Sobre la clasificación de los espacios lorentzianos r-ésimo simétricos

Miguel Sánchez Caja

Universidad de Granada

Seminario Geometría 5/04/2013

Introduction

Aim of the talk:
■ To classify the 2nd-symmetric Lorentzian manifolds, i.e.:

$$
\nabla^{2} R:=\nabla(\nabla R)=0
$$

Introduction

Aim of the talk:
■ To classify the 2nd-symmetric Lorentzian manifolds, i.e.:

$$
\nabla^{2} R:=\nabla(\nabla R)=0
$$

- To provide properties and open questions on the r th-symmetric case $\nabla^{r} R=0$ and, in general on the implications of

$$
\nabla^{r} T=0
$$

for any tensor field.

Introduction

Senovilla '08, who introduced its systematic study, pointed out a good number of applications including:

Introduction

Senovilla '08, who introduced its systematic study, pointed out a good number of applications including:

- Penrose limit type constructions

■ "Super-energy" tensor

- Higher order Lagrangian theories, supergravity, vanishing of quantum fluctuations...

Introduction

But for me, the most basic mathematical reason suffices:
■ Riemannian case: $\nabla^{r} R=0 \Rightarrow \nabla R=0$

Introduction

But for me, the most basic mathematical reason suffices:
■ Riemannian case: $\nabla^{r} R=0 \Rightarrow \nabla R=0$

- So, instead of $\nabla^{2} R=0$, semi-symmetric spaces were introduced (Cartan, Szabó):

$$
\begin{aligned}
\nabla^{2} R(X, Y ; \ldots) & -\nabla^{2} R(Y, X ; \ldots)= \\
& =\nabla_{X}\left(\nabla_{Y} R\right)-\nabla_{Y}\left(\nabla_{X} R\right)-\nabla_{[X, Y]} R \\
& =: R(X, Y) \cdot R=0
\end{aligned}
$$

Introduction

But for me, the most basic mathematical reason suffices:
■ Riemannian case: $\nabla^{r} R=0 \Rightarrow \nabla R=0$

- So, instead of $\nabla^{2} R=0$, semi-symmetric spaces were introduced (Cartan, Szabó):

$$
\begin{aligned}
\nabla^{2} R(X, Y ; \ldots) & -\nabla^{2} R(Y, X ; \ldots)= \\
& =\nabla_{X}\left(\nabla_{Y} R\right)-\nabla_{Y}\left(\nabla_{X} R\right)-\nabla_{[X, Y]} R \\
& =: R(X, Y) \cdot R=0
\end{aligned}
$$

- Lorentzian and higher signatures: $\nabla^{r} R=0 \nRightarrow \nabla R=0$

Introduction

- So, a ladder of conditions appear in the Lorentzian case: Locally symmetric \subset 2nd-symmetric \subset semi-symmetric

Introduction

■ So, a ladder of conditions appear in the Lorentzian case: Locally symmetric $\subset \mathbf{2 n d}$-symmetric \subset semi-symmetric How hadn't 2nd-symmetry been studied before?

Introduction

Main result to be proven:
Theorem (Blanco, Senovilla, -)
Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

- (Local classification). (M, g) is locally isometric to a product

Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, -)

Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

- (Local classification). (M, g) is locally isometric to a product
- a (non-flat) symmetric Riemannian space (N, g_{N})
- a proper 2 nd-order Cahen-Wallach space $\left(\mathbb{R}^{d+2}, g_{A}\right)$, $g_{A}=-2 d u\left(d v+\left(\mathbf{a}_{\mathrm{ij}} \mathbf{u}+\mathbf{b}_{\mathrm{ij}}\right) x^{i} x^{j} d u\right)+\delta_{i j} d x^{i} d x^{j}$ with some $a_{i j} \neq 0$.

Introduction

Main result to be proven:

Theorem (Blanco, Senovilla, -)

Let (M, g) be a properly 2nd-symmetric Lorentzian n-manifold:

- (Local classification). (M, g) is locally isometric to a product
- a (non-flat) symmetric Riemannian space (N, g_{N})
- a proper 2nd-order Cahen-Wallach space $\left(\mathbb{R}^{d+2}, g_{A}\right)$, $g_{A}=-2 d u\left(d v+\left(\mathbf{a}_{\mathrm{ij}} \mathbf{u}+\mathbf{b}_{\mathrm{ij}}\right) x^{i} x^{j} d u\right)+\delta_{i j} d x^{i} d x^{j}$ with some $a_{i j} \neq 0$.
- (Global classification). Moreover, if (M, g) is 1-connected and geodesically complete, then it is globally isometric to $\left(\mathbb{R}^{d+2} \times N, g_{A} \oplus g_{N}\right)$.

Local symmetry vs. 2nd-symmetry

Characterizations of local symmetry vs 2nd-symmetry

Characterizations of local symmetry vs 2nd-symmetry

Local symmetry

Proposition

For a (connected) semi-Riemannian manifold (N, h), they are equivalent:
(i) (N, h) is locally symmetric, i.e. $\nabla R=0$.
(ii) If X, Y and Z are parallel vector fields along a curve γ, then so is $R(X, Y) Z$.
(iii) The sectional curvature of non-degenerate planes is invariant under parallel transport
(iv) The local geodesic symmetry s_{p} is an isometry at any $p \in N$.
(v) (N, h) is locally isometric to a symmetric space.

Characterizations of local symmetry vs 2nd-symmetry

Remark

" (N, h) is locally isometric to a symmetric space"
\rightsquigarrow as a difference with the locally homogeneous case, as there exists even Riemannian non-regular ones (Kowalski'97)

Characterizations of local symmetry vs 2nd-symmetry

2nd symmetry

Lemma

For a semi-Riemannian (N, h), they are equivalent:

- Skew symmetry of $\nabla^{2} R$ in the derivatives slots.
- For any non-degenerate tangent plane $\Pi_{p} \subset T_{p} N$, its parallel transport Π_{γ} along any geodesic γ, the derivative of its sectional curvature $\frac{d}{d \tau}\left(K\left(\Pi_{\gamma}\right)\right)$ is a constant along γ.
- For any parallelly propagated vector fields X, Y, Z along any geodesic γ, the vector field $\left(\nabla_{\gamma^{\prime}} R\right)(X, Y) Z$ is itself parallelly propagated along γ.

Characterizations of local symmetry vs 2nd-symmetry

Proposition

For a semi-Riemannian (N, h), they are equivalent:
(i) (N, h) is 2nd-symmetric, $\nabla \nabla R=0$
(ii) (N, h) is semi-symmetric $(R(X, Y) R=0)$ and satisfies any of the equivalent conditions to skew-symmetry in the lemma .
(iii) If V, X, Y, Z are parallelly propagated vector fields along any curve, then so is $\left(\nabla_{V} R\right)(X, Y) Z$.

Characterizations of local symmetry vs 2nd-symmetry

Proposition

For a semi-Riemannian (N, h), they are equivalent:
(i) (N, h) is 2nd-symmetric, $\nabla \nabla R=0$
(ii) (N, h) is semi-symmetric $(R(X, Y) R=0)$ and satisfies any of the equivalent conditions to skew-symmetry in the lemma .
(iii) If V, X, Y, Z are parallelly propagated vector fields along any curve, then so is $\left(\nabla_{V} R\right)(X, Y) Z$.

Remark

Characterizations in terms of an analog of the geodesic symmetry or local isometries to a model space are conspicuously absent.

Classification locally symmetric vs 2 nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones.

Classification locally symmetric vs 2 nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones. Riemannian symmetric: known from Cartan's.

