p, φ(p)) : p ∈ Ω}. M properly embedded =⇒ φ(p) > 0.
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A question

Step 1 : ‖φ‖1 :=
(
supp∈Ω |φ|+ supp∈Ω |∇φ|

)
≤ O(ρ)

Cheesebox argument at p ∈ M

∃ρ M is loc. a graph Gp defined on D(p, ρ) of TpM.
Gp ⊂ D(p, ρ)× [−h/2, h/2], of radius ρ and height h = cρ2

Gp cuts the boundary of the cheesebox in ∂D(p, ρ)× [−cρ2, cρ2].

Figure : A cheesebox around p ∈ M ⊂ N

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE H



A question
Stability of ∆ + V

Entropies
Comparison of volume entropy of M & Spec(∆M )

Comparison of extrinsic and intrinsic volume of submanifolds
Total curvature entropy of cmc hypersurfaces

A question

Step 1 : ‖φ‖1 ≤ O(ρ)
Compare cheeseboxes at p ∈ M and q ∈ P

Figure : Intersection of the cheeseboxes at p ∈ M and at q ∈ P with
Rνp ⊕ Rνq
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A question

‖φ‖1 ≤ O(ρ) =⇒ P is a graph
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A question

Step 2 : φ satisfies a unif. elliptic quasilin. PDE
0. Mean curvature equation of the section P defined by φ

nHP(q) := −divP (νP) (q) = −
n∑

i=1

gN (∇Fi
νP ,Fi )(q),
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A question

Step 2.1 Fermi fields : Local frame on P

Fi (x , φ (x)) := ∂t |exp (γi (t) , φ (γi (t))) , i = 1, · · · , n

=⇒ Fi (x , φ (x)) = Ji (x , φ (x))+φi (x) ν(x , φ(s)), (φi (p) = ∇eiφ){
gN (νP ,Fi ) = 0

}
i=1,··· ,n

, gN (Ji , Jn+1) = 0, gN (Jn+1, Jn+1) = 1,

=⇒ νP :=
1

W

(
ν −

n∑
i=1

g ijφiJj

)
. (2)

( gij := gN (Ji , Jj) ,W := ‖ν −
∑n

i=1 g ijφiJj‖ =
√

1 + ‖∇φ‖2).
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A question

Step 2.2 Mean curvature equation in Fermi coordinates
Geodesic coordinates

g̃ij = gN (Fi ,Fj), g̃
ij = g ij − 1

W 2 gk,n+1g l ,n+1φ,kφ,l
Fi = P j

i ej ,P
j
i = δji + φiδ

j
n+1

(∇JαJβ)γ = Γγα,βJγ .

=⇒
nHW = g̃ ij(φ,ij + (Γn+1

n+1,n+1 − Γm
n+1,n+1φ,m)φ,iφ,j

−Γk
n+1,(jφ,kφ,i) + Γn+1

n+1,(jφ,i) − Γk
ijφ,k + Γn+1

ij ).

Minimal surface equation [ColdingMinicozzi99]

Remark
This is not the mean curvature equation in harmonic coordinates
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A question

Step 2.3 Expansion H(φ) w.r.t. ρ

nHP = nH + ∆Mφ+ O(ρ).
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A question

Step 2.4 Proof : Jacobi fields

We extend the vectors {ei}i 6=1 to Jacobi fields {Ji}i=1,···n along γ
such that J1 = T on γ. The Jacobi fields {Ji}i 6=1 are defined
according to the evolution equation

J ′′i (y) + RM(y)(Ji ,T )T (y) = 0, i 6= 1 ∀y ∈ γ ⊂ exp(D(p, ρ))
(3)

( where J ′′i (y) := ∇T∇T Ji (y) and RM is the curvature tensor of
M ), with the second order initial conditions at p :{

Ji (p) = ei
∇T Ji (p) = 0.

(4)
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A question

Step 2.5 Proof : Estimates of Jacobi fields

Since the curvature of M is bounded, Rauch Comparison Theorem

=⇒ Ji (x) = Ji (p) + O(ρ2), x ∈ γ ⊂ exp(D(p, ρ)),

where O(ρ2) depends on bounds of the curvature tensor RM of M.

=⇒ gij(x) := gM (Ji (x), Jj(x)) = δij+0(ρ2) x ∈ γ ⊂ exp (D (p, ρ))
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A question

Step 2.6 Proof : Fermi fields

Evolution equation:

J ′′i (x , s) + RN (x , s)(ν, Ji )ν = 0 x ∈ γ, s ∈ [0, σ] (5)

together with the second order initial conditions{
Ji (x , 0) = Ji (x)
∇νJi (x , 0) = A(x)Ji (x) i = 1, · · · n (6)

(Ji (x , s) := Ji (expx (sνM)), ν(x , s) is the unit tangent to the
normal geodesics at expx(sνM), RN (x , s) := RN (expx (sνM)),
J ′′i (x , s) := ∇ν∇νJi (x , s)- and A(x) is the shape operator of M at
x ∈ γ).
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A question

Step 2.6 Proof : Estimates of Fermi fields

Compare Ji (x , s) with Ji (p, 0).
||RN || ≤ c and Rauch comparison theorem for Fermi fields

=⇒ Ji (x , s) = Ji (x , 0) + O(σ) x ∈ γ, s ∈ [0, σ]. (7)

where O(σ) depends on the curvature of the ambient space (from
the term RN in Fermi’s equation (5)) and also on the principal
curvatures of M at x as one can see from the second initial
condition of (6).
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A question

Step 2.7 Proof : Estimates of (∇Jn+1
Jβ)

Riccati equation :{
J ′i (x , s) := ∇νJj(x , s) = A(x , s)Ji (x , s)
A′(x , s) := ∇νA(x , s) = −A2(x , s) + Rν(x , s).

