Higher genus helicoids

Martin Traizet

Granada, November 2012

(ロ)、(型)、(E)、(E)、 E) の(の)

Main result (joint work with D. Hoffman and B. White)

Theorem For every $g \ge 1$, there exists a properly embedded, genus g minimal surface in \mathbb{R}^3 that is asymptotic to the helicoid.

・ロト・日本・モート モー うへぐ

Previously known : the genus 1 helicoid

- Discovered by Hoffman Karcher Wei using Weierstrass Representation (1993)
- Proven to be embedded by Hoffman Weber Wolf (2009)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Picture of a genus 2 helicoid

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●

Strategy

1. Construct minimal surfaces in $\mathbb{S}^2(r) \times \mathbb{R}$ of genus g, asymptotic to the helicoid

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Strategy

- 1. Construct minimal surfaces in $\mathbb{S}^2(r) \times \mathbb{R}$ of genus g, asymptotic to the helicoid
- 2. Prove that for even g, these surfaces converge to a genus g/2 helicoid in \mathbb{R}^3 as $r \to \infty$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimal surfaces in $\mathbb{S}^2(r) \times \mathbb{R}$

• Model for $\mathbb{S}^2(r): \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ with conformal metric

$$\lambda^2 |dz|^2, \quad \lambda = \frac{2r^2}{r^2 + |z|^2}$$

Minimal surfaces in $\mathbb{S}^2(r) \times \mathbb{R}$

• Model for $\mathbb{S}^2(r):\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ with conformal metric

$$\lambda^2 |dz|^2, \quad \lambda = \frac{2r^2}{r^2 + |z|^2}$$

• Model for $\mathbb{S}^2(r) \times \mathbb{R} : \overline{\mathbb{C}} \times \mathbb{R}$ with metric

$$\lambda^2 |dz|^2 + dh^2, \quad (z,h) \in \mathbb{C} imes \mathbb{R}$$

Minimal surfaces in $\mathbb{S}^2(r) \times \mathbb{R}$

• Model for $\mathbb{S}^2(r) : \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ with conformal metric

$$\lambda^2 |dz|^2, \quad \lambda = \frac{2r^2}{r^2 + |z|^2}$$

• Model for $\mathbb{S}^2(r) \times \mathbb{R} : \overline{\mathbb{C}} \times \mathbb{R}$ with metric

$$\lambda^2 |dz|^2 + dh^2, \quad (z,h) \in \mathbb{C} imes \mathbb{R}$$

The standard helicoid H :

$$z=\pm e^{ih}$$

is minimal in $\mathbb{S}^2(r) imes \mathbb{R}$ for all r. It has two axes : $0 imes \mathbb{R}$ and $\infty imes \mathbb{R}$

Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal, genus g minimal surfaces $M_{g,r}^+$ and $M_{g,r}^-$ in $\mathbb{S}^2(r) \times \mathbb{R}$. Both have a top end and a bottom end asymptotic to a vertical translate of H.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal, genus g minimal surfaces $M_{g,r}^+$ and $M_{g,r}^-$ in $\mathbb{S}^2(r) \times \mathbb{R}$. Both have a top end and a bottom end asymptotic to a vertical translate of H.

Theorem 2 [Hoffman White] Given a sequence $r_n \to \infty$, there exists a subsequence such that M_{g,r_n}^{\pm} converges to a minimal surface M_g^{\pm} in \mathbb{R}^3 which is asymptotic to the standard helicoid H. Moreover M_g^+ has even genus and M_g^- has odd genus.

Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal, genus g minimal surfaces $M_{g,r}^+$ and $M_{g,r}^-$ in $\mathbb{S}^2(r) \times \mathbb{R}$. Both have a top end and a bottom end asymptotic to a vertical translate of H.

Theorem 2 [Hoffman White] Given a sequence $r_n \to \infty$, there exists a subsequence such that M_{g,r_n}^{\pm} converges to a minimal surface M_g^{\pm} in \mathbb{R}^3 which is asymptotic to the standard helicoid H. Moreover M_g^+ has even genus and M_g^- has odd genus.

Theorem 3 [Hoffman Traizet White] Assume g is even. If g/2 is even then the limit M_g^+ has genus g/2. If g/2 is odd then M_g^- has genus g/2.