Classification locally symmetric vs 2 nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones. Riemannian symmetric: known from Cartan's. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then (M, g) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean d-space.

Classification locally symmetric vs 2 nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones. Riemannian symmetric: known from Cartan's. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then (M, g) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean d-space.
Moreover:
1 When (M, g) irreducible, then Ric $=c g$

Classification locally symmetric vs 2 nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones. Riemannian symmetric: known from Cartan's. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then (M, g) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean d-space.
Moreover:
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$

Classification locally symmetric vs 2 nd-symmetric

Locally symmetric: it is enough to classify the symmetric ones. Riemannian symmetric: known from Cartan's. In particular:

Proposition

Let (M, g) be a locally symmetric Riemannian manifold. Then (M, g) is locally isometric to the direct product of a finite number of irreducible symmetric spaces and a Euclidean d-space.
Moreover:
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$
Proof. Use de Rham decomposition

Classification locally symmetric vs 2 nd-symmetric

Proposition

Let (M, g) be a locally symmetric Riemannian manifold.
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$

Classification locally symmetric vs 2nd-symmetric

Proposition

Let (M, g) be a locally symmetric Riemannian manifold.
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$
Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
■ If a Riemannian $\left(N, g_{R}\right)$ admits a 2 -cov. symmetric parallel L. $L \neq c g_{R}$, then locally:

Classification locally symmetric vs 2nd-symmetric

Proposition

Let (M, g) be a locally symmetric Riemannian manifold.
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$
Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
■ If a Riemannian (N, g_{R}) admits a 2-cov. symmetric parallel L. $L \neq c g_{R}$, then locally:

- g_{R} es reducible: $g_{R}=g_{R}^{(1)} \oplus g_{R}^{(2)} \oplus \ldots \oplus g_{R}^{(s)}$.
- $L=\sum_{m=1}^{s} \lambda_{m} g_{R}^{(m)}$ for some $\lambda_{m} \in \mathbb{R}$.

Classification locally symmetric vs 2nd-symmetric

Proposition

Let (M, g) be a locally symmetric Riemannian manifold.
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$
Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
■ If a Riemannian $\left(N, g_{R}\right)$ admits a 2 -cov. symmetric parallel L. $L \neq c g_{R}$, then locally:

- g_{R} es reducible: $g_{R}=g_{R}^{(1)} \oplus g_{R}^{(2)} \oplus \ldots \oplus g_{R}^{(s)}$.
- $L=\sum_{m=1}^{s} \lambda_{m} g_{R}^{(m)}$ for some $\lambda_{m} \in \mathbb{R}$.

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld '75)

Classification locally symmetric vs 2nd-symmetric

Proposition

Let (M, g) be a locally symmetric Riemannian manifold.
1 When (M, g) irreducible, then Ric $=c g$
2 When (M, g) Ricci-flat, then $R \equiv 0$
Proof. 1. Ricci is parallel, so use classical Eisenhart theorem:
■ If a Riemannian $\left(N, g_{R}\right)$ admits a 2 -cov. symmetric parallel L. $L \neq c g_{R}$, then locally:

- g_{R} es reducible: $g_{R}=g_{R}^{(1)} \oplus g_{R}^{(2)} \oplus \ldots \oplus g_{R}^{(s)}$.
- $L=\sum_{m=1}^{s} \lambda_{m} g_{R}^{(m)}$ for some $\lambda_{m} \in \mathbb{R}$.

2. Holds even for homogeneous sp. (Alekseevsky, Kimelfeld '75)
-and locally homogeneous with Ric ≤ 0 are regular (Spiro '93)

Classification locally symmetric vs 2 nd-symmetric

Lorentzian symmetric spaces
Theorem (Cahen, Wallach '70)
A complete 1-connected Lorentzian symmetric space (M, g) is isometric to the product of a simply-connected Riemannian symmetric space and one of the following Lorentzian manifolds:

Classification locally symmetric vs 2 nd-symmetric

Lorentzian symmetric spaces

Theorem (Cahen, Wallach '70)

A complete 1-connected Lorentzian symmetric space (M, g) is isometric to the product of a simply-connected Riemannian symmetric space and one of the following Lorentzian manifolds:
$1\left(\mathbb{R},-d t^{2}\right)$
2 The universal cover of de Sitter or anti-de Sitter d-spaces, $d \geq 2$,
3 A Cahen-Wallach space $C^{d}(A)=\left(\mathbb{R}^{d}, g_{A}\right), d \geq 2$, where $A \equiv\left(A_{i j}\right)$ is a $(d-2) \times(d-2)$ matrix and $g_{A}=-2 d u\left(d v+A_{i j} x^{i} x^{j} d u\right)+\sum_{i j} \delta_{i j} d x^{i} d x^{j}$

Classification locally symmetric vs 2 nd-symmetric

Remark

Choosing A with $\operatorname{trace}(A)=0$: there are Ricci flat non-flat Lorentzian symmetric spaces.

Classification locally symmetric vs 2 nd-symmetric

Remark

Choosing A with $\operatorname{trace}(A)=0$:
there are Ricci flat non-flat Lorentzian symmetric spaces.

Remark

Lorentzian symmetric space with a parallel lightlike v.f. $K \Rightarrow$: Locally isometric to the product of a $C W^{d}(A), d>2$ and Riemannian symmetric space.

Classification locally symmetric vs 2 nd-symmetric

2nd-symmetric:

The theorem to be proven shows:
proper 2nd-symmetric spaces only appear generalizing the family of Cahen-Wallach spaces $\operatorname{CW}^{d}(A), d>2$:

■ \rightsquigarrow allow an affine dependence of the matrix A in u

Generalization of Cahen-Wallach family

Generalized Cahen-Wallach d-space of order r, $C W_{r}^{d}(A)=\left(\mathbb{R}^{d}, g_{A}\right), d \geq 2$: metric:

$$
g_{A}=-2 d u\left(d v+\sum_{i j} A_{i j}(u) x^{i} x^{j} d u\right)+\sum_{i j} \delta_{i j} d x^{i} d x^{j}
$$

where $A \equiv\left(A_{i j}(u)\right)$ is a $(d-2) \times(d-2)$ matrix:

$$
A_{i j}(u)=A_{i j}^{(r-1)} u^{r-1}+\cdots+A_{i j}^{(1)} u+A_{i j}^{0}
$$

for symmetric (constant) matrixes $A_{i j}^{k}$.

Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space $C W_{r}^{d}(A)$ satisfies:
1 If $A_{i j}^{(r-1)} \neq 0\left(C W_{r}^{d}(A)\right.$ is proper) then it is proper rth-symmetric

1. Direct computation: in an appropriate basis
$\left\{E_{\alpha}\right\}=\left\{E_{0}=\partial_{u}-\sum A_{i j} x^{i} x^{j} \partial_{v}, E_{1}=\partial_{v}, \partial_{i}\right\}$ the only non-vanishing components of $\nabla^{\prime} R, I \in\{0, \ldots r-1\}$ are:
$\nabla_{0} \stackrel{(I)}{!} . \nabla_{0} R_{i 0 j}^{1}=\frac{d^{\prime} A_{i j}}{d u}=\sum_{k=1}^{r-1} \frac{k!}{(k-l)!} A_{i j}^{(k)} u^{k-I} \square$

Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space $C W_{r}^{d}(A)$ satisfies:
1 If $A_{i j}^{(r-1)} \neq 0\left(C W_{r}^{d}(A)\right.$ is proper) then it is proper rth-symmetric
$2 K=\partial_{v}$ is a lightlike parallel vector field
3 It is analytic
4 it is geodesically complete
Proof. 2,3: Trivial

Generalization of Cahen-Wallach family

Proposition

Any generalized Cahen-Wallach space $C W_{r}^{d}(A)$ satisfies:
1 If $A_{i j}^{(r-1)} \neq 0\left(C W_{r}^{d}(A)\right.$ is proper) then it is proper
rth-symmetric
$2 K=\partial_{v}$ is a lightlike parallel vector field
3 It is analytic
4 it is geodesically complete
Proof. 2,3: Trivial
4. Direct computation or general results (Candela, Romero, - '13)

Generalization of Cahen-Wallach family

Corollary

A complete 1-connected Lorentzian manifold locally isometric to some $C W_{r}^{d}(A)$ is globally isometric too.

