A question Stability of  $\Delta + V$ Entropies Comparison of volume entropy of M & Spec( $\Delta_M$ ) Comparison of extrinsic and intrinsic volume of submanifolds Total curvature entropy of cmc hypersurfaces A question

# ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE H

Marc Soret ( with S. Ilias & B. Nelli )

November 22, 2012

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

 $\begin{array}{c} A \mbox{ question} \\ Stability of \Delta + V \\ Entropies \\ Comparison of volume entropy of M & Spec(\Delta_M) \\ Comparison of extrinsic and intrinsic volume of submanifolds \\ Total curvature entropy of cmc hypersurfaces \\ A \mbox{ question} \end{array}$ 

# The talk is organized as follows

A question

```
Stability of \Delta + V
```

Entropies

Comparison of volume entropy of  $M \& \operatorname{Spec}(\Delta_M)$ 

Comparison of extrinsic and intrinsic volume of submanifolds

Total curvature entropy of cmc hypersurfaces

A question

 $\begin{array}{c} A \text{ question} \\ \text{Stability of } \Delta + V \\ \text{Entropies} \\ \text{Comparison of volume entropy of } M \& \operatorname{Spec}(\Delta_M) \\ \text{Comparison of extrinsic and intrinsic volume of submanifolds} \\ \text{Total curvature entropy of cmc hypersurfaces} \\ A \text{ question} \end{array}$ 

### Question (doCarmo1980's)

Is a noncompact complete stable constant mean curvature hypersurface of  $\mathbb{R}^{n+1}$ , for  $n \ge 3$ , necessarily minimal ?

### Some positive answers

- ▶ n = 2 : [DaSilveira89], [LopezRos89], [Palmer86]...
- n = 3,4 : [Cheng06], [ElbertNelliRosenberg07], using a Bonnet-Myers's type method.

 $\begin{array}{c} & \mathsf{A} \text{ question} \\ & \mathsf{Stability} \text{ of } \Delta + V \\ & \mathsf{Entropies} \\ & \mathsf{Comparison} \text{ of volume entropy of } M \& \mathsf{Spec}(\Delta_M) \\ & \mathsf{Comparison} \text{ of extrinsic and intrinsic volume of submanifolds} \\ & \mathsf{Total curvature entropy of cmc hypersurfaces} \\ & \mathsf{A} \text{ question} \end{array}$ 

we give a positive answer to do Carmo's question if:

- ► The volume entropy of *M* is zero (the ambient manifold being arbitrary).
- The hypersurface *M* has bounded curvature and is properly embedded (the ambient manifold being a simply-connected manifold with bounded geometry and with zero volume entropy)
- ► The entropy of the total curvature of M is zero and n ≤ 5 (the ambient manifold being a space-form).

A question Stability of  $\Delta + V$ Entropies Comparison of volume entropy of  $M \& \operatorname{Spec}(\Delta_M)$ Comparison of extrinsic and intrinsic volume of submanifolds Total curvature entropy of cmc hypersurfaces A question

# Stability of Schrödinger operators

Quadratic form associated to  $L := \Delta_M + V$ 

$$Q(f,f) := -\int_{M} fLf = \int_{M} |\nabla f|^{2} dv - \int_{M} Vf^{2} dv \quad f \in C_{0}^{\infty}(M)$$

Let  $\Omega \subset M$  be rel. compact.

$$\begin{split} i_{L\Omega} &:= \# \text{neg. eigenvals of } Lu + \lambda u = 0, u|_{\partial\Omega} = 0\\ Index(L) &:= \sup_{\Omega \subset M} i_{L\Omega} \end{split}$$

A question Stability of  $\Delta + V$ Entropies Comparison of volume entropy of  $M \& \operatorname{Spec}(\Delta_M)$ Comparison of extrinsic and intrinsic volume of submanifolds Total curvature entropy of cmc hypersurfaces A question

# Stability of Schrödinger operators

Quadratic form associated to  $L := \Delta_M + V$ 

$$Q(f,f) := -\int_{\mathcal{M}} fLf = \int_{\mathcal{M}} |\nabla f|^2 dv - \int_{\mathcal{M}} Vf^2 dv \quad f \in C_0^{\infty}(\mathcal{M})$$

Let  $\Omega \subset M$  be rel. compact.

 $Wi_{L\Omega} := \# \text{neg. eigenvals of } Lu + \lambda u = 0, u|_{\partial\Omega} = 0, \int_{M} u dv = 0$  $WIndex(L) := \sup_{\Omega \subset M} Wi_{L\Omega}$ 

A question Stability of  $\Delta + V$ Entropies Comparison of volume entropy of  $M \& \operatorname{Spec}(\Delta_M)$ Comparison of extrinsic and intrinsic volume of submanifolds Total curvature entropy of cmc hypersurfaces A question

# Stability of Schrödinger operators

Quadratic form associated to  $L := \Delta_M + V$ 

$$Q(f,f) := -\int_M fLf = \int_M |\nabla f|^2 dv - \int_M V f^2 dv \quad f \in C_0^\infty(M)$$

Let  $\Omega \subset M$  be rel. compact.

$$\begin{split} i_{L\Omega} &:= \# \text{neg. eigenvals of } Lu + \lambda u = 0, u|_{\partial\Omega} = 0\\ Index(L) &:= \sup_{\Omega \subset M} i_{L\Omega} \end{split}$$

*M* is stable (w.r.t. *L*) if Index(L) = 0. *M* is weakly stable if WIndex(L) = 0. *M* has finite index if Index(L) or WIndex(L) is finite [BarbBer00]. *M* has finite index iff  $M \setminus K$  is stable for some *K*. [FischerColbrie85],[Devyver11]

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

A question Stability of  $\Delta$  + VEntropies Comparison of volume entropy of M & Spec $(\Delta_M)$ Comparison of extrinsic and intrinsic volume of submanifolds Total curvature entropy of cmc hypersurfaces A question

### Stability of Schrödinger operators

Quadratic form associated to  $L := \Delta_M + V$ 

$$Q(f,f) := -\int_M fLf = \int_M |\nabla f|^2 dv - \int_M V f^2 dv \quad f \in C_0^\infty(M)$$

Let  $\Omega \subset M$  be rel. compact.

$$\begin{split} i_{L\Omega} &:= \# \text{neg. eigenvals of } Lu + \lambda u = 0, u|_{\partial\Omega} = 0\\ Index(L) &:= \sup_{\Omega \subset M} i_{L\Omega} \end{split}$$

When  $V = |A|^2 + Ric_N(\nu, \nu)$ , and  $M \subset N$  has cmc, Q(f, f) is the second derivative of the volume in the direction of  $f\nu$ , and Index(M) measures the # of linearly independent normal deformations with compact supp. of M that decrease area. [BarbosadoCarmoEschenburg88]

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

| A question Stability of $\Delta + V$                                 |  |
|----------------------------------------------------------------------|--|
| Entropies                                                            |  |
| Comparison of volume entropy of $M \& \operatorname{Spec}(\Delta_M)$ |  |
| Comparison of extrinsic and intrinsic volume of submanifolds         |  |
| Total curvature entropy of cmc hypersurfaces                         |  |
| A question                                                           |  |

### Entropies

### Definition

• Entropy of w where w is a positive non-decreasing function.

$$\mu_{w} := \limsup_{r \to \infty} \left( \frac{\ln w(r)}{r} \right).$$

naa

| A question Stability of $\Delta + V$                                 |  |
|----------------------------------------------------------------------|--|
| Entropies                                                            |  |
| Comparison of volume entropy of $M \& \operatorname{Spec}(\Delta_M)$ |  |
| Comparison of extrinsic and intrinsic volume of submanifolds         |  |
| Total curvature entropy of cmc hypersurfaces                         |  |
| A question                                                           |  |

### Entropies

### Definition

• Entropy of w where w is a positive non-decreasing function.

$$\mu_{\mathbf{w}} := \limsup_{r \to \infty} \left( \frac{\ln w(r)}{r} \right).$$

▶ Volume entropy of M

$$\boldsymbol{\mu}_{\boldsymbol{M}} := \boldsymbol{\mu}_{\boldsymbol{w}_1}$$

 $w_1(r) := |B_p^M(r)|$ , volume of a geodesic ball in M of rad. r around a fixed  $p \in M$ .