(8)

( Rν(x , s)J := RN (x , s)(J, ν)ν.) Riccati’s comparison argument :
and the fact that s ≤ σ ≤ cρ2

=⇒
{

J ′i (x , s) = J ′i (x , 0) + O(ρ2), x ∈ exp (D(p, ρ), 0) ⊂ M, 0 ≤ s ≤ cρ2

A′(x , s) = A(x , 0) + O(ρ2), x ∈ exp (D(p, ρ), 0) ⊂ M, 0 ≤ s ≤ cρ2

(9)
O(ρ2) depends on bounds of the shape operator A of M and
bounds of RN .
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A question

Step 2.8 Proof : estimates of (∇JαJβ)

Evolution equation for ∇Ji Jj(x , s) : derivate Fermi equation with
second order initial conditions : ∇Ji Jj(x) and ∇ν (∇Ji Jj) (x).
Riccati comparison argument yields again

∇Ji Jj(x , s) = ∇Ji Jj(p) + O(ρ), x ∈ exp(D(p, ρ)), 0 ≤ s ≤ cρ2

(10)
where O(ρ) depends on the curvatures RM and RN and their first
derivatives.
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A question

Step 3 : Consequences of nHP = nH + ∆φ + O(ρ)
H ≥ ε =⇒ HP ≤ −ε. =⇒ ∆φ ≤ −2ε.

∆ψR ≥ −ε on BR ∩ Ω.. Max. principle =⇒ φ ≥ ψR .
R 7→ ∞ =⇒ T +(β) is embedded.

Figure : ΨR := β(1− r2

R2 ), ∆rp ≤ c =⇒ ∆MΨR ≥ −ε in the weak sense
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A question

Remarks on the EHT

(v , u) ∈ R× [0, ε], ds2 = j2(u, v)du2 + dv 2, j(u, v) = ef (u,v)

fv =
j,u
j = κg = −K − (κg )2, κg (u, 0) = 0

if K := a2(u) take
f (u, v) = ln (cos (a (u) v)) =⇒ fv = −atan(av)
mean curvature equation: κ(j2 + φ′2)3/2 = jφ′′− 2juφ

′2− juφ
′+ jv .

for small v : φ′′ +
((

a2
)
u
φ
(
φ′ + 2φ′2

)
− a2

)
φ = j2

(
1 + (φ

′

j )2
)3/2

∃ embedded κ = 1 curve in surface with 1 ≥ K ≥ 0 with no
embedded half-tube.
But : K is only piecewise continuous
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A question

Remarks on Schauder estimates
A counterexample to Schauder estimates for elliptic op. with unbounded coeff.

[Priola01]{
ψ − 1

2ψ,xx −
1
2ψ,yy + yψ,y = | cos(y)| x > 0

ψ(0, y) = 0, y ∈ R.

But : there in some cases there are Schauder estimates with
unbounded coefficients.
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A question

Total curvature entropy of cmc hypersurfaces

Recapitulation ( stated for cmc in Rn)

I Complete noncompact stable ends of positive cmc are of

exponential volume growth (nH2 ≤ µ2
M
4 ) .

I Properly embedded complete noncompact stable ends of

bounded curvature are minimal (nH2 ≤ µ2
N
4 = 0)

I What are cmc with µTp = 0 ?

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE H



A question
Stability of ∆ + V

Entropies
Comparison of volume entropy of M & Spec(∆M )

Comparison of extrinsic and intrinsic volume of submanifolds
Total curvature entropy of cmc hypersurfaces
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Total curvature entropy cmc hypersurfaces
Caccioppoli’s inequality of type III - H 6= 0 [IliasNelliSoret12]

Theorem
Let M be a complete cmc hypersurface immersed in a manifold of
cnst curvature c. Assume M has finite index and n ≤ 5. Then
there exist a compact subset K in M and a constant γ such that,
for any φ ∈ C∞0 (M \ K )

γ

∫
M\K
|A0|2xφ2 ≤ D

∫
M\K
|A0|2x |∇φ|2

provided either (1) c = 0 or 1, x ∈ [1, 2
√
n−1
n

(
1 +

√
1− n−2

2
√
n−1

)
)

or (2) c = −1, ε > 0, x ∈ [1, x2 − ε], H2 ≥ gn(x).
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A question