This will allow to go from the local to the global result.

Must rth-symmetry imply local symmetry ?

This is a particular case of:
■ When $\nabla^{r} T=0 \Rightarrow \nabla T=0$?

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or (b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Remark

In particular, from (b), Riemmannian r-th symmetric implies locally symmetric.

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case $r=2$ suffices (replace otherwise $\tilde{T}:=\nabla^{r-2} T$).

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case $r=2$ suffices (replace otherwise $\tilde{T}:=\nabla^{r-2} T$).
2. Put $f:=g(T, T) / 2$. Using $\nabla^{2} T=0$:
$\operatorname{Hess} f(X, Y)=g\left(\nabla_{X} T, \nabla_{Y} T\right) \quad$ and $\quad \nabla$ Hess $f=0$

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case $r=2$ suffices (replace otherwise $\tilde{T}:=\nabla^{r-2} T$).
2. Put $f:=g(T, T) / 2$. Using $\nabla^{2} T=0$:
$\operatorname{Hess} f(X, Y)=g\left(\nabla_{X} T, \nabla_{Y} T\right) \quad$ and $\quad \nabla$ Hess $f=0$
3. By Eisenhart thm: Hess $f=c g, c \in \mathbb{R}$. Thus $Z:=\operatorname{grad}(f)$ satisfies $\nabla_{X} Z=c X$ (in particular, is homothetic)

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or
(b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (a) 1. Case $r=2$ suffices (replace otherwise $\tilde{T}:=\nabla^{r-2} T$).
2. Put $f:=g(T, T) / 2$. Using $\nabla^{2} T=0$:
$\operatorname{Hess} f(X, Y)=g\left(\nabla_{X} T, \nabla_{Y} T\right) \quad$ and $\quad \nabla$ Hess $f=0$
3. By Eisenhart thm: Hess $f=c g, c \in \mathbb{R}$. Thus $Z:=\operatorname{grad}(f)$
satisfies $\nabla_{X} Z=c X$ (in particular, is homothetic)
4. Under irreducibility + completeness homothetic vectors are Killing: $c=0 g\left(\nabla_{X} T, \nabla_{Y} T\right)=0$. As g is Riemannian $\nabla T_{\equiv}=0$.

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or (b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: $T=0$ on the flat part of (local) de Rham decomposition (as well as on mixed elements)

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or (b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: $T=0$ on the flat part of (local) de Rham decomposition (as well as on mixed elements) 2. As before, one has $\nabla_{X} Z=c X$ and needs $c=0$.

Riemannian case

Theorem

Let (M, g) be Riemannian and T a tensor field such that $\nabla^{r} T=0$. Then $\nabla T=0$ if either
(a) (Nomizu-Ozeki '62) g is complete and irreducible, or (b) (Nomizu [unpub], Tanno '72) T is R, or Ric, Weyl, projective t.

Proof (b) 1. Irreducibility can be assumed: $T=0$ on the flat part of (local) de Rham decomposition (as well as on mixed elements)
2. As before, one has $\nabla_{X} Z=c X$ and needs $c=0$.
3. As Z is homothetic, it is affine. Thus $L_{z} \nabla=0=L_{Z} T$ and:

$$
0=L_{Z} \nabla T=\nabla_{Z}(\nabla T)+(s+1) c \nabla T=(s+1) c \nabla T
$$

(s : covar minus contrav slots for T). That is, if $c \neq 0$ directly $\nabla T=0 . \square$

Local symmetry vs. 2nd-symmetry

Sketch of proof

Conclusion

Remark
 $\nabla^{r} T=0 \nRightarrow \nabla T=0$ only when:

Conclusion

Remark

$\nabla^{r} T=0 \nRightarrow \nabla T=0$ only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR

Conclusion

Remark

$\nabla^{r} T=0 \nRightarrow \nabla T=0$ only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR
- The manifold is incomplete with a proper (non-Killing) homothetic vector field (necessarily without zeroes)

Conclusion

Remark

$\nabla^{r} T=0 \nRightarrow \nabla T=0$ only when:

- The manifold is reducible, with a flat part in de Rham decomposition, OR
- The manifold is incomplete with a proper (non-Killing) homothetic vector field (necessarily without zeroes)

In the latter case the metric can be written locally as a cone: $M=I \times S, I \subset(0, \infty),\left(S, g_{S}\right)$ Riemannian

$$
g=d t^{2}+t^{2} \pi_{S}^{*} g_{S}
$$

being $Z=t \partial_{t}$ proper homothetic. In particular:

$$
\nabla Z=2 \cdot \operatorname{ld}(\neq 0) \quad \nabla^{2} Z=0
$$

Difficulties for the semi-Riemannian extension

Difficulties for the semi-Riemannian extension

1 The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate

Difficulties for the semi-Riemannian extension

1 The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate
2 The conclusion $c=0$ only means $g(T, T)$ constant and $g(\nabla T, \nabla T)=0$ i.e. ∇T is a lightlike tensor

Difficulties for the semi-Riemannian extension

1 The (full, local) de Rham decomposition cannot be carried out when the subspaces invariant by local holonomy are degenerate
2 The conclusion $c=0$ only means $g(T, T)$ constant and $g(\nabla T, \nabla T)=0$ i.e. ∇T is a lightlike tensor
3 Even in the non-degenerate irreducible case, to apply Eisenhart one needs : if the restricted homogeneous holonomy group is irreducible and a symm. 2-cov tensor h is invariant by the group, then $h=c g$ for some function c, which is constant if h is parallel
However, this holds in Lorentzian signature and others (Tanno'67, $n=2$ or non-neutral signature)

Further properties: $\nabla^{r} T=0$ in generic points

Definition

A point p is generic if the curvature endomorphism:

$$
R: \Lambda^{2}(M) \rightarrow \Lambda^{2}(M) \quad v^{b} \wedge w^{b} \mapsto 2 R(v, w)
$$

is an isomorphism when restricted to p.

Theorem
 If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$, for any semi-Riemannian metric.

$\nabla^{r} T=0$ in generic points

> Theorem
> If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$, for any semi-Riemannian metric.

Proofs of increasing generality:
1 Simply, no conic metric (nor flat one) is generic.

$\nabla^{r} T=0$ in generic points

Theorem

If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$, for any semi-Riemannian metric.

Proofs of increasing generality:
1 Simply, no conic metric (nor flat one) is generic. Remarks

- Valid only for the Riemannian case
- Extensible to generic (non-degenerate) Ric, as $\operatorname{Ric}\left(\partial_{t}, X\right)=0$ in the conic metric

$\nabla^{r} T=0$ in generic points

Theorem

If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$, for any semi-Riemannian metric.

Proofs of increasing generality:
2 (Tanno '72) As we had Z with $\nabla_{X} Z=c X$: $0=L_{Z} \nabla=\nabla^{2} Z+R(Z, \cdot)=R(Z, \cdot)$ So R is not invertible except if $Z=0$.