# Entropies

Definition (2)

▶ Extrinsic volume entropy of  $M \subset N$ 

$$\mu^{\mathcal{N}}_{\mathcal{M}} := \mu_{w_2}$$

 $w_2(r) := |B_p^{\mathcal{N}}(r) \cap M_p|_M$ 

 $(M_p \text{ is the connected component of } M \cap B_p(r) \text{ containing } p)$ 

▶ Total p-curvature entropy of  $M \subset \mathcal{N}, p > 0$ :

$$\mu_{\mathcal{T}_p} := \mu_{w_3}$$

 $w_3(r) := \int_{B_p(r)} |A_0|^{2p} dv_M$  where  $A_0$  is the traceless shape operator.

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

 $\begin{array}{c} A \mbox{ question} \\ Stability \mbox{ of } \Delta + V \\ Entropies \\ \mbox{ Comparison of volume entropy of } M \& \mbox{ Spec}(\Delta_M) \\ \mbox{ Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A \mbox{ question} \end{array}$ 

### Bottom of the essential spectrum of $\Delta_M$

Definition If  $M' \subset M$  unbounded

$$\lambda_0(M') := \inf_{\Omega \subset M'} \lambda_0(\Omega) = \inf_{\substack{f \in C_0^\infty(M') \\ f \neq 0}} \left( \frac{\int_{M'} |\nabla f|^2}{\int_M f^2} \right).$$

$$\lambda_0^{ess}(M) := \sup_{K \subset M} \lambda_0(M \setminus K)$$

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

nar

Volume entropy & essential spectrum

### Theorem (**[Brooks-Cheeger])** If *M* has infinite volume, then

$$rac{h_M^2}{4} \leq \lambda_0(M) \leq \lambda_0(M \setminus K) \leq \lambda_0^{ess}(M) \leq rac{\mu_M^2}{4}$$

where K is any compact subset of M and  $h_M = \inf_{\Omega} \frac{|\Omega|}{|int(\Omega)|}$  (where  $\Omega$  runs over all compact codimension one submanifolds of M dividing M into two components and  $int(\Omega)$  denotes the bounded component).

 $\begin{array}{c} A \mbox{ question} \\ Stability \mbox{ of } A + V \\ Entropies \\ \mbox{ Comparison of volume entropy of } M \& \mbox{ Spec}(\Delta_M) \\ \mbox{ Comparison of extrinsic and intrinsic volume of submanifolds} \\ \mbox{ Total curvature entropy of cmc hypersurfaces} \\ A \mbox{ question} \end{array}$ 

# Stable ends with suffic. large *H* have exp. volume growth A positive answer to the question when $\mu_M = 0$

#### Theorem

There is no complete, noncompact, finite index  $M \subset \mathcal{N}$ , provided H satisfies  $nH^2 + Ric(\nu, \nu) \geq \varepsilon > \frac{\mu_M^2}{4}$  for some positive  $\varepsilon$ .

#### Corollary

If *M* is CMC hypersurface of finite index immersed in a space of constant curvature *k* then  $n(H^2 + k) \leq \frac{\mu_M^2}{4}$ .

 $\implies$  if  $H^2 + k > 0$ , the volume growth of M is exponential.

Related results : [Higuchi], [Karp], [BarbosadoCarmo], [doCarmoZhou]...

### Stable ends with suffic. large H have exp. volume growth

**Proof.** *M* has finite index  $\iff \exists K \subset M$  such that  $M \setminus K$  is stable.

### Stable ends with suffic. large H have exp. volume growth

#### Proof.

*M* has finite index  $\iff \exists K \subset M$  such that  $M \setminus K$  is stable.

$$0 \leq Q(f,f) = \int_{M \setminus K} |\nabla f|^2 - (|A|^2 + \operatorname{Ric}(\nu,\nu))f^2 \ \forall f \in C_0^{\infty}(M \setminus K).$$

# Stable ends with suffic. large H have exp. volume growth

Proof.

*M* has finite index  $\iff \exists K \subset M$  such that  $M \setminus K$  is stable.

$$0 \leq Q(f,f) = \int_{M \setminus K} |\nabla f|^2 - (|A|^2 + \operatorname{Ric}(\nu,\nu))f^2 \ \forall f \in C_0^\infty(M \setminus K).$$

But

$$|A|^{2} + Ric(\nu, \nu) \ge nH^{2} + Ric(\nu, \nu) \ge \varepsilon > \frac{\mu_{M}^{2}}{4} \text{ (or } \lambda_{0}^{ess}(M)) \implies$$

$$0 \leq \int_{M \setminus K} |\nabla f|^2 - \varepsilon \int_{M \setminus K} f^2$$

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

# Stable ends with suffic. large H have exp. volume growth

Proof.

*M* has finite index  $\iff \exists K \subset M$  such that  $M \setminus K$  is stable.

$$0 \leq Q(f,f) = \int_{M \setminus K} |\nabla f|^2 - (|A|^2 + \operatorname{Ric}(\nu,\nu))f^2 \,\,\forall f \in C_0^\infty(M \setminus K).$$

But  $|A|^{2} + Ric(\nu, \nu) \ge nH^{2} + Ric(\nu, \nu) \ge \varepsilon > \frac{\mu_{M}^{2}}{4} \text{ (or } \lambda_{0}^{ess}(M)) \implies$ 

$$0 \leq \int_{M \setminus K} |\nabla f|^2 - \varepsilon \int_{M \setminus K} f^2$$

Hence  $\lambda_0(M \setminus K) \ge \varepsilon > \frac{\mu_M^2}{4}$ . This contradicts Brooks Theorem

Stable ends with suffic. large H have exp. volume growth Let us find a bound for the H of a sub. with finite index, that is independent of M

Last result is not satisfying.

#### Remark

As extrinsic distance is bounded by intrinsic distance

$$B^M_p(R) \subset M \cap B^\mathcal{N}_p(R) \implies |B^M_p(R)|_M \leq |M \cap B^\mathcal{N}_p(R)|_M$$

Hence

$$\mu_{M} \leq j_{M} := \inf_{\{\mathcal{N}: M \text{ isometrically immersed in } \mathcal{N}\}} \mu_{M}^{\mathcal{N}}$$
(1)

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

# Volume comparison

In the whole section we will suppose that : Curvatures of M and  $\mathcal{N}$  are bounded :  $|R_{M,\mathcal{N}}|, |\nabla R_{M,\mathcal{N}}| \leq c_1$ .

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

 $\begin{array}{c} A \mbox{ question} \\ Stability of \Delta + V \\ Entropies \\ Comparison of volume entropy of M & Spec(\Delta_M) \\ \mbox{Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A question \\ \end{array}$ 

# Volume comparison

In the whole section we will suppose that : Curvatures of M and  $\mathcal{N}$  are bounded :  $|R_{M,\mathcal{N}}|, |\nabla R_{M,\mathcal{N}}| \leq c_1$ .

#### Claim:

Suppose M is prop. embedded in a  $\mathcal{N}$  with  $\pi_1(\mathcal{N}) = \{1\}$  and s.t. M and  $\mathcal{N}$  are of bounded curvature. If  $H \ge \epsilon > 0$  then there is a constant c, depending on  $c_1$  such that

$$|B_{\rho}^{\mathcal{M}}(R)| \leq |B_{\rho}^{\mathcal{N}}(R) \cap M|_{\mathcal{M}} \leq c|B_{\rho}^{\mathcal{N}}(R)|_{\mathcal{N}}$$

 $\begin{array}{c} A \mbox{ question} \\ Stability of \Delta + V \\ Entropies \\ Comparison of volume entropy of M & Spec(\Delta_M) \\ \mbox{Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A question \\ \end{array}$ 

# Volume comparison

In the whole section we will suppose that : Curvatures of M and  $\mathcal{N}$  are bounded :  $|R_{M,\mathcal{N}}|, |\nabla R_{M,\mathcal{N}}| \leq c_1$ .

