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Main result (joint work with D. Hoffman and B. White)

Theorem For every g ≥ 1, there exists a properly embedded, genus
g minimal surface in R3 that is asymptotic to the helicoid.



Previously known : the genus 1 helicoid

I Discovered by Hoffman Karcher Wei using Weierstrass
Representation (1993)

I Proven to be embedded by Hoffman Weber Wolf (2009)



Picture of a genus 2 helicoid



Strategy

1. Construct minimal surfaces in S2(r)× R of genus g ,
asymptotic to the helicoid

2. Prove that for even g , these surfaces converge to a genus g/2
helicoid in R3 as r →∞.
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Minimal surfaces in S2(r)× R

I Model for S2(r) : C = C ∪ {∞} with conformal metric

λ2|dz |2, λ =
2r2

r2 + |z |2

I Model for S2(r)× R : C× R with metric

λ2|dz |2 + dh2, (z , h) ∈ C× R

I The standard helicoid H :

z = ±e ih

is minimal in S2(r)× R for all r . It has two axes : 0× R and
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Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal,
genus g minimal surfaces M+

g ,r and M−g ,r in S2(r)×R. Both have a
top end and a bottom end asymptotic to a vertical translate of H.

Theorem 2 [Hoffman White] Given a sequence rn →∞, there
exists a subsequence such that M±g ,rn converges to a minimal
surface M±g in R3 which is asymptotic to the standard helicoid H.
Moreover M+

g has even genus and M−g has odd genus.

Theorem 3 [Hoffman Traizet White] Assume g is even. If g/2 is
even then the limit M+

g has genus g/2. If g/2 is odd then M−g has
genus g/2.
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Notations

I M ⊂ S2(r)× R denotes M+
g ,r or M−g ,r

I The vertical axes 0× R and ∞× R are denoted Z and Z ∗

I The horizontal axes R× 0 and i R× 0 are denoted X and Y

I The standard helicoid H divides S2 × R in two components
denoted H+ and H− so that H+ contains the positive Y axis

I S = M ∩ H+



Symmetries of higher genus helicoids in S2 × R
1. M ∩ H = Z ∪ Z ∗ ∪ X

So the boundary of S is Z ∪ Z ∗ ∪ X

2. M intersects Y in 2g + 2 points. M is invariant by 180o

rotation about the axis Y and the quotient is a disk.

3. if genus g is even : M is symmetric with respect to the
vertical cylinder S1(r)× R.
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Heuristic ideas for the Proof of Theorem 3

Let g ′ be the genus of say M+
g = limM+

g ,rn . This means that g ′

handles stay at bounded distance from Z axis.

If g is even, then by symmetry g ′ handles stay at bounded distance
from Z ∗ axis. It remains g − 2g ′ handles which escape, i.e. whose
distance to Z and Z ∗ goes to infinity.

Goal : prove that g − 2g ′ ≤ 2 so at most two handles escape.

Then g
2 − g ′ ≤ 1 so if g

2 and g ′ have the same parity, g ′ = g
2 .

Idea : handles which escape interact via some forces which can be
explicitely computed in the limit.
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Proof of Theorem 3 in 8 slides



1. Change scale : work in S2(1)× R

I tn = 1
rn
→ 0

I Mn = tnM
±(g , rn) ⊂ S2(1)× R

I Hn = tnH is a helicoid of vertical period 2πtn
I Sn = Mn ∩ H+

n



2. Work in universal cover of R3 \ Z

Work in cylindrical coordinates (r , θ, h)

Metric is still the metric of S2 × R

H+
n is the domain tn(θ − π) < h < tnθ



3. Limit as tn → 0

Proposition Sn converges to the plane h = 0. Convergence is
smooth outside of a discrete singular set S. Multiplicity of the limit
is {

1 on θ < 0 and θ > π
2 on 0 ≤ θ ≤ π



4. Formation of catenoidal necks

Proposition Let p ∈ S, p 6= 0,∞. There exists pn ∈ Sn, pn → p,
and λn →∞ such that λn(Sn − pn) converges to the standard
catenoid in R3. Moreover, p ∈ Y .

Write S = {p1, · · · , pN}.

Goal : prove that N ≤ 1.

Remark : there could be several handles converging to the same
singular point. There could also be handles converging to 0 or ∞ at
this scale but not fast enough to be captured by the limit helicoids.
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5. Write Sn as a graph

Remove vertical cylinders of small radius about Z and Z ∗

Remove small balls centered at p1, · · · , pN
This disconnects Sn in two components. The top one is the graph
of a function fn on a domain Ωn ⊂ C̃∗

fn(z) = tn arg z − un(z)

I un = 0 on θ = 0

I 0 < un < tnπ on Ωn
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6. Limit of un

Proposition

lim
| log tn|

tn
un(z) = c0 arg z −

N∑
i=1

ci log

∣∣∣∣ log z − log pi
log z − log pi

∣∣∣∣
Moreover ci > 0 for 1 ≤ i ≤ N.



7. Compute forces

I N3 Riemannian mfd, M ⊂ N minimal surface, χ Killing field

Fluxχ(M, γ) =

∫
γ
〈χ, ν〉

I χY (z) = i
2(1− z2) Killing field on S2(1)× R unitary tangent

to Y

I If M ⊂ S2(1)× R is the graph of a function fn and χ is a
horizontal Killing field

Fluxχ(M, γ) = −=
∫
γ

2(fz)2χ(z)dz + O(|fz |4)
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8. Conclude

Fi ,n = FluxχY
(Sn,C (pi , ε))

Fi = lim

(
log tn
tn

)2

Fi ,n

I Fi ,n = 0 because Sn is invariant by 180o symmetry about Y

I On the other hand a residue computation gives

Fi = −c21 sinh xi −
∑
j 6=i

2π2cicj
(xi − xj)((xi − xj)2 + π2)

where pj = iexj , x1 < x2 < xN
I If N ≥ 2 then F1 > 0, contradiction.

I If N = 1 then p1 = i .
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