$\nabla^{r} T=0$ in generic points

Theorem

If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$, for any semi-Riemannian metric.

Proofs of increasing generality:
2 (Tanno '72) As we had Z with $\nabla_{X} Z=c X$: $0=L_{Z} \nabla=\nabla^{2} Z+R(Z, \cdot)=R(Z, \cdot)$
So R is not invertible except if $Z=0$.
Remarks:

- Also valid for Riemannian and extensible to generic Ric

■ For Lorentz and non-neutral sign. + irreducibility, it applies, but then implies only $g(\nabla T, \nabla T)=0$ and $g(T, T)=$ const.

$\nabla^{r} T=0$ in generic points

Theorem

(Senovilla '08) If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$ on all M, for any semi-Riemannian metric.

Proofs of increasing generality:
3 (Senovilla '08) Apply the Ricci identities to T and ∇T : The invertibility of R allows to clear $\nabla T=0$.

$\nabla^{r} T=0$ in generic points

Theorem

(Senovilla '08) If there exists a generic point, $\nabla^{r} T=0$ implies $\nabla T=0$ on all M, for any semi-Riemannian metric.

Proofs of increasing generality:
3 (Senovilla '08) Apply the Ricci identities to T and ∇T : The invertibility of R allows to clear $\nabla T=0$.
Remarks:

- Independent of both, signature or previous computations
- Extensible to: all semi-symmetric spaces have constant curvature around generic points

Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let (M, g) be semi-Riemannian and r-th symmetric. If there exists a vector field Z :

$$
\nabla_{X} Z=c X \quad c \in \mathbb{R} \quad \forall X \in \mathfrak{X}(M)
$$

then either Z is parallel or $R=0$.

Limits of old techniques

A computation in the spirit of old papers:

Proposition

Let (M, g) be semi-Riemannian and r-th symmetric. If there exists a vector field Z :

$$
\nabla_{X} Z=c X \quad c \in \mathbb{R} \quad \forall X \in \mathfrak{X}(M)
$$

then either Z is parallel or $R=0$.
Proof. As Z is homothetic, $L_{z} \nabla=0, L_{z} \nabla^{k} R_{i j k}^{\prime}=0$ and:
$0=L_{Z}\left(\nabla^{r-1} R\right)=\nabla_{Z}\left(\nabla^{r-1} R\right)+(1+r) c \nabla^{r-1} R=(1+r) c \nabla^{r-1} R$
So, if $c \neq 0$, use induction. \square

Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel lightlike direction or satisfies that $\nabla^{r-1} R$ is (parallel and) null and $g\left(\nabla^{r-2} R, \nabla^{r-2} R\right)$ is a constant.

Proof. The first possibility occurs either when degenerately reducible or when admits a lightlike parallel v.f.

Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel lightlike direction or satisfies that $\nabla^{r-1} R$ is (parallel and) null and $g\left(\nabla^{r-2} R, \nabla^{r-2} R\right)$ is a constant.

Proof. The first possibility occurs either when degenerately reducible or when admits a lightlike parallel v.f.
Otherwise, in each irreducible part, put again $T=\nabla^{r-2} R$, $f=g(T, T)$, $\operatorname{Hess} f(X, Y)=g\left(\nabla_{X} T, \nabla_{Y} T\right)$ and $Z=\operatorname{grad} f$ By previous Prop., necessarily $Z \equiv 0$. \square

Limits of old techniques

Corollary

A proper rth-symmetric Lorentzian (M, g) either admits a parallel lightlike direction or satisfies that $\nabla^{r-1} R$ is (parallel and) null and $g\left(\nabla^{r-2} R, \nabla^{r-2} R\right)$ is a constant.

Proof. The first possibility occurs either when degenerately reducible or when admits a lightlike parallel v.f.
Otherwise, in each irreducible part, put again $T=\nabla^{r-2} R$, $f=g(T, T)$, $\operatorname{Hess} f(X, Y)=g\left(\nabla_{X} T, \nabla_{Y} T\right)$ and $Z=\operatorname{grad} f$ By previous Prop., necessarily $Z \equiv 0$. \square

Remark

Limit of "old" results: this suggests that at least 2nd-symmetric Lorentzian spaces must admit a parallel lightlike v.f. K.

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.
(Alternative proof by Aleeksevski \& Galaev, '11.)

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.
(Alternative proof by Aleeksevski \& Galaev, '11.) Steps of direct original proof (as simplified in Blanco's thesis):

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.
(Alternative proof by Aleeksevski \& Galaev, '11.) Steps of direct original proof (as simplified in Blanco's thesis):

- Previous result for \exists parallel light. vector, not only a line: \exists Parallel $L \neq c g$ plus no decomposable (non-degenerately reducible) $\Rightarrow \exists$! independent parallel lightlike vector K. (proof by discussing possible Segre types)

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique lightlike parallel vector field K.
(Alternative proof by Aleeksevski \& Galaev, '11.) Steps of direct original proof (as simplified in Blanco's thesis):

- Previous result for \exists parallel light. vector, not only a line: \exists Parallel $L \neq c g$ plus no decomposable (non-degenerately reducible) $\Rightarrow \exists$! independent parallel lightlike vector K. (proof by discussing possible Segre types)

Uniqueness: a linear combination of $K_{1} \pm K_{2}$ would be (parallel and) timelike in contradiction with no-decompsability/properness.

Existence of a lightlike parallel vector field

Theorem

(Senovilla '08). Any proper 2nd-symmetric Lorentzian space admits a unique independent lightlike parallel vector field K.

- Analyze the curvature concomitants showing that, either such a K exists, or they vanish:
(a) 1-form concomitants of order m and degree up to $m+1$
(b) scalar or 2-cov. concomitants of equal order and degree.

■ Using Ricci identity, such restrictions force the existence of K

Brinkmann spaces

Definition

A Brinkmann space is any Lorentzian n-manifold endowed with a complete lightlike parallel vector field K.

Brinkmann spaces

Definition

A Brinkmann space is any Lorentzian n-manifold endowed with a complete lightlike parallel vector field K.

Brinkmann decomposition $\{u, v\}$:
$1 K$ parallel: fix u (up to a constant) s.t.: $K=\operatorname{grad} u$
$2 K$ lightlike: K^{\perp} degenerate totally geodesic integrable foliation with leaves Σ_{u}

3 Choose a hypersup. Ω transverse to K so that $\bar{M}:=\Sigma_{u=0} \cap \Omega$ is spacelike and transverse
4 Let ϕ the flow of K, define v so that $\phi_{-v(p)}(p) \in \Omega$

Construction of the Brinkmann decomposition

Construction of a Brinkmann chart

■ Brinkmann chart $\left\{u, v, x^{i}\right\}$: complete u, v to a chart by choosing $n-2$ coordinates x^{i} independent of u in Ω.

Construction of a Brinkmann chart

■ Brinkmann chart $\left\{u, v, x^{i}\right\}$: complete u, v to a chart by choosing $n-2$ coordinates x^{i} independent of u in Ω.

- Expression of g in a Brinkmann chart:

$$
g=-2 d u\left(d v+H\left(u, x^{k}\right) d u+W_{i}\left(u, x^{k}\right) d x^{i}\right)+g_{i j}\left(u, x^{k}\right) d x^{i} d x^{j}
$$

(natural sum in repeated indexes, $K \equiv-\partial_{v}$)

Construction of a Brinkmann chart

■ Brinkmann chart $\left\{u, v, x^{i}\right\}$: complete u, v to a chart by choosing $n-2$ coordinates x^{i} independent of u in Ω.