#### Claim:

Suppose M is prop. embedded in a  $\mathcal{N}$  with  $\pi_1(\mathcal{N}) = \{1\}$  and s.t. M and  $\mathcal{N}$  are of bounded curvature. If  $H \ge \epsilon > 0$  then there is a constant c, depending on  $c_1$  such that

$$|B_p^{\mathcal{M}}(R)| \leq |B_p^{\mathcal{N}}(R) \cap M|_M \leq c|B_p^{\mathcal{N}}(R)|_{\mathcal{N}}$$

$$\implies \mu_M \leq \mu_M^N \leq \mu_N$$

 $\begin{array}{c} A \mbox{ question} \\ Stability \mbox{ of } \Delta + V \\ Entropies \\ Comparison \mbox{ of volume entropy of } M \& \mbox{ Spec}(\Delta_M) \\ \mbox{ Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A \mbox{ question} \end{array}$ 

Extrinsic upperbounds for  $\lambda_0^{ess}(M)$ M is prop. emb. in  $\mathcal{N}$  and  $H \ge \epsilon > 0$ 

$$\mu_M \leq \mu_M^{\mathcal{N}} \leq \mu_{\mathcal{N}} \stackrel{Brooks}{\Longrightarrow} \lambda_0^{ess}(M) \leq \frac{\mu_N^2}{4}$$

#### Example

 $\begin{array}{l} \operatorname{Ricc}_{\mathcal{N}} \geq 0 : \text{Bishop comparison theorem} \implies \mu_{\mathcal{N}} = 0. \\ \implies \lambda_0^{ess}(\mathcal{M}) = \lambda_0(\mathcal{M}) = h_{\mathcal{M}} = 0 \text{ (and discrete } L^2 \operatorname{spec}(\Delta) = \emptyset). \\ \operatorname{Ricc}_{\mathcal{N}} \geq -nk : (k \text{ is a positive constant}). \ \mathsf{BCT} \implies \mu_{\mathcal{N}} \leq n\sqrt{k} \\ \implies \lambda_0^{ess}(\mathcal{M}) \leq \frac{n^2k}{4} \text{ (Compare with [Karp85]).} \end{array}$ 

Upperbounds for the Cheeger constant are similarly obtained.

### Properly embedded stable ends with bounded curvature

#### Theorem

There is no complete, noncompact, finite index M prop. emb. in a s.c  $\mathcal{N}$  where M and  $\mathcal{N}$  have bounded curvature provided  $H \ge \varepsilon > 0$  and  $nH^2 + Ric(\nu, \nu) > \frac{\mu_{\mathcal{N}}^2}{4}$  for some positive  $\varepsilon$ .

### Properly embedded stable ends with bounded curvature

#### Theorem

There is no complete, noncompact, finite index M prop. emb. in a s.c  $\mathcal{N}$  where M and  $\mathcal{N}$  have bounded curvature provided  $H \ge \varepsilon > 0$  and  $nH^2 + Ric(\nu, \nu) > \frac{\mu_{\mathcal{N}}^2}{4}$  for some positive  $\varepsilon$ .

# Proof. $\mu_M \leq \mu_M^{\mathcal{N}} \leq \mu_{\mathcal{N}} \stackrel{Brooks}{\Longrightarrow} \lambda_0^{ess}(M) \leq \frac{\mu_{\mathcal{N}}^2}{4} \stackrel{\text{finite index}}{\Longrightarrow} \lambda_0^{ess}(M) > \frac{\mu_{\mathcal{N}}^2}{4},$ contradiction.

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIV

Properly embedded stable cmc ends of bounded curvature in  $\mathbb{R}^n$  are minimal

#### Theorem

There is no complete, noncompact, finite index M prop. emb. in a s.c  $\mathcal{N}$  where M and  $\mathcal{N}$  have bounded curvature provided  $H \ge \varepsilon > 0$  and  $nH^2 + Ric(\nu, \nu) > \frac{\mu_{\mathcal{N}}^2}{4}$  for some positive  $\varepsilon$ .

### Corollary

If M is a prop. emb. CMC hypersurface of bounded curvature in a space form of curvature  $k \ge 0$  of finite index, then k = 0 and M is minimal.

naa

A uniform bound for the mean curvature of prop. emb. stable cmc ends of bounded curvature in  $\mathbb{H}^n$ 

#### Theorem

There is no complete, noncompact, finite index M prop. emb. in a s.c  $\mathcal{N}$  where M and  $\mathcal{N}$  have bounded curvature provided  $H \ge \varepsilon > 0$  and  $nH^2 + Ric(\nu, \nu) > \frac{\mu_{\mathcal{N}}^2}{4}$  for some positive  $\varepsilon$ .

#### Corollary

If M is a prop. emb. CMC hypersurface of bounded curvature in a space form of curvature -k < 0 of finite index, then  $H^2 \le \frac{kn}{4} + k$ 

 $\begin{array}{c} A \mbox{ question} \\ Stability of \Delta + V \\ Entropies \\ Comparison of volume entropy of M & Spec(\Delta_M) \\ \mbox{Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A question \\ \end{array}$ 

# Definition of Halftubes

We consider the normal exponential map of M defined by

$$\begin{array}{rcl} exp: & M \times \mathbb{R} & \longrightarrow \mathcal{N} \\ & (p,r) & \mapsto exp_p(r\nu) \end{array}$$

Let

$$T^+(r_0) := \exp\left(M \times (0, r_0)\right)$$

be the halftube in  $\mathcal{N}$  around M of radius  $r_0$ .

ほうしんほう

 $\begin{array}{c} A \mbox{ question} \\ Stability \mbox{ of } \Delta + V \\ Entropies \\ Comparison \mbox{ of volume entropy of } M \& \mbox{ Spec}(\Delta_M) \\ \mbox{ Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A \mbox{ question} \end{array}$ 

### Embedded halftube theorem

#### Theorem

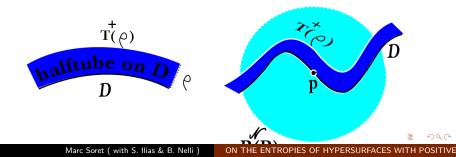
Let M be prop. embedded in a s.c. N, where M and N are spaces of bounded curvature. Suppose  $H \ge \epsilon > 0$ .

If  $\partial M = \emptyset$ , there exists an embedded half-tube  $T^+(\rho), \rho > 0$  contained in the mean-convex side of M.

If  $\partial M$  is compact, then there exists a compact subset K of M and an embedded half-tube  $T^+(\rho'), \rho' > 0$  of  $M \setminus K$  contained in the mean-convex side of M

### See also [MeeksTinaglia]

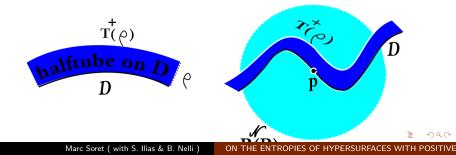
### Embedded halftube theorem $\implies$ volume comparison Weyl tube formula [Gray82] & expansion w.r.t. $\rho \implies$ $T^+(D) \sim \rho |D|_M$ (fig 1)



 $\begin{array}{c} A \text{ question} \\ \text{Stability of } \Delta + V \\ \text{Entropies} \\ \text{Comparison of volume entropy of } M \& \operatorname{Spec}(\Delta_M) \\ \text{Comparison of extrinsic and intrinsic volume of submanifolds} \\ \text{Total curvature entropy of cmc hypersurfaces} \\ A question \\ \end{array}$ 

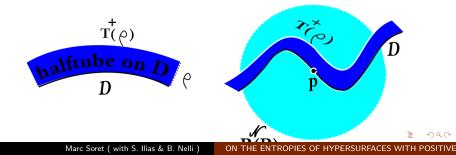
### Embedded halftube theorem $\implies$ volume comparison Weyl tube formula [Gray82] & expansion w.r.t. $\rho \implies$ $T^+(D) \sim \rho |D|_M$ (fig 1)