Notations

- $M \subset \mathbb{S}^2(r) \times \mathbb{R}$ denotes $M_{g,r}^+$ or $M_{g,r}^-$
- The vertical axes $0 imes \mathbb{R}$ and $\infty imes \mathbb{R}$ are denoted Z and Z^*
- The horizontal axes $\mathbb{R} \times 0$ and $i \mathbb{R} \times 0$ are denoted X and Y
- ► The standard helicoid H divides S² × ℝ in two components denoted H⁺ and H⁻ so that H⁺ contains the positive Y axis

•
$$S = M \cap H^+$$

Symmetries of higher genus helicoids in $\mathbb{S}^2\times\mathbb{R}$

1.
$$M \cap H = Z \cup Z^* \cup X$$

So the boundary of S is $Z \cup Z^* \cup X$

(日)、

Symmetries of higher genus helicoids in $\mathbb{S}^2 \times \mathbb{R}$

1.
$$M \cap H = Z \cup Z^* \cup X$$

So the boundary of S is $Z \cup Z^* \cup X$

2. *M* intersects *Y* in 2g + 2 points. *M* is invariant by 180° rotation about the axis *Y* and the quotient is a disk.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Symmetries of higher genus helicoids in $\mathbb{S}^2 \times \mathbb{R}$

$$1. \ M \cap H = Z \cup Z^* \cup X$$

So the boundary of S is $Z \cup Z^* \cup X$

- 2. *M* intersects *Y* in 2g + 2 points. *M* is invariant by 180° rotation about the axis *Y* and the quotient is a disk.
- 3. if genus g is even : M is symmetric with respect to the vertical cylinder $\mathbb{S}^1(r) \times \mathbb{R}$.

Let g' be the genus of say $M_g^+ = \lim M_{g,r_n}^+$. This means that g' handles stay at bounded distance from Z axis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let g' be the genus of say $M_g^+ = \lim M_{g,r_n}^+$. This means that g' handles stay at bounded distance from Z axis.

If g is even, then by symmetry g' handles stay at bounded distance from Z^* axis. It remains g - 2g' handles which escape, i.e. whose distance to Z and Z^* goes to infinity.

Let g' be the genus of say $M_g^+ = \lim M_{g,r_n}^+$. This means that g' handles stay at bounded distance from Z axis.

If g is even, then by symmetry g' handles stay at bounded distance from Z^* axis. It remains g - 2g' handles which escape, i.e. whose distance to Z and Z^* goes to infinity.

Goal : prove that $g - 2g' \le 2$ so at most two handles escape. Then $\frac{g}{2} - g' \le 1$ so if $\frac{g}{2}$ and g' have the same parity, $g' = \frac{g}{2}$.

Let g' be the genus of say $M_g^+ = \lim M_{g,r_n}^+$. This means that g' handles stay at bounded distance from Z axis.

If g is even, then by symmetry g' handles stay at bounded distance from Z^* axis. It remains g - 2g' handles which escape, i.e. whose distance to Z and Z^* goes to infinity.

Goal : prove that $g - 2g' \leq 2$ so at most two handles escape.

Then
$$\frac{g}{2} - g' \leq 1$$
 so if $\frac{g}{2}$ and g' have the same parity, $g' = \frac{g}{2}$.

Idea : handles which escape interact via some forces which can be explicitely computed in the limit.

Proof of Theorem 3 in 8 slides

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

1. Change scale : work in $\mathbb{S}^2(1) imes \mathbb{R}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2. Work in universal cover of $\mathbb{R}^3 \setminus Z$

Work in cylindrical coordinates (r, θ, h) Metric is still the metric of $\mathbb{S}^2 \times \mathbb{R}$

 H_n^+ is the domain $t_n(heta - \pi) < h < t_n heta$

Proposition S_n converges to the plane h = 0. Convergence is smooth outside of a discrete singular set S. Multiplicity of the limit is

 $\left\{ \begin{array}{ll} 1 & \text{ on } \theta < 0 \text{ and } \theta > \pi \\ 2 & \text{ on } 0 \leq \theta \leq \pi \end{array} \right.$

4. Formation of catenoidal necks

Proposition Let $p \in S$, $p \neq 0, \infty$. There exists $p_n \in S_n$, $p_n \rightarrow p$, and $\lambda_n \rightarrow \infty$ such that $\lambda_n(S_n - p_n)$ converges to the standard catenoid in \mathbb{R}^3 . Moreover, $p \in Y$.

4. Formation of catenoidal necks

Proposition Let $p \in S$, $p \neq 0, \infty$. There exists $p_n \in S_n$, $p_n \rightarrow p$, and $\lambda_n \rightarrow \infty$ such that $\lambda_n(S_n - p_n)$ converges to the standard catenoid in \mathbb{R}^3 . Moreover, $p \in Y$.

Write $S = \{p_1, \cdots, p_N\}.$

Goal : prove that $N \leq 1$.

4. Formation of catenoidal necks

Proposition Let $p \in S$, $p \neq 0, \infty$. There exists $p_n \in S_n$, $p_n \rightarrow p$, and $\lambda_n \rightarrow \infty$ such that $\lambda_n(S_n - p_n)$ converges to the standard catenoid in \mathbb{R}^3 . Moreover, $p \in Y$.