- Expression of g in a Brinkmann chart:

$$
g=-2 d u\left(d v+H\left(u, x^{k}\right) d u+W_{i}\left(u, x^{k}\right) d x^{i}\right)+g_{i j}\left(u, x^{k}\right) d x^{i} d x^{j}
$$

(natural sum in repeated indexes, $K \equiv-\partial_{v}$)

Remark

Being more careful, one could get $H=0$ and $W_{i}=0$!
But it is preferred as above, as we wish to remove the u-dependence of $g_{i j}\left(u, x^{i}\right)$.

Geometric developments

- In general:

Study of degenerate hypersurfaces
\rightsquigarrow Transverse vector field ξ
Non-unique ξ : wise choice when possible.

Geometric developments

■ In general:
Study of degenerate hypersurfaces
\rightsquigarrow Transverse vector field ξ
Non-unique ξ : wise choice when possible.

- This happens in Brinkmann spaces too:
degenerate hypersurfaces Σ_{u} with transverse ∂_{u} (non-univocally determined)

Geometric developments

■ In general:
Study of degenerate hypersurfaces
\rightsquigarrow Transverse vector field ξ
Non-unique ξ : wise choice when possible.

- This happens in Brinkmann spaces too:
degenerate hypersurfaces Σ_{u} with transverse ∂_{u} (non-univocally determined)
- Issues on Brinkmann spaces:
- Relations between different choices of ∂_{u} (and Ω)
- To introduce associated geometric objects with nice properties
- Study potentially extensible to other degenerate cases

Geometric developments

- Foliations

1 Spacelike ($n-2$)-foliation \mathcal{M} : $\left\{u=u_{0}, v=v_{0}\right\}$
2 Timelike 2 foliation: $\mathcal{U}:\left\{x^{i}=x_{0}^{i}\right\}$

Geometric developments

- Foliations

1 Spacelike ($n-2$)-foliation $\mathcal{M}:\left\{u=u_{0}, v=v_{0}\right\}$
2 Timelike 2 foliation: $\mathcal{U}:\left\{x^{i}=x_{0}^{i}\right\}$

- Tangent bundle decompositions:

1 Non-orthogonal: $T M=T \mathcal{M} \oplus T \mathcal{U}$
2 Orthogonal: $T M=T \mathcal{U} \oplus(T \mathcal{U})^{\perp}$

- Natural bases:
$1 \mathrm{TU}=\operatorname{span}\left\{E_{0}:=\partial_{u}-H \partial_{v}, E_{1}:=\partial_{\nu}\right\}$
$2(T \mathcal{U})^{\perp}=\operatorname{span}\left\{E_{i}:=\partial_{i}-W_{i} \partial_{\nu}\right\}$
$3 T \mathcal{M}=\operatorname{span}\left\{\partial_{i}\right\}$

The spacelike foliation \mathcal{M}

Foliation $\mathcal{M}:\left\{u=u_{0}, v=v_{0}\right\}$
Metric induced bundle by the foliation:

$$
\bar{g}=g_{i j} \overline{d x^{i}} \overline{d x^{j}}
$$

(Notation: if $d x^{i}, \alpha$ on M, then $\overline{d x^{i}}, \bar{\alpha}$ on the foliation)

Exterior derivative \bar{d}

For any 1-form α on M :

$$
\bar{d} \bar{\alpha}=\overline{d \alpha}
$$

Satisfies the properties of a derivation for $\omega, \tau \in \Lambda^{q} \mathcal{M}$:
1 Linearity plus $\bar{d}(\omega \wedge \tau)=\bar{d} \omega \wedge \tau+(-1)^{s} \omega \wedge \bar{d} \tau$.
$2 \bar{d}(\bar{d} \omega)=0$.
3 If $\omega=\frac{1}{s!} \omega_{i_{1} \ldots i_{s}} \overline{\bar{d}} x^{i_{1}} \wedge \ldots \overline{\bar{d}} x^{i_{s}}$, then $\bar{d} \omega=\frac{1}{s!} \partial_{k}\left(\omega_{i_{1} \ldots i_{s}}\right) \bar{d} x^{k} \wedge \bar{d} x^{i_{1}} \wedge \ldots \bar{d} x^{i_{s}}$
4 Poincaré Lemma: \bar{d}-closed implies \bar{d}-exact.

Covariant derivative $\bar{\nabla}$ for \mathcal{M}

- Vector fields on \mathcal{M} are naturally on M
- \mathcal{M} is endowed with a Riemannian metric and then a natural $\bar{\nabla}$

$$
\bar{\nabla}_{X} Y(\in \mathfrak{X}(\mathcal{M})) \quad \forall X, Y \in \mathfrak{X}(\mathcal{M})
$$

Extended to tensor fields on \mathcal{M} satisfies

$$
\bar{\nabla} \bar{g}=0
$$

Covariant derivative $\bar{\nabla}$ for \mathcal{M}

- Vector fields on \mathcal{M} are naturally on M
- \mathcal{M} is endowed with a Riemannian metric and then a natural $\bar{\nabla}$

$$
\bar{\nabla}_{X} Y(\in \mathfrak{X}(\mathcal{M})) \quad \forall X, Y \in \mathfrak{X}(\mathcal{M})
$$

Extended to tensor fields on \mathcal{M} satisfies

$$
\bar{\nabla} \bar{g}=0
$$

Defines a foliation curvature $\overline{\mathcal{R}}$:
$\overline{\mathcal{R}}(X, Y) Z=\left(\bar{\nabla}_{X} \bar{\nabla}_{Y}-\bar{\nabla}_{Y} \bar{\nabla}_{X}-\bar{\nabla}_{[X, Y]}\right) Z \in \mathfrak{X}(\mathcal{M}), \forall X, Y, Z \in \mathfrak{X}(\mathcal{M})$ plus Ricci tensor $\overline{\mathcal{R} i c}$ and scalar curvature $\overline{\mathcal{S}}$.

Covariant derivative $\bar{\nabla}$ for \mathcal{M}

Definition

- \mathcal{M} is flat (resp. locally symmetric) if $\overline{\mathcal{R}}=0$ (resp. $\bar{\nabla} \overline{\mathcal{R}}=0)$

■ u-Einstein if $\overline{\mathcal{R i c}}=\mu \overline{\mathrm{g}}$ for some μ s.t. $d \mu \wedge d u=0$ (Schur lemma Ric $=f g \Rightarrow f \equiv c$ does not apply to foliations) and:
$1 \mathcal{M}$ is Einstein if $\mu=$ const.,
$2 \mathcal{M}$ is Ricci-flat if $\mu \equiv 0$.