Apply to fig2 :  $|T^+(\rho) \cap B_p^{\mathcal{N}}(R)| \sim \rho |M \cap B_p^{\mathcal{N}}(R)|_M$ 



 $\begin{array}{c} A \text{ question} \\ \text{Stability of } \Delta + V \\ \text{Entropies} \\ \text{Comparison of volume entropy of } M \& \operatorname{Spec}(\Delta_M) \\ \text{Comparison of extrinsic and intrinsic volume of submanifolds} \\ \text{Total curvature entropy of cmc hypersurfaces} \\ A question \\ \end{array}$ 

### Embedded halftube theorem $\implies$ volume comparison Weyl tube formula [Gray82] & expansion w.r.t. $\rho \implies$ $T^+(D) \sim \rho |D|_M$ (fig 1) Apply to fig2 : $|T^+(\rho) \cap B_p^{\mathcal{N}}(R)| \sim \rho |M \cap B_p^{\mathcal{N}}(R)|_M$ EHT $\implies |T^+(\rho) \cap B_p^{\mathcal{N}}(R)|_{\mathcal{N}} \leq |B_p^{\mathcal{N}}(R)| \implies |B_R^{\mathcal{N}} \cap M|_M \sim$ $\frac{1}{\rho} |T^+(\rho) \cap B_R^{\mathcal{N}}| \leq \frac{1}{\rho} |B_r^{\mathcal{N}}|$



# Sketch of proof of the embedded halftube theorem

Two cases :

- 1. either  $M \cap T^+(\rho) = \emptyset$  for some  $\rho$
- 2. or  $\forall$  suff. small  $\rho > 0$ ,  $T^+(\rho) \cap M \neq \emptyset$ .

 $\begin{array}{c} A \mbox{ question} \\ Stability \mbox{ of } \Delta + V \\ Entropies \\ Comparison \mbox{ of volume entropy of } M \& \mbox{ Spec}(\Delta_M) \\ \mbox{ Comparison of extrinsic and intrinsic volume of submanifolds} \\ Total curvature entropy of cmc hypersurfaces \\ A \mbox{ question} \end{array}$ 

Sketch of proof of the EHT : case 1  $M \cap T^+(\rho) = \emptyset \implies T^+(\rho/2)$  embedded

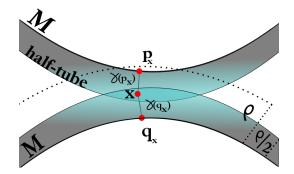


Figure : Self-intersection of a halftube of M in  $\mathcal{N}$ 

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

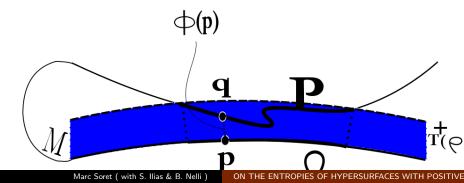
500

A question Stability of  $\Delta + V$ Entropies Comparison of volume entropy of M & Spec $(\Delta_M)$ Comparison of extrinsic and intrinsic volume of submanifolds Total curvature entropy of cmc hypersurfaces A question

### Sketch of proof of the EHT : case 2

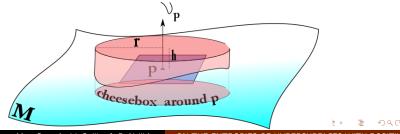
Suppose  $\forall$  suff. small  $\rho > 0$ ,  $T^+(\rho) \cap M \neq \emptyset$ .; then contradiction

 $T^+(\rho) \cap M$  defines a graph of a section  $\phi$  of the normal bundle of M on  $\Omega \subset M$ .  $\Omega := \{p \in M : t \leq \rho\}$  and  $\phi(p) = t$ .  $P := \{(p, \phi(p)) : p \in \Omega\}$ . M properly embedded  $\implies \phi(p) > 0$ .



#### Step 1 : $\|\phi\|_1 := (\sup_{\rho \in \Omega} |\phi| + \sup_{\rho \in \Omega} |\nabla \phi|) \le O(\rho)$ Cheesebox argument at $\rho \in M$ $\exists \rho M \text{ is loc}, \rho \text{ graph } G$ , defined on $D(\rho, \rho)$ of T M

 $\exists \rho \ M$  is loc. a graph  $G_{\rho}$  defined on  $D(p, \rho)$  of  $T_{\rho}M$ .  $G_{\rho} \subset D(p, \rho) \times [-h/2, h/2]$ , of radius  $\rho$  and height  $h = c\rho^{2}$  $G_{\rho}$  cuts the boundary of the cheesebox in  $\partial D(p, \rho) \times [-c\rho^{2}, c\rho^{2}]$ .



Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIV

### Step 1 : $\|\phi\|_1 \leq O( ho)$ Compare cheeseboxes at $ho \in M$ and $q \in P$

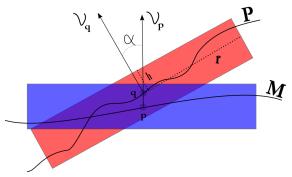
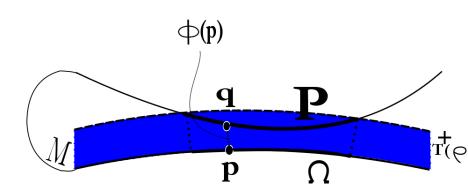


Figure : Intersection of the cheeseboxes at  $p \in M$  and at  $q \in P$  with  $\mathbb{R}\nu_p \oplus \mathbb{R}\nu_q$ 

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

nar

# $\|\phi\|_1 \leq O( ho) \implies \mathsf{P} \text{ is a graph}$



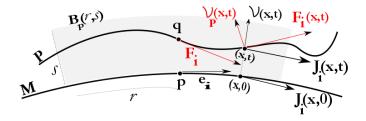
Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

DQC

- 4 同 2 4 回 2 4 回 2

Step 2 :  $\phi$  satisfies a unif. elliptic quasilin. PDE 0. Mean curvature equation of the section *P* defined by  $\phi$ 

$$nH_P(q) := -div_P(\nu_P)(q) = -\sum_{i=1}^n g_{\mathcal{N}}(\nabla_{F_i}\nu_P, F_i)(q),$$



Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

nar

### Step 2.1 Fermi fields : Local frame on P

$$F_{i}(x,\phi(x)) := \partial_{t} | \exp(\gamma_{i}(t),\phi(\gamma_{i}(t))), \quad i = 1, \cdots, n$$
  
$$\implies F_{i}(x,\phi(x)) = J_{i}(x,\phi(x)) + \phi_{i}(x)\nu(x,\phi(s)), \ (\phi_{i}(p) = \nabla_{e_{i}}\phi)$$
  
$$\left\{g_{\mathcal{N}}(\nu_{\mathcal{P}},F_{i}) = 0\right\}_{i=1,\cdots,n}, g_{\mathcal{N}}(J_{i},J_{n+1}) = 0, g_{\mathcal{N}}(J_{n+1},J_{n+1}) = 1,$$

$$\implies \nu_P := \frac{1}{W} \left( \nu - \sum_{i=1}^n g^{ij} \phi_i J_j \right).$$
 (2)

 $(g_{ij} := g_{\mathcal{N}}(J_i, J_j), W := \|\nu - \sum_{i=1}^n g^{ij} \phi_i J_j\| = \sqrt{1 + \|\nabla \phi\|^2}).$ 

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

医子宫医子宫下

#### Step 2.2 Mean curvature equation in Fermi coordinates Geodesic coordinates

$$\begin{cases} \tilde{g}_{ij} = g_{\mathcal{N}}(F_i, F_j), \tilde{g}^{ij} = g^{ij} - \frac{1}{W^2}g^{k,n+1}g^{l,n+1}\phi_{,k}\phi_{,l} \\ F_i = P_i^j e_j, P_i^j = \delta_i^j + \phi_i\delta_{n+1}^j \\ (\nabla_{J_{\alpha}}J_{\beta})^{\gamma} = \Gamma_{\alpha,\beta}^{\gamma}J_{\gamma}. \end{cases}$$

$$\implies nHW = \tilde{g}^{ij}(\phi_{,ij} + (\Gamma_{n+1,n+1}^{n+1} - \Gamma_{n+1,n+1}^{m}\phi_{,m})\phi_{,i}\phi_{,j} \\ -\Gamma_{n+1,(j}^{k}\phi_{,k}\phi_{,i}) + \Gamma_{n+1,(j}^{n+1}\phi_{,i}) - \Gamma_{ij}^{k}\phi_{,k} + \Gamma_{ij}^{n+1}).$$