Total curvature entropy of cmc hypersurfaces

Proposition

Let w ∈ L1
loc(M;R+) and W (R) :=

∫
BR

w . Assume that the
entropy of W is zero. If for some positive constant C , and
compact K ⊂ M, w satisfies∫

M\K
wψ2 ≤ C

∫
M\K

w |∇ψ|2, ∀ψ ∈W 1,2
0 (M \ K ),

then
∫

w <∞
With the same hypothesis as in Caccioppoli inequality∫
|A0|2x <∞ =⇒ |A0| = 0 [IliasNelliSoret12]
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A question

Total curvature entropy of cmc hypersurfaces

Theorem
There is no complete noncompact stable hypersurface M with
constant positive mean curvature H in Rn+1, n ≤ 5, with µTp = 0

for some p ∈ [1, 2
√
n−1
n

(
1 +

√
1− n−2

2
√
n−1

)
)
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Stable CMC vs Stable minimal hypersurfaces

Let M be a stable minimal hypersurface of Rn+1

I |B(r)|M ≤ r 5+ε =⇒ M is a hyperplane

I But is a prop. emb. minimal hypersurface with bounded
curvature and |B(r)|M ∼ r 10 (n = 8).

I There is no stable minimal hypersurface with bounded
curvature and embedded tube in Rn+1, n ≤ 5

Question
Is a noncompact complete stable constant mean curvature
hypersurface properly embedded in Rn+1, for 7 ≥ n ≥ 3,
necessarily a hyperplane ?
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Example

I µv = 0

v(r) =
∑
p≤N

aprp, v(r) = er
α
, α < 1

I µw = α
w(r) = v(r)eαr

retour
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M ∩ T+(M) 6= ∅

1 2
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The cheesebox property : Bounds on the first derivatives
of curvature are necessary I

Consider the general case, where the ambient space N is not
necessarily Euclidean. There exists a radius ρ0 such that for each
point p ∈ N , the exponential chart is a diffeomorphism
fp : U (:= BRn+1 (0, ρ0)) ⊂ Rn+1 −→ V := fp (U) ⊂ N .
Furthermore, since N has bounded curvature and bounded first
derivatives of curvature, the diffeomorphism fp is a C 1-norm which
is uniformly bounded with respect to p.
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The cheesebox property : Bounds on the first derivatives
of curvature are necessary II

The previous result of this paragraph concerning Euclidean
cheeseboxes applies to f −1

p (M) ∩ V and f −1
p (P) ∩ V to prove the

C 1-uniformly boundedness φ ◦ fp with respect to p ∈ M. Since fp
has a C 1-norm uniformly bounded with respect to p, this is also
the case for φ. 1
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Sketch of proof: barrier functions on BR I
Construction of functions ψR such that ∆ψR ≥ ε on BR ∩ Ω.

Let r be the distance function from a fixed point of M, and
consider the radial test function ψR(x) = fR ◦ r(x) where

fR(r) :=

{
β
(

1−
(
r
R

)2
)

∀ r ≤ R,

0 ∀ r ≥ R.

with β = ρ− δ, for small positive δ. Notice that ψR vanishes on
∂BR ∩ Ω and ψR ≤ φ on BR ∩ ∂Ω, since φ|∂Ω = ρ. Therefore
ψR ≤ φ on ∂(Ω ∩ BR).
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r
R
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Sketch of proof: barrier functions on BR II
Construction of functions ψR such that ∆ψR ≥ ε on BR ∩ Ω.

M has bounded curvature =⇒ ∃k > 0 : RicM ≥ −(n − 1)k2.
Standard comparison theorems =⇒ ∆r ≤ n−1

r (1 + kr)
Remark inequality holds outside the cut-locus of M and holds in
the weak sense at any point of M.
Computation gives ∆ψR ≥ − 2β

R2 (n + (n− 1)kR) ≥ −ε, for R large.
∆φ ≤ ∆ψR on BR ∩ Ω, for R large. Then, by Corollary ??,
φ ≥ ψR on BR ∩ Ω, for R large. Letting R →∞ we obtain φ ≥ β
on Ω. Therefore φ ≥ ρ− δ in Ω for any δ > 0. Thus φ ≥ ρ in Ω.
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Jacobi fields expansion I

J1 = T on γ. The Jacobi fields {Ji}i 6=1 are defined according to
the evolution equation

J ′′i (y) + RM(y)(Ji ,T )T (y) = 0, i 6= 1 ∀y ∈ γ ⊂ exp(D(p, ρ))

( where J ′′i (y) := ∇T∇T Ji (y) and RM is the curvature tensor of
M ), with the second order initial conditions at p :{

Ji (p) = ei
∇T Ji (p) = 0.
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Jacobi fields expansion II

Since the curvature of M is bounded, the classical Rauch
Comparison Theorem and equation (62) yield the following
expansion of Ji (x) in terms of the distance ρ:

Ji (x) = Ji (p) + O(ρ2), x ∈ exp(D(p, ρ)),

gij(x) := gM (Ji (x), Jj(x)) = δij + 0(ρ2) x ∈ γ ⊂ exp (D (p, ρ))

where O(ρ2) depends on bounds of the curvature tensor RM of M.
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