Covariant derivative $\bar{\nabla}$ for \mathcal{M}

From Riemannian results:

Proposition

Let (M, g) be a Brinkmann space:
$1 \bar{\nabla}^{r} \overline{\mathcal{R}}=0$ (rth-symmetric) $\Longrightarrow \bar{\nabla} \overline{\mathcal{R}}=0$ (locally symmetric).
$2 \bar{\nabla} \overline{\mathcal{R}}=0$ (locally symmetric) and $\overline{\mathcal{R i c}}=0$ (Ricci-flat) $\Longrightarrow \overline{\mathcal{R}}=0$ (flat)
3 If \mathcal{M} is flat, there exists a chart $\left\{u, v, y^{i}\right\}$ s.t.: $g=-2 d u\left(d v+H d u+W_{i} d y^{i}\right)+\delta_{i j} d y^{i} d y^{j}$. ($g_{i j}=\delta_{i j}$ independent of u)

Transverse operators for \mathcal{M} : dot derivative

For $T \in \Gamma\left(T_{s}^{r} \mathcal{M}\right)$:

$$
\dot{T}=\overline{\mathcal{L}_{\partial_{u}} \stackrel{\circ}{T}} \in \Gamma\left(T_{s}^{r} \mathcal{M}\right)
$$

That is, in the base $\left\{\partial_{i}\right\}$:

$$
\dot{T}_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}=\partial_{u}\left(T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\right)
$$

Transverse operators for $\mathcal{M}: D_{0}$ derivative

Recall $E_{0}=\partial_{u}-H \partial_{v}$

$$
\begin{array}{ccc}
D_{0}: \Gamma\left(T_{s}^{r} \mathcal{M}\right) & \longrightarrow & \Gamma\left(T_{s}^{r} \mathcal{M}\right) \\
T & \rightarrow & D_{0} T=\overline{\left(\nabla_{E_{0}} \stackrel{\circ}{T}\right)}
\end{array}
$$

Transverse operators for $\mathcal{M}: D_{0}$ derivative

Recall $E_{0}=\partial_{u}-H \partial_{v}$

$$
\begin{array}{ccc}
D_{0}: \Gamma\left(T_{s}^{r} \mathcal{M}\right) & \longrightarrow & \Gamma\left(T_{s}^{r} \mathcal{M}\right) \\
T & \rightarrow & D_{0} T=\overline{\left(\nabla_{E_{0}} \stackrel{\circ}{T}\right)}
\end{array}
$$

Properties:
1 Algebraic properties of a tensor derivation
$2 D_{0} \bar{g}=0$

Lemma

Each vector field on a leave of \mathcal{M} can be extended to a unique $K\left(=-\partial_{v}\right)$-invariant D_{0}-parallel vector field in $\mathfrak{X}(\mathcal{M})$.

Reducibility in \mathcal{M}

$T \in \Gamma\left(T_{s}^{k} \mathcal{M}\right)$ is reducible if, there are foliations $\mathcal{M}^{(1)}, \mathcal{M}^{(2)}$ s.t., in a natural sense:

$$
T \mathcal{M}=T \mathcal{M}^{(1)} \oplus T \mathcal{M}^{(2)} \quad T=T^{(1)} \oplus T^{(2)}
$$

i.e. there exists a Brinkmann chart $\left\{u, v, x^{i}\right\}$ and a partition of the indexes $I_{1}=\{2, \ldots, d+1\}, I_{2}=\{d+2, \ldots, n-1\}$ s.t.

$$
T_{a a^{\prime}}=0 \quad \text { y } \quad \partial_{a^{\prime}} T_{a b}=0,
$$

where a, b belong to some I_{m} and a^{\prime}, b^{\prime} to the other one.

Reducibility in \mathcal{M}

$T \in \Gamma\left(T_{s}^{k} \mathcal{M}\right)$ is reducible if, there are foliations $\mathcal{M}^{(1)}, \mathcal{M}^{(2)}$ s.t., in a natural sense:

$$
T \mathcal{M}=T \mathcal{M}^{(1)} \oplus T \mathcal{M}^{(2)} \quad T=T^{(1)} \oplus T^{(2)}
$$

i.e. there exists a Brinkmann chart $\left\{u, v, x^{i}\right\}$ and a partition of the indexes $I_{1}=\{2, \ldots, d+1\}, I_{2}=\{d+2, \ldots, n-1\}$ s.t.

$$
T_{a a^{\prime}}=0 \quad \text { y } \quad \partial_{a^{\prime}} T_{a b}=0,
$$

where a, b belong to some I_{m} and a^{\prime}, b^{\prime} to the other one. In particular, when $\bar{g} \in \Gamma\left(T_{2} \mathcal{M}\right)$ is reducible the sum is orthogonal and we write $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$,

$$
g=-2 d u(d v+H d u+\dot{W})+\stackrel{\circ}{g}^{(1)} \oplus \stackrel{\circ}{g}^{(2)}
$$

Extended Eisenhart theorem

Theorem

Let (M, g) be a Brinkmann space and $\left\{u, v, x^{i}\right\}$ a Brinkmann chart. If there exist a symmetric $\bar{L} \in \Gamma\left(T_{2}^{0} \mathcal{M}\right), \bar{L} \neq c \bar{g}$, which is v-invariant, $\bar{\nabla}$-parallel and D_{0}-parallel.

Extended Eisenhart theorem

Theorem

Let (M, g) be a Brinkmann space and $\left\{u, v, x^{i}\right\}$ a Brinkmann chart. If there exist a symmetric $\bar{L} \in \Gamma\left(T_{2}^{0} \mathcal{M}\right), \bar{L} \neq c \bar{g}$, which is v-invariant, $\bar{\nabla}$-parallel and D_{0}-parallel.
Then there exists a Brinkmann chart $\left\{u, v, y^{i}\right\}$ in the Brinkmann decomposition $\{u, v\}$ such that:
$1 \bar{g}$ is reducible: $\bar{g}=\bar{g}^{(1)} \oplus \ldots \oplus \bar{g}^{(s)}, s \geq 2$ (u-dependent)
$2 \bar{L}=\sum_{m=1}^{s} \lambda_{m} \bar{g}^{(m)}$ for some $\lambda_{m} \in \mathbb{R}$ (u-independent, $\dot{\lambda}_{m}=0$).

Local version of the theorem

Aim:

Theorem

A properly 2nd-symmetric Brinkmann space is locally isometric to a product of:

- a proper 2 nd-order Cahen-Wallach space $\left(\mathbb{R}^{d+2}, g_{A}\right)$, $g_{A}=-2 d u\left(d v+\left(\mathbf{a}_{\mathrm{ij}} \mathbf{u}+\mathbf{b}_{\mathrm{ij}}\right) x^{i} x^{j} d u\right)+\delta_{i j} d x^{i} d x^{j}$ with some $a_{i j} \neq 0$, and
- symmetric Riemannian space (N, g_{N}).

Step 1: define appropriate elements on \mathcal{M}

Express the non-trivial parts of $R, \nabla R$ in terms of tensors on \mathcal{M}

- Tensors for $R: A \in T_{2} \mathcal{M}, B \in T_{3} \mathcal{M}, \bar{R} \in T_{3}^{1} \mathcal{M}$

$$
\begin{aligned}
& A(X, Y)=\theta^{1}\left(R\left(E_{0}, \dot{Y}\right) \dot{X}\right) \text {, i.e. } A_{i j}=R^{1}{ }_{i 0 j} \\
& \square B(X, Y, Z)=\theta^{1}(R(\dot{Y}, \dot{Z}) \dot{X}) \text {, i.e., } B_{i j k}=R^{1}{ }_{i j k} \\
& \text { } \bar{R}(X, Y) Z=\bar{R}(\dot{X}, \dot{Y}) \dot{Z}, \text { i.e., } \bar{R}^{i}{ }_{j k l}=R^{i}{ }_{j k l}
\end{aligned}
$$