Minimal surface equation [ColdingMinicozzi99]

#### Step 2.2 Mean curvature equation in Fermi coordinates Geodesic coordinates

$$\begin{cases} \tilde{g}_{ij} = g_{\mathcal{N}}(F_i, F_j), \tilde{g}^{ij} = g^{ij} - \frac{1}{W^2} g^{k,n+1} g^{l,n+1} \phi_{,k} \phi_{,l} \\ F_i = P_i^j e_j, P_i^j = \delta_i^j + \phi_i \delta_{n+1}^j \\ (\nabla_{J_{\alpha}} J_{\beta})^{\gamma} = \Gamma_{\alpha,\beta}^{\gamma} J_{\gamma}. \end{cases}$$

$$\Rightarrow \ \ nHW = \ \ \tilde{g}^{ij}(\phi_{,ij} + (\Gamma_{n+1,n+1}^{n+1} - \Gamma_{n+1,n+1}^{m}\phi_{,m})\phi_{,i}\phi_{,j} \\ -\Gamma_{n+1,(j}^{k}\phi_{,k}\phi_{,i}) + \Gamma_{n+1,(j}^{n+1}\phi_{,i}) - \Gamma_{ij}^{k}\phi_{,k} + \Gamma_{ij}^{n+1}).$$

Minimal surface equation [ColdingMinicozzi99]

#### Remark

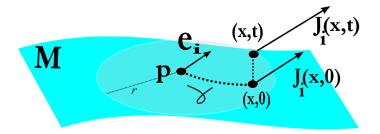
=

٢

This is not the mean curvature equation in harmonic coordinates

# Step 2.3 Expansion $H(\phi)$ w.r.t. $\rho$

$$nH_P = nH + \Delta_M \phi + O(\rho).$$



Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

DQC

### Step 2.4 Proof : Jacobi fields

We extend the vectors  $\{e_i\}_{i\neq 1}$  to Jacobi fields  $\{J_i\}_{i=1,\dots n}$  along  $\gamma$  such that  $J_1 = T$  on  $\gamma$ . The Jacobi fields  $\{J_i\}_{i\neq 1}$  are defined according to the evolution equation

$$J_i''(y) + R_M(y)(J_i, T)T(y) = 0, \quad i \neq 1 \quad \forall y \in \gamma \subset exp(D(p, \rho))$$
(3)

(where  $J_i''(y) := \nabla_T \nabla_T J_i(y)$  and  $R_M$  is the curvature tensor of M), with the second order initial conditions at p:

$$\begin{cases} J_i(p) = e_i \\ \nabla_T J_i(p) = 0. \end{cases}$$
(4)

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

# Step 2.5 Proof : Estimates of Jacobi fields

Since the curvature of M is bounded, Rauch Comparison Theorem

$$\implies$$
  $J_i(x) = J_i(p) + O(\rho^2), \qquad x \in \gamma \subset exp(D(p, \rho)),$ 

where  $O(\rho^2)$  depends on bounds of the curvature tensor  $R_M$  of M.

### Step 2.5 Proof : Estimates of Jacobi fields

Since the curvature of M is bounded, Rauch Comparison Theorem

$$\implies$$
  $J_i(x) = J_i(p) + O(\rho^2), \qquad x \in \gamma \subset exp(D(p, \rho)),$ 

where  $O(\rho^2)$  depends on bounds of the curvature tensor  $R_M$  of M.

$$\implies g_{ij}(x) := g_M\left(J_i(x), J_j(x)\right) = \delta_{ij} + 0(\rho^2) \qquad x \in \gamma \subset exp\left(D\left(p, \rho\right)\right)$$

# Step 2.6 Proof : Fermi fields

Evolution equation:

$$J_i''(x,s) + R_{\mathcal{N}}(x,s)(\nu,J_i)\nu = 0 \quad x \in \gamma, s \in [0,\sigma]$$
(5)

together with the second order initial conditions

$$\begin{cases} J_i(x,0) = J_i(x) \\ \nabla_{\nu} J_i(x,0) = A(x) J_i(x) \quad i = 1, \cdots n \end{cases}$$
(6)

 $(J_i(x,s) := J_i(exp_x(s\nu_M)), \nu(x,s)$  is the unit tangent to the normal geodesics at  $exp_x(s\nu_M), R_N(x,s) := R_N(exp_x(s\nu_M)),$  $J''_i(x,s) := \nabla_{\nu}\nabla_{\nu}J_i(x,s)$ - and A(x) is the shape operator of M at  $x \in \gamma$ ).

# Step 2.6 Proof : Estimates of Fermi fields

Compare  $J_i(x, s)$  with  $J_i(p, 0)$ .  $||R_N|| \le c$  and Rauch comparison theorem for Fermi fields

$$\implies J_i(x,s) = J_i(x,0) + O(\sigma) \quad x \in \gamma, s \in [0,\sigma].$$
(7)

where  $O(\sigma)$  depends on the curvature of the ambient space (from the term  $R_N$  in Fermi's equation (5)) and also on the principal curvatures of M at x as one can see from the second initial condition of (6).

# Step 2.7 Proof : Estimates of $(\nabla_{J_{n+1}}J_{\beta})$

Riccati equation :

$$\begin{cases} J'_{i}(x,s) := \nabla_{\nu} J_{j}(x,s) = A(x,s) J_{i}(x,s) \\ A'(x,s) := \nabla_{\nu} A(x,s) = -A^{2}(x,s) + R_{\nu}(x,s). \end{cases}$$
(8)

(  $R_{\nu}(x,s)J := R_{\mathcal{N}}(x,s)(J,\nu)\nu$ .) Riccati's comparison argument : and the fact that  $s \leq \sigma \leq c\rho^2$ 

$$\implies \begin{cases} J'_i(x,s) = J'_i(x,0) + O(\rho^2), & x \in \exp\left(D(p,\rho),0\right) \subset M, \ 0 \le s \\ A'(x,s) = A(x,0) + O(\rho^2), & x \in \exp\left(D(p,\rho),0\right) \subset M, \ 0 \le s \end{cases}$$
(9)

 $O(\rho^2)$  depends on bounds of the shape operator A of M and bounds of  $R_N$ .

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

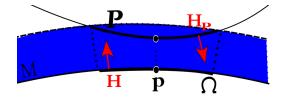
# Step 2.8 Proof : estimates of $(\nabla_{J_{\alpha}}J_{\beta})$

Evolution equation for  $\nabla_{J_i} J_j(x, s)$ : derivate Fermi equation with second order initial conditions:  $\nabla_{J_i} J_j(x)$  and  $\nabla_{\nu} (\nabla_{J_i} J_j)(x)$ . Riccati comparison argument yields again

$$\nabla_{J_i} J_j(x,s) = \nabla_{J_i} J_j(p) + O(\rho), \qquad x \in exp(D(p,\rho)), 0 \le s \le c\rho^2$$
(10)  
where  $O(\rho)$  depends on the curvatures  $R_M$  and  $R_N$  and their first derivatives.