Write
$$S = \{p_1, \cdots, p_N\}.$$

Goal : prove that $N \leq 1$.

Remark : there could be several handles converging to the same singular point. There could also be handles converging to 0 or ∞ at this scale but not fast enough to be captured by the limit helicoids.

5. Write S_n as a graph

Remove vertical cylinders of small radius about Z and Z^{*} Remove small balls centered at p_1, \cdots, p_N This disconnects S_n in two components. The top one is the graph of a function f_n on a domain $\Omega_n \subset \widetilde{\mathbb{C}^*}$

5. Write S_n as a graph

Remove vertical cylinders of small radius about Z and Z^{*} Remove small balls centered at p_1, \cdots, p_N This disconnects S_n in two components. The top one is the graph of a function f_n on a domain $\Omega_n \subset \widetilde{\mathbb{C}^*}$

$$f_n(z) = t_n \arg z - u_n(z)$$

$$u_n = 0 \text{ on } \theta = 0$$

$$0 < u_n < t_n \pi \text{ on } \Omega_n$$

6. Limit of u_n

Proposition

$$\lim \frac{|\log t_n|}{t_n} u_n(z) = c_0 \arg z - \sum_{i=1}^N c_i \log \left| \frac{\log z - \log p_i}{\log z - \log \overline{p_i}} \right|$$

Moreover $c_i > 0$ for $1 \le i \le N$.

7. Compute forces

▶ N^3 Riemannian mfd, $M \subset N$ minimal surface, χ Killing field

$$\mathsf{Flux}_{\chi}(M,\gamma) = \int_{\gamma} \langle \chi,
u
angle$$

7. Compute forces

▶ N^3 Riemannian mfd, $M \subset N$ minimal surface, χ Killing field

$$\mathsf{Flux}_{\chi}(M,\gamma) = \int_{\gamma} \langle \chi, \nu \rangle$$

• $\chi_Y(z) = \frac{i}{2}(1-z^2)$ Killing field on $\mathbb{S}^2(1) \times \mathbb{R}$ unitary tangent to Y

7. Compute forces

▶ N^3 Riemannian mfd, $M \subset N$ minimal surface, χ Killing field

$$\mathsf{Flux}_{\chi}(M,\gamma) = \int_{\gamma} \langle \chi, \nu \rangle$$

 If M ⊂ S²(1) × ℝ is the graph of a function f_n and χ is a horizontal Killing field

$$\mathsf{Flux}_{\chi}(M,\gamma) = -\Im \int_{\gamma} 2(f_z)^2 \chi(z) dz + O(|f_z|^4)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$F_{i,n} = \mathsf{Flux}_{\chi_Y}(S_n, C(p_i, \varepsilon))$$
$$F_i = \lim \left(\frac{\log t_n}{t_n}\right)^2 F_{i,n}$$

$$F_{i,n} = \operatorname{Flux}_{\chi_Y}(S_n, C(p_i, \varepsilon))$$
$$F_i = \lim \left(\frac{\log t_n}{t_n}\right)^2 F_{i,n}$$

• $F_{i,n} = 0$ because S_n is invariant by 180^o symmetry about Y

$$F_{i,n} = \operatorname{Flux}_{\chi_{Y}}(S_{n}, C(p_{i}, \varepsilon))$$
$$F_{i} = \lim \left(\frac{\log t_{n}}{t_{n}}\right)^{2} F_{i,n}$$

F_{i,n} = 0 because S_n is invariant by 180° symmetry about Y
 On the other hand a residue computation gives

$$F_i = -c_1^2 \sinh x_i - \sum_{j \neq i} \frac{2\pi^2 c_i c_j}{(x_i - x_j)((x_i - x_j)^2 + \pi^2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $p_j = ie^{x_j}$, $x_1 < x_2 < x_N$

$$F_{i,n} = \operatorname{Flux}_{\chi_{Y}}(S_{n}, C(p_{i}, \varepsilon))$$
$$F_{i} = \lim \left(\frac{\log t_{n}}{t_{n}}\right)^{2} F_{i,n}$$

F_{i,n} = 0 because S_n is invariant by 180° symmetry about Y
 On the other hand a residue computation gives

$$F_i = -c_1^2 \sinh x_i - \sum_{j \neq i} \frac{2\pi^2 c_i c_j}{(x_i - x_j)((x_i - x_j)^2 + \pi^2)}$$

where $p_j = ie^{x_j}$, $x_1 < x_2 < x_N$

• If $N \ge 2$ then $F_1 > 0$, contradiction.

• If
$$N = 1$$
 then $p_1 = i$.