- Tensors for $\nabla R: \widetilde{A} \in T_{2} \mathcal{M}, \widehat{A}, \widetilde{B} \in T_{3} \mathcal{M}, \widehat{B}, \widetilde{R} \in T_{3}^{1} \mathcal{M}$

$$
\begin{array}{cl}
\widetilde{A}(X, Y)=\theta^{1}\left(\left(\nabla_{E_{0}} R\right)\left(E_{0}, \stackrel{\circ}{Y}\right) \dot{X}\right), & \widehat{A}(X, Y, Z)=\theta^{1}\left(\left(\nabla_{\dot{X}} R\right)\left(E_{0}, \dot{Z}\right) \dot{Y}\right), \\
\widetilde{B}(X, Y, Z)=\theta^{1}\left(\left(\nabla_{E_{0}} R\right)(\stackrel{\circ}{Y}, \dot{Z}) \dot{X}\right), & \widehat{B}(X, Y, Z, V)=\theta^{1}\left(\left(\nabla_{\dot{X}} R\right)(\dot{Z}, \dot{V}) \dot{\mathscr{Y}}\right), \\
\widetilde{R}(X, Y) Z=\overline{\nabla_{E_{0}} R(\dot{X}, \stackrel{\circ}{Y}) \dot{Z}} . \\
\widetilde{\widetilde{A}_{i j}=\nabla_{0} R^{1}{ }_{i 0 j} ; \widehat{A}_{s i j}=\nabla_{s} R^{1}{ }_{i 0 j}} \\
\widetilde{B}_{i j k}=\nabla_{0} R^{1}{ }_{i j k} ; \widehat{B}_{s i j k}=\nabla_{s} R^{1}{ }_{i j k} ; \widetilde{R}^{i}{ }_{j k l}=\nabla_{0} R^{i}{ }_{j k l}
\end{array}
$$

Step 2: simplification of chart-dependent elements

Proposition

For any 2nd-symmetric Brinkmann decomposition $\{u, v\}$:
(a) All the (chart-dependent) elements for ∇R vanish but \tilde{A}, i.e.

$$
\widehat{B}=\widetilde{R}=\widehat{A}=\widetilde{B}=0
$$

(b) \widetilde{A} is independent of the chosen chart
(c) The equations of 2 nd symmetry reduce to:

$$
\begin{array}{ll}
\bar{\nabla} \widetilde{A}=0, & D_{0} \widetilde{A}=0 \\
\bar{\nabla} \bar{R}=0, & D_{0} \bar{R}=0
\end{array}
$$

with $\widehat{B}=0, \widetilde{B}=0, \widehat{A}=0$.

Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from $\bar{\nabla}^{2} R=0 \Rightarrow \bar{\nabla} R=0$.

Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from $\bar{\nabla}^{2} R=0 \Rightarrow \bar{\nabla} R=0$. Then:

■ Use the conditions of integrability of 2nd symmetry equations

$$
\begin{aligned}
& \left(\bar{\nabla}_{k} D_{0}-D_{0} \bar{\nabla}_{k}\right) F^{i}{ }_{j}=\left(H_{, k}\right)\left(\partial_{v} F^{i}{ }_{j}\right)+F^{i}{ }_{m} B_{k j}{ }^{m}-F^{m}{ }_{j} B_{k m}{ }^{i}-t^{m}{ }_{k} \bar{\nabla}_{m} F^{i}{ }_{j} \\
& \left(\bar{\nabla}_{n} \bar{\nabla}_{m}-\bar{\nabla}_{m} \bar{\nabla}_{n}\right) T_{j_{1} \ldots j_{s}}^{i_{1} \ldots j_{k}}=\sum_{b=1}^{s} \bar{R}^{\prime}{ }_{j_{b} n m} T_{j_{1} \ldots j_{b-1} j_{j+1} \ldots i_{k}}^{i_{s}}-\sum_{a=1}^{k} \bar{R}^{i_{a}}{ }_{l n m} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{a}-1 i_{a+1} \ldots i_{k}}
\end{aligned}
$$

Step 2: simplification of chart-dependent elements

Ingredients of the proof. A first simplification comes from $\bar{\nabla}^{2} R=0 \Rightarrow \bar{\nabla} R=0$. Then:

■ Use the conditions of integrability of 2nd symmetry equations

$$
\begin{aligned}
& \left(\bar{\nabla}_{k} D_{0}-D_{0} \bar{\nabla}_{k}\right) F^{i}{ }_{j}=(H, k)\left(\partial_{v} F^{i}{ }_{j}\right)+F^{i}{ }_{m} B_{k j}{ }^{m}-F^{m}{ }_{j} B_{k m}{ }^{i}-t^{m}{ }_{k} \bar{\nabla}_{m} F^{i}{ }_{j} \\
& \left(\bar{\nabla}_{n} \bar{\nabla}_{m}-\bar{\nabla}_{m} \bar{\nabla}_{n}\right) T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{k}}=\sum_{b=1}^{s} \bar{R}^{\prime}{ }_{j_{b} n m} T_{j_{1} \ldots j_{b-1} j_{b+1} \ldots j_{s}}^{i_{1} \ldots i_{k}}-\sum_{a=1}^{k} \bar{R}^{i_{a}}{ }_{{ }^{\prime} m m} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{a-1} i_{a+1} \ldots i_{k}}
\end{aligned}
$$

- Use the equations derived from 2nd Bianchi identity

$$
\nabla_{[\alpha} R_{\beta \lambda] \nu \mu}=0 \Longrightarrow \widetilde{R}_{i j k l}=-2 \widehat{B}_{[i j] k l}, \quad \widetilde{B}_{k i j}=2 \widehat{A}_{[i j] k}
$$

Technical point: algebraic criteria for the vanishing of tensor fields are also introduced, as:
In an Euclidean vector space, $T_{i j k}$ vanishes if
$T_{i[j k]}=T_{i j k}, T_{i j k}+T_{j k i}+T_{k i j}=0$ and $T_{(i j)}^{r} T_{r n m}=0$

Step 2: simplification of chart-dependent elements

Remark

- $\nabla R \neq 0$ iff $\widetilde{A} \neq 0$.
- The scalar curvature S (not only of \mathcal{M} but also) of M is constant.

Step 3: Reducibility of \tilde{A} and $\overline{\operatorname{Ric}}$

From the equations of 2nd-symmetry:

$$
\begin{array}{ll}
\bar{\nabla} \widetilde{A}=0, & D_{0} \widetilde{A}=0 \\
\bar{\nabla} \bar{R}=0, & D_{0} \bar{R}=0
\end{array}
$$

\widetilde{A} and $\overline{\operatorname{Ric}}$ (and also \bar{g}) are D_{0} - $\bar{\nabla}$-invariant so that Extended Eisenhart theorem applies and:

Step 3: Reducibility of \tilde{A} and $\overline{\text { Ric }}$

- $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.

Step 3: Reducibility of \tilde{A} and $\overline{\text { Ric }}$

- $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\bar{g}=\bar{g}^{(1)} \oplus \bar{g}^{(2)}$ with $\bar{g}^{(1)}=\delta_{a b} d x^{a} d x^{b}\left(\dot{\bar{g}}^{(1)}=0\right.$, i.e., u-independent)

Step 3: Reducibility of \tilde{A} and $\overline{\text { Ric }}$

- $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\bar{g}=\bar{g}^{(1)} \oplus \bar{g}^{(2)}$ with $\bar{g}^{(1)}=\delta_{a b} d x^{a} d x^{b}\left(\dot{\bar{g}}^{(1)}=0\right.$, i.e., u-independent)
- $\bar{R}=\bar{R}^{(1)} \oplus \bar{R}^{(2)}$ with $\bar{R}^{(1)}=0$ and $\bar{R}^{(2)} \neq 0$ with $\bar{\nabla} \bar{R}^{(2)}=0$.