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

### Step 3 : Consequences of $nH_P = nH + \Delta \phi + O(\rho)$ $H \ge \varepsilon \Longrightarrow H_P \le -\varepsilon . \Longrightarrow \Delta \phi \le -2\varepsilon.$



Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

9QC

#### Step 3 : Consequences of $nH_P = nH + \Delta \phi + O(\rho)$

$$\begin{array}{l} H \geq \varepsilon \Longrightarrow H_P \leq -\varepsilon. \Longrightarrow \Delta \phi \leq -2\varepsilon. \\ \Delta \psi_R \geq -\varepsilon \text{ on } B_R \cap \Omega.. \text{ Max. principle } \Longrightarrow \phi \geq \psi_R. \\ R \mapsto \infty \Longrightarrow T^+(\beta) \text{ is embedded.} \end{array}$$

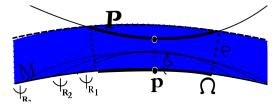


Figure :  $\Psi_R := \beta(1 - \frac{r^2}{R^2}), \ \Delta r_p \leq c \implies \Delta_M \Psi_R \geq -\epsilon$  in the weak sense

# Remarks on the EHT

 $(v, u) \in \mathbb{R} \times [0, \epsilon], ds^2 = j^2(u, v) du^2 + dv^2, j(u, v) = e^{f(u, v)}$ 

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

nar

## Remarks on the EHT

$$(v, u) \in \mathbb{R} \times [0, \epsilon], ds^2 = j^2(u, v) du^2 + dv^2, j(u, v) = e^{f(u, v)}$$
  
 $f_v = \frac{j_{,u}}{j} = \kappa_g = -K - (\kappa_g)^2, \kappa_g(u, 0) = 0$ 

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

DQC

**□ > < = > <** 

-

### Remarks on the EHT

$$(v, u) \in \mathbb{R} \times [0, \epsilon], ds^2 = j^2(u, v)du^2 + dv^2, j(u, v) = e^{f(u, v)}$$
  

$$f_v = \frac{j_{,u}}{j} = \kappa_g = -K - (\kappa_g)^2, \kappa_g(u, 0) = 0$$
  
if  $K := a^2(u)$  take  

$$f(u, v) = ln(\cos(a(u)v)) \implies f_v = -atan(av)$$

DQC

**□ > < = > <** 

-

### Remarks on the EHT

$$(v, u) \in \mathbb{R} \times [0, \epsilon], ds^2 = j^2(u, v)du^2 + dv^2, j(u, v) = e^{f(u, v)} f_v = \frac{j_{,u}}{j} = \kappa_g = -K - (\kappa_g)^2, \kappa_g(u, 0) = 0 if K := a^2(u) take f(u, v) = ln(cos(a(u)v)) \implies f_v = -atan(av) mean curvature equation:  $\kappa (j^2 + {\phi'}^2)^{3/2} = j\phi'' - 2j_u \phi'^2 - j_u \phi' + j_v.$$$

9QC

- 4 同 2 4 日 2 4 日 2

# Remarks on the EHT

$$(v, u) \in \mathbb{R} \times [0, \epsilon], ds^{2} = j^{2}(u, v)du^{2} + dv^{2}, j(u, v) = e^{f(u,v)}$$

$$f_{v} = \frac{j_{,u}}{j} = \kappa_{g} = -K - (\kappa_{g})^{2}, \kappa_{g}(u, 0) = 0$$
if  $K := a^{2}(u)$  take
$$f(u, v) = ln(\cos(a(u)v)) \implies f_{v} = -atan(av)$$
mean curvature equation:  $\kappa(j^{2} + \phi'^{2})^{3/2} = j\phi'' - 2j_{u}\phi'^{2} - j_{u}\phi' + j_{v}.$ 
for small  $v : \phi'' + ((a^{2})_{u}\phi(\phi' + 2\phi'^{2}) - a^{2})\phi = j^{2}(1 + (\frac{\phi'}{j})^{2})^{3/2}$ 

$$\exists$$
 embedded  $\kappa = 1$  curve in surface with  $1 \ge K \ge 0$  with no embedded half-tube.

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

**□ > < = > <** 

-

9QC

# Remarks on the EHT

$$(v, u) \in \mathbb{R} \times [0, \epsilon], ds^{2} = j^{2}(u, v)du^{2} + dv^{2}, j(u, v) = e^{f(u,v)}$$

$$f_{v} = \frac{j_{,u}}{j} = \kappa_{g} = -K - (\kappa_{g})^{2}, \kappa_{g}(u, 0) = 0$$
if  $K := a^{2}(u)$  take
$$f(u, v) = ln(\cos(a(u)v)) \implies f_{v} = -atan(av)$$
mean curvature equation:  $\kappa(j^{2} + \phi'^{2})^{3/2} = j\phi'' - 2j_{u}\phi'^{2} - j_{u}\phi' + j_{v}.$ 
for small  $v : \phi'' + ((a^{2})_{u}\phi(\phi' + 2\phi'^{2}) - a^{2})\phi = j^{2}(1 + (\frac{\phi'}{j})^{2})^{3/2}$ 

$$\exists \text{ embedded } \kappa = 1 \text{ curve in surface with } 1 \ge K \ge 0 \text{ with no}$$
embedded half-tube.

But : K is only piecewise continuous

nar

3 K 4

### Remarks on Schauder estimates

A counterexample to Schauder estimates for elliptic op. with unbounded coeff.

[Priola01]

$$\begin{cases} \psi - \frac{1}{2}\psi_{,xx} - \frac{1}{2}\psi_{,yy} + y\psi_{,y} = |\cos(y)| \quad x > 0\\ \psi(0, y) = 0, \quad y \in \mathbb{R}. \end{cases}$$

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

nar

# Remarks on Schauder estimates

A counterexample to Schauder estimates for elliptic op. with unbounded coeff.

[Priola01]

$$\begin{cases} \psi - \frac{1}{2}\psi_{,xx} - \frac{1}{2}\psi_{,yy} + y\psi_{,y} = |\cos(y)| \quad x > 0\\ \psi(0, y) = 0, \quad y \in \mathbb{R}. \end{cases}$$

But : there in some cases there are Schauder estimates with unbounded coefficients.

 $\begin{array}{c} A \text{ question} \\ \text{Stability of } \Delta + V \\ \text{Entropies} \\ \text{Comparison of volume entropy of } M \& \text{Spec}(\Delta_M) \\ \text{Comparison of extrinsic and intrinsic volume of submanifolds} \\ \hline \textbf{Total curvature entropy of cmc hypersurfaces} \\ A \text{ question} \\ \end{array}$ 

### Total curvature entropy of cmc hypersurfaces

Recapitulation (stated for cmc in  $\mathbb{R}^n$ )

- ► Complete noncompact stable ends of positive cmc are of exponential volume growth (nH<sup>2</sup> ≤ \frac{\mu\_M^2}{4}).
- ► Properly embedded complete noncompact stable ends of bounded curvature are minimal (nH<sup>2</sup> ≤ \frac{\mu\_{M}^{2}}{4} = 0)

• What are cmc with 
$$\mu_{\mathcal{T}_p} = 0$$
 ?

Total curvature entropy cmc hypersurfaces Caccioppoli's inequality of type III -  $H \neq 0$  [IliasNelliSoret12]

#### Theorem

Let M be a complete cmc hypersurface immersed in a manifold of cnst curvature c. Assume M has finite index and  $n \leq 5$ . Then there exist a compact subset K in M and a constant  $\gamma$  such that, for any  $\phi \in C_0^{\infty}(M \setminus K)$ 

$$\gamma \int_{\mathcal{M} \setminus \mathcal{K}} |\mathcal{A}_0|^{2x} \phi^2 \leq \mathcal{D} \int_{\mathcal{M} \setminus \mathcal{K}} |\mathcal{A}_0|^{2x} |\nabla \phi|^2$$

provided either (1) c = 0 or  $1, x \in [1, \frac{2\sqrt{n-1}}{n} \left(1 + \sqrt{1 - \frac{n-2}{2\sqrt{n-1}}}\right))$ or (2)  $c = -1, \varepsilon > 0, x \in [1, x_2 - \varepsilon], H^2 \ge g_n(x).$ 

# Total curvature entropy of cmc hypersurfaces

#### Proposition

Let  $w \in L^1_{loc}(M; \mathbb{R}^+)$  and  $W(R) := \int_{B_R} w$ . Assume that the entropy of W is zero. If for some positive constant C, and compact  $K \subset M$ , w satisfies

$$\int_{M\setminus K} w\psi^2 \leq C \int_{M\setminus K} w |\nabla \psi|^2, \qquad \forall \psi \in W^{1,2}_0(M\setminus K),$$

then  $\int w < \infty$ 

With the same hypothesis as in Caccioppoli inequality  $\int |A_0|^{2x} < \infty \implies |A_0| = 0$  [IliasNelliSoret12]

### Total curvature entropy of cmc hypersurfaces

#### Theorem

There is no complete noncompact stable hypersurface M with constant positive mean curvature H in  $\mathbb{R}^{n+1}$ ,  $n \leq 5$ , with  $\mu_{\mathcal{T}_p} = 0$  for some  $p \in [1, \frac{2\sqrt{n-1}}{n} \left(1 + \sqrt{1 - \frac{n-2}{2\sqrt{n-1}}}\right))$ 

naa

# Stable CMC vs Stable minimal

#### Let *M* be a stable minimal hypersurface of $\mathbb{R}^{n+1}$

- $|B(r)|_M \le r^{5+\epsilon} \Longrightarrow M$  is a hyperplane
- ► But is a prop. emb. minimal hypersurface with bounded curvature and |B(r)|<sub>M</sub> ~ r<sup>10</sup> (n = 8).
- ► There is no stable minimal hypersurface with bounded curvature and embedded tube in ℝ<sup>n+1</sup>, n ≤ 5

#### Question

Is a noncompact complete stable constant mean curvature hypersurface properly embedded in  $\mathbb{R}^{n+1}$ , for  $7 \ge n \ge 3$ , necessarily a hyperplane ?

reference2 reference1

Marc Soret ( with S. Ilias & B. Nelli )

### References I

- L. BARBOSA, P. BÉRARD: Eigenvalue and "twisted" eigenvalue problems, applications to cmc surfaces, J. Math. Pure Appl. 79, 5 (2000) 427-450.
- L. BARBOSA, M. DO CARMO: Stability of hypersurfaces with constant mean curvature, Math. Z., 185 (1984) 339-353.
- L. BARBOSA, M. DO CARMO, J. ESCHENBURG: Stablity of hypersurfaces with constant mean curvature in a Riemannian manifold, Math. Z., 197 (1988) 123-128.
- P. BÉRARD, M. DO CARMO, W. SANTOS: Complete hypersurfaces with constant mean curvature and finite total curvature, Annals Glob. Anal. Geom. 16 (1998) 273-290.

# References II

- V. G. BONDARENKO: Covariant derivatives of Jacobi fields on a manifold of nonpositive curvature, Ukrainian Mathematical Journal., Volume 50, Number 6, 185 (1998) 857-869.
- R. BROOKS: Exponential Growth and the Spectrum of the Laplacian Proceedings of the American Mathematical Society, Vol. 82, No. 3 (Jul., 1981) 473-477.
- R. BROOKS: Exponential Growth and the Spectrum of the Laplacian Proceedings of the American Mathematical Society, Vol. 82, No. 3 (Jul., 1981) 473-477.

# References III

- **R**. BROOKS: On the spectrum of non-compact manifold with finite volume, Math. Zeit. 187 (1984) 425-432.
- G. CARRON: *Inégalités isopérimétriques et inégalités de Faber-Krahn,* Séminaire de géométrie spectrale et géométrie, tome 13 (1994-1995) 63-66.
- J. CHEEGER: A lower bound for the smallest eigenvalue of the Laplacian, in Problems in analysis (ed. R.C. Gunning). A symposium in honor os Salomon Bochner (Princeton 1969), Princeton University Press (1970) 195-199.
- J. CHEEGER, D. EBIN : Comparison Theorems in Riemannian Geometry,, American Elsevier, New-York, 1975

# References IV

- X. CHENG: On Constant Mean Curvature Hypersurfaces with Finite Index, Arch. Math. 86 (2006) 365-374.
- A. DA SILVEIRA: Stability of Complete Noncompact Surfaces with Constant Mean Curvature, Math. Ann. 277 (1987) 629-638.
- M. DO CARMO , *Hypersurfaces of constant mean curvature*,Lecture Notes in Mathematics, Vol 1410, p. 133.
- M. DO CARMO, D. ZHOU: Eigenvalue estimate on complete noncompact Riemannian manifolds and applications, Trans. Amer. Math. Soc. 351 (4) (1999) 1391-1401.

# References V

- M. F. ELBERT, B. NELLI, H. ROSENBERG: Stable constant mean curvature hypersurfaces, Proc. Amer. Math. Soc. 135,10 (2007) 3359-3366.
- D. FISCHER-COLBRIE: On complete minimal surfaces with finite Morse index in three manifolds, Invent. Math. 82 (1985). 121-132
- D. FISCHER-COLBRIE, R. SCHOEN: The structure of complete stable minimal surfaces in 3-manifolds of non negative scalar curvature, Comm. Pure Appl. Math. 33 (1980) 199-211.

# References VI

- K. FRENSEL: Stable complete surfaces with constant mean curvature, Bull. of the Brazilian Math. Soc.Volume 27, Number 2 (1996) 129-144.
- D. GILBARG, N.S. TRUDINGER: *Elliptic Partial Differential Equations of Second order*, Springer Verlag, 1983.
- V. GIMENO, V. PALMER: Volume growth of submanifolds and the Cheeger isoperimetric constant, arXiv:1104.5625v2 [math.DG].
- A. GRAY: *Tubes*, Addison-Wesley, 1990.

# References VII

- E. HEBEY: Sobolev Spaces on riemannian manifolds, Lecture Notes in Maths 1635.
- W.Y. HSIANG: Generalized rotational hypersurfaces of constant mean curvature in the euclidean spaces, J. Diff. Geom. 17 (1982) 337-356.
- W.Y. HSIANG: On Generalization of theorems of A.D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature, Duke Math. Journal 49 (3) (1982) 485-496.
- Y. HIGUCHI: A remark on exponential growth and the spectrum of the Laplacian, Kodai math. J. 24 (2001) 42-47.

## References VIII

- S. ILIAS, B. NELLI, M. SORET: Caccioppoli's inequality on constant mean curvature hypersurfaces in Riemannian manifolds, , arXiv:1107.3653v2 , to appear in Annals Glob. Anal. Geom.
- H. KARCHER : Manifolds of nonpositive curvature MAA studies in mathematics v. 27 (1989) Studies in mathematics (Mathematical Association of America)
- L. KARP Differnetial inequalities on complete Riemannian manifolds and applications, Math. Ann. 272 (1985) 449-459.

## References IX

- F. LOPEZ, A. ROS: Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helvetici 64 (1989) 34-43.
- E. L. LIMA: The Jordan-Brouwer Separation Theorem for Smooth Hypersurfaces The American Mathematical Monthly, Vol. 95, No. 1 (Jan., 1988), pp. 39-42.
- B. P. LIMA, J. F. MONTENEGRO, N. L. SANTOS: *Eigenvalues Estimates for the p-Laplace Operator on Manifolds,* arXiv:0808.2028v1 [math.DG].
  - W. F. MOSS, J. PIEPENBRINK: *Positive solutions of elliptic equations* Pacific J. Math., 75, 1 (1978), 219-226.

## References X

- W. MEEKS III, J. PEREZ, A. ROS: *Stable constant mean curvature surfaces,* Handbook of Geometric Analysis n 1, International Press of Boston (2008).
- F. MORGAN: *Geometric Measure Theory, a beginner's guide,* Academic Press (1988).
- M. NAKAI, L. SARIO: Quasi-harmonic classification, Proceedings of the AMS, 31, 1 (1972) 165-169.
- B. NELLI, M. SORET: Stably embedded minimal hypersurfaces, Math. Z. 255, 3 (2007) 493-514.

## References XI

- H. OKUMURA: Infimum of the exponential volume growth and the bottom of the essential spectrum of the Laplacian, arXiv:0707.0185v3 [math.DG].
- B. PALMER: PhD thesis, Stanford (1986).
- R. REILLY: Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 8 (1973) 465-477.
- R. SCHOEN, L. SIMON, S.T. YAU: Curvature Estimates for Minimal Hypersurfaces, Acta Math. 134 (1975) 275-288.