Step 3: Reducibility of \tilde{A} and $\overline{\text { Ric }}$

- $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
■ $\bar{g}=\bar{g}^{(1)} \oplus \bar{g}^{(2)}$ with $\bar{g}^{(1)}=\delta_{a b} d x^{a} d x^{b}\left(\dot{\bar{g}}^{(1)}=0\right.$, i.e., u-independent)
- $\bar{R}=\bar{R}^{(1)} \oplus \bar{R}^{(2)}$ with $\bar{R}^{(1)}=0$ and $\bar{R}^{(2)} \neq 0$ with $\bar{\nabla} \bar{R}^{(2)}=0$.
- $\widetilde{A}=\widetilde{A}^{(1)} \oplus \widetilde{A}^{(2)}$ with $\widetilde{A}^{(2)}=0$.

Step 3: Reducibility of \tilde{A} and $\overline{\text { Ric }}$

- $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
■ $\bar{g}=\bar{g}^{(1)} \oplus \bar{g}^{(2)}$ with $\bar{g}^{(1)}=\delta_{a b} d x^{a} d x^{b}\left(\dot{\bar{g}}^{(1)}=0\right.$, i.e., u-independent)
- $\bar{R}=\bar{R}^{(1)} \oplus \bar{R}^{(2)}$ with $\bar{R}^{(1)}=0$ and $\bar{R}^{(2)} \neq 0$ with $\bar{\nabla} \bar{R}^{(2)}=0$.
- $\widetilde{A}=\widetilde{A}^{(1)} \oplus \widetilde{A}^{(2)}$ with $\widetilde{A}^{(2)}=0$.

Remark

For any Brinkmann decomposition $\{u, v\}$:

- $\widetilde{A}, \overline{\mathrm{Ric}}$ and \bar{g} are simultaneously reducible

Step 3: Reducibility of \tilde{A} and $\overline{R i c}$

- $\mathcal{M}=\mathcal{M}^{(1)} \times \mathcal{M}^{(2)}$ with $\mathcal{M}^{(1)}$ flat and $\mathcal{M}^{(2)}$ locally symmetric non Ricci-flat.
- $\bar{g}=\bar{g}^{(1)} \oplus \bar{g}^{(2)}$ with $\bar{g}^{(1)}=\delta_{a b} d x^{a} d x^{b}\left(\dot{\bar{g}}^{(1)}=0\right.$, i.e., u-independent)
- $\bar{R}=\bar{R}^{(1)} \oplus \bar{R}^{(2)}$ with $\bar{R}^{(1)}=0$ and $\bar{R}^{(2)} \neq 0$ with $\bar{\nabla} \bar{R}^{(2)}=0$.
- $\widetilde{A}=\widetilde{A}^{(1)} \oplus \widetilde{A}^{(2)}$ with $\widetilde{A}^{(2)}=0$.

Remark

For any Brinkmann decomposition $\{u, v\}$:

- $\widetilde{A}, \overline{\text { Ric }}$ and \bar{g} are simultaneously reducible
- The non-trivial part of \widetilde{A} lies in $\mathcal{M}^{(1)}$ and the non-trivial one of Ricci on $\mathcal{M}^{(2)}$

Step 4: reduction to two independent Lorentzian problems

From previous result in a Brinkmann chart:

$$
g=-2 d u(d v+H d u+W ْ W)+\dot{\bar{g}}^{(1)} \oplus \stackrel{\circ}{g}^{(2)}
$$

and one can check that H, W are also simultaneously reducible, so that in some new chart:

$$
g=-2 d u\left(d v+\left(H^{(1)}+H^{(2)}\right) d u+\grave{W}^{(1)}+\dot{W}^{(2)}\right)+\stackrel{\circ}{g}^{(1)} \oplus \stackrel{\circ}{\bar{g}}(2)
$$

Step 4: reduction to two independent Lorentzian problems

Now, define two lower dimensional Lorentzian spaces
$M^{[m]}=\mathbb{R}^{2} \times \bar{M}^{(m)}, m=1,2:$

$$
g^{[m]}=-2 d u\left(d v+H^{(m)} d u+W^{(m)}\right)+\stackrel{\circ}{g}^{(m)}
$$

Remark

- These two Lorentzian spaces are 2 nd symmetric as so was the original one.
■ So, the problem is reduced to the 2nd symmetry of two simple spaces

Step 4: reduction to two independent Lorentzian problems

- $\left(M^{[2]}, g{ }^{[2]}\right) 2$ nd symmetric with $\widetilde{A}^{[2]}=0$:
- Locally symmetric
- Cahen-Wallach space (order 1) compatible with parallel $K=-\partial_{v}\left(\right.$ and $\left.A^{[2]}=0\right)$

Step 4: reduction to two independent Lorentzian problems

- $\left(M^{[2]}, g^{[2]}\right) 2$ nd symmetric with $\widetilde{A}^{[2]}=0$:
- Locally symmetric
- Cahen-Wallach space (order 1) compatible with parallel $K=-\partial_{v}\left(\operatorname{and} A^{[2]}=0\right)$
\rightsquigarrow Locally symmetric Riemannian part in Thm

Step 4: reduction to two independent Lorentzian problems

- $\left(M^{[2]}, g^{[2]}\right) 2$ nd symmetric with $\widetilde{A}^{[2]}=0$:
- Locally symmetric
- Cahen-Wallach space (order 1) compatible with parallel

$$
K=-\partial_{v}\left(\operatorname{and} A^{[2]}=0\right)
$$

\rightsquigarrow Locally symmetric Riemannian part in Thm

- $\left(M^{[1]}, g^{[1]}\right) 2$ nd-symmetric with flat $\mathcal{M}^{[1]}\left(\widetilde{A}^{[1]} \neq 0\right)$: 2nd-symmetric plane wave:

Step 4: reduction to two independent Lorentzian problems

- $\left(M^{[2]}, g^{[2]}\right) 2$ nd symmetric with $\widetilde{A}^{[2]}=0$:
- Locally symmetric
- Cahen-Wallach space (order 1) compatible with parallel

$$
K=-\partial_{v}\left(\operatorname{and} A^{[2]}=0\right)
$$

\rightsquigarrow Locally symmetric Riemannian part in Thm

- ($\left.M^{[1]}, g^{[1]}\right) 2$ nd-symmetric with flat $\mathcal{M}^{[1]}\left(\widetilde{A}^{[1]} \neq 0\right)$: 2nd-symmetric plane wave: directly computable obtaining a generalized Cahen-Wallach of orden 2 :

$$
g_{A}=-2 d u\left(d v+\left(a_{i j} u+b_{i j}\right) x^{i} x^{j} d u\right)+\delta_{i j} d x^{i} d x^{j}
$$

Further open questions

Modest:
1 Characterize accurately when $\nabla^{2} T=0 \nRightarrow \nabla T=0$ in the Lorentzian case.
2 Classify 3rd symmetric Lorentzian spaces.

Further open questions

Modest:
1 Characterize accurately when $\nabla^{2} T=0 \nRightarrow \nabla T=0$ in the Lorentzian case.
2 Classify 3rd symmetric Lorentzian spaces.
Ambitious:
1 Generalize to Lorentzian r th-symmetric spaces
2 Idem to higher signatures.

Further open questions

Modest:

1 Characterize accurately when $\nabla^{2} T=0 \nRightarrow \nabla T=0$ in the Lorentzian case.

2 Classify 3rd symmetric Lorentzian spaces.
Ambitious:
1 Generalize to Lorentzian r th-symmetric spaces
2 Idem to higher signatures.
Senovilla's:
1 Solve all the linear conditions for curvature:

$$
\nabla^{r} R+t_{1} \otimes \nabla^{r-1} R+t_{2} \otimes \nabla^{r-2} R+\cdots+t_{r-1} \otimes \nabla R+t_{r} \otimes R=0
$$

for some m - covariant tensors t_{m}.