## References XII

- R. SCHOEN, S. T. YAU: Lectures on Differential Geometry, International Press (1994).
- M. SORET: *Minimal surfaces with bounded curvature*, Comm. in Geom. and Analysis 9 (2001) 921-950.
- J. SPRUCK: Remarks on the stability of minimal hypersurfaces of ℝ<sup>n</sup>, Math. Zeit. 144 (1975) 169-174.
- Y. B. SHEN, X. H. ZHU: *Rigidity of stable minimal hypersurfaces*, Math. Ann. 309 (1997) 107- 116.

 $\begin{array}{c} A \mbox{ question} \\ Stability of \Delta + V \\ Entropies \\ Comparison of volume entropy of M \& Spec(\Delta_M) \\ Comparison of extrinsic and intrinsic volume of submanifolds \\ Total curvature entropy of cmc hypersurfaces \\ A \mbox{ question} \end{array}$ 

## References XIII

J. TYSK: Finiteness of index and total scalar curvature for minimal hypersurfaces: Proc. of the AMS, 105, 2, (1989) 429-435.

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

| A question<br>Stability of $\Delta + V$<br>Entropies<br>Comparison of volume entropy of $M$ & Spec $(\Delta_M)$<br>Comparison of extrinsic and intrinsic volume of submanifolds<br>Total curvature entropy of cmc hypersurfaces<br>A question | $\begin{array}{l} \mbox{Stability of } \dot{\Delta} + V \\ \mbox{Entropies} \\ \mbox{arison of volume entropy of } M \& \mbox{Spec}(\Delta_M) \\ \mbox{xtrinsic and intrinsic volume of submanifolds} \\ \mbox{fotal curvature entropy of cmc hypersurfaces} \end{array}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Entropies

### Example

$$\mu_{v} = 0$$

$$v(r) = \sum_{p \le N} a_{p} r^{p}, v(r) = e^{r^{\alpha}}, \alpha < 1$$

$$\mu_{w} = \alpha$$

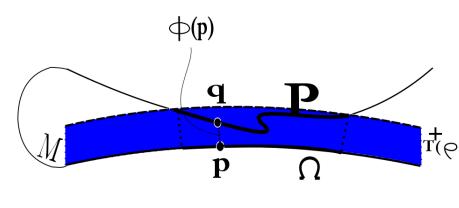
$$w(r) = v(r)e^{\alpha r}$$

#### ◀ retour

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

500

# $M \cap T^+(M) \neq \emptyset$



(1) (2)

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE

- 4 同 ト 4 ヨ ト 4 ヨ ト

9QC

The cheesebox property : Bounds on the first derivatives of curvature are necessary I

Consider the general case, where the ambient space  $\mathcal{N}$  is not necessarily Euclidean. There exists a radius  $\rho_0$  such that for each point  $p \in \mathcal{N}$ , the exponential chart is a diffeomorphism  $f_p: U(:= B_{\mathbb{R}^{n+1}}(0, \rho_0)) \subset \mathbb{R}^{n+1} \longrightarrow V := f_p(U) \subset \mathcal{N}$ . Furthermore, since  $\mathcal{N}$  has bounded curvature and bounded first derivatives of curvature, the diffeomorphism  $f_p$  is a  $C^1$ -norm which is uniformly bounded with respect to p.

The cheesebox property : Bounds on the first derivatives of curvature are necessary II

The previous result of this paragraph concerning Euclidean cheeseboxes applies to  $f_p^{-1}(M) \cap V$  and  $f_p^{-1}(P) \cap V$  to prove the  $C^1$ -uniformly boundedness  $\phi \circ f_p$  with respect to  $p \in M$ . Since  $f_p$  has a  $C^1$ -norm uniformly bounded with respect to p, this is also the case for  $\phi$ .

Sketch of proof: barrier functions on  $B_R$  | Construction of functions  $\psi_R$  such that  $\Delta \psi_R \ge \varepsilon$  on  $B_R \cap \Omega$ .

Let *r* be the distance function from a fixed point of *M*, and consider the radial test function  $\psi_R(x) = f_R \circ r(x)$  where

$$f_{R}(r) := \begin{cases} \beta \left(1 - \left(\frac{r}{R}\right)^{2}\right) & \forall r \leq R, \\ 0 & \forall r \geq R. \end{cases}$$

with  $\beta = \rho - \delta$ , for small positive  $\delta$ . Notice that  $\psi_R$  vanishes on  $\partial B_R \cap \Omega$  and  $\psi_R \leq \phi$  on  $B_R \cap \partial \Omega$ , since  $\phi|_{\partial\Omega} = \rho$ . Therefore  $\psi_R \leq \phi$  on  $\partial(\Omega \cap B_R)$ .

Sketch of proof: barrier functions on  $B_R$  | Construction of functions  $\psi_R$  such that  $\Delta \psi_R \ge \varepsilon$  on  $B_R \cap \Omega$ .

Let *r* be the distance function from a fixed point of *M*, and consider the radial test function  $\psi_R(x) = f_R \circ r(x)$  where

$$f_{R}(r) := \begin{cases} \beta \left(1 - \left(\frac{r}{R}\right)^{2}\right) & \forall r \leq R, \\ 0 & \forall r \geq R. \end{cases}$$

with  $\beta = \rho - \delta$ , for small positive  $\delta$ . Notice that  $\psi_R$  vanishes on  $\partial B_R \cap \Omega$  and  $\psi_R \leq \phi$  on  $B_R \cap \partial \Omega$ , since  $\phi|_{\partial\Omega} = \rho$ . Therefore  $\psi_R \leq \phi$  on  $\partial(\Omega \cap B_R)$ .

## Sketch of proof: barrier functions on $B_R$ II Construction of functions $\psi_R$ such that $\Delta \psi_R \ge \varepsilon$ on $B_R \cap \Omega$ .

*M* has bounded curvature  $\implies \exists k > 0 : Ric_M \ge -(n-1)k^2$ . Standard comparison theorems  $\implies \Delta r \le \frac{n-1}{r}(1+kr)$ **Remark** inequality holds outside the cut-locus of *M* and holds in the weak sense at any point of *M*. Computation gives  $\Delta \psi_R \ge -\frac{2\beta}{R^2}(n+(n-1)kR) \ge -\varepsilon$ , for *R* large.  $\Delta \phi \le \Delta \psi_R$  on  $B_R \cap \Omega$ , for *R* large. Then, by Corollary ??,  $\phi \ge \psi_R$  on  $B_R \cap \Omega$ , for *R* large. Letting  $R \to \infty$  we obtain  $\phi \ge \beta$ on  $\Omega$ . Therefore  $\phi \ge \rho - \delta$  in  $\Omega$  for any  $\delta > 0$ . Thus  $\phi \ge \rho$  in  $\Omega$ .

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE



## Jacobi fields expansion I

 $J_1 = T$  on  $\gamma$ . The Jacobi fields  $\{J_i\}_{i \neq 1}$  are defined according to the evolution equation

$$J_i''(y) + R_M(y)(J_i, T)T(y) = 0, \quad i \neq 1 \quad \forall y \in \gamma \subset exp(D(p, \rho))$$

(where  $J_i''(y) := \nabla_T \nabla_T J_i(y)$  and  $R_M$  is the curvature tensor of M), with the second order initial conditions at p:

$$\begin{cases} J_i(p) = e_i \\ \nabla_T J_i(p) = 0. \end{cases}$$

## Jacobi fields expansion II

Since the curvature of M is bounded, the classical Rauch Comparison Theorem and equation (62) yield the following expansion of  $J_i(x)$  in terms of the distance  $\rho$ :

$$J_i(x) = J_i(p) + O(\rho^2), \qquad x \in exp(D(p, \rho)),$$

 $g_{ij}(x) := g_M(J_i(x), J_j(x)) = \delta_{ij} + 0(\rho^2) \qquad x \in \gamma \subset exp(D(p, \rho))$ where  $O(\rho^2)$  depends on bounds of the curvature tensor  $R_M$  of M.

Marc Soret ( with S. Ilias & B. Nelli ) ON THE ENTROPIES OF HYPERSURFACES WITH POSITIVE