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Main result (joint work with D. Hoffman and B. White)

Theorem For every g > 1, there exists a properly embedded, genus
g minimal surface in R3 that is asymptotic to the helicoid.



Previously known : the genus 1 helicoid

» Discovered by Hoffman Karcher Wei using Weierstrass
Representation (1993)

» Proven to be embedded by Hoffman Weber Wolf (2009)




Picture of a genus 2 helicoid
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2. Prove that for even g, these surfaces converge to a genus g/2
helicoid in R? as r — oo.
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» Model for S?(r) x R : C x R with metric

MN|dz|> +dh®, (z,h) e CxR

» The standard helicoid H :
z = +e

is minimal in S?(r) x R for all r. It has two axes : 0 x R and
oo x R
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Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal,
genus g minimal surfaces M,", and M, in S?(r) x R. Both have a
top end and a bottom end asymptotic to a vertical translate of H.

Theorem 2 [Hoffman White] Given a sequence r, — oo, there
exists a subsequence such that Mgf,n converges to a minimal
surface M;[ in R? which is asymptotic to the standard helicoid H.
Moreover Mg has even genus and M, has odd genus.

Theorem 3 [Hoffman Traizet White] Assume g is even. If g/2 is
even then the limit M, has genus g/2. If g/2 is odd then M, has

genus g/2.



Notations

v

M C $?(r) x R denotes M, or M,
The vertical axes 0 x R and oo X R are denoted Z and Z*
The horizontal axes R x 0 and /R x 0 are denoted X and Y

The standard helicoid H divides S? x R in two components
denoted H* and H™ so that H™ contains the positive Y axis

» S=MnNHT

v

v

v
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Symmetries of higher genus helicoids in S? x R

1. MNH=ZuUZ*uUX
So the boundary of Sis ZU Z* U X

2. M intersects Y in 2g + 2 points. M is invariant by 180°
rotation about the axis Y and the quotient is a disk.

3. if genus g is even : M is symmetric with respect to the
vertical cylinder S*(r) x R.
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Heuristic ideas for the Proof of Theorem 3

Let g’ be the genus of say M = lim M/}, . This means that g’
handles stay at bounded distance from Z axis.

If g is even, then by symmetry g’ handles stay at bounded distance
from Z* axis. It remains g — 2g’ handles which escape, i.e. whose
distance to Z and Z* goes to infinity.

Goal : prove that g — 2g’ < 2 so at most two handles escape.
Then § — g’ < 1soif § and g’ have the same parity, g’ = §.

Idea : handles which escape interact via some forces which can be
explicitely computed in the limit.



Proof of Theorem 3 in 8 slides



1. Change scale : work in S?(1) x R

>ty =7 =0

» M, =t,M*(g,r,) C S*(1) xR

» H, = t,H is a helicoid of vertical period 27t,
» Sp=M,NHF



2. Work in universal cover of R3\ Z

Work in cylindrical coordinates (r, 8, h)
Metric is still the metric of S2 x R

H T is the domain t,(6 — 7) < h < t,0

N
£ )




3. Limtast, —0

Proposition S, converges to the plane h = 0. Convergence is
smooth outside of a discrete singular set S. Multiplicity of the limit
is

1 onf<0and >
2 on0<6O6<n7



4. Formation of catenoidal necks

Proposition Let p € S, p # 0,00. There exists p, € S,, pn — P,
and A, — oo such that A\,(S, — pn) converges to the standard
catenoid in R3. Moreover, p € Y.
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4. Formation of catenoidal necks

Proposition Let p € S, p # 0,00. There exists p, € S,, pn — P,
and A, — oo such that A\,(S, — pn) converges to the standard
catenoid in R3. Moreover, p € Y.

Write S = {p1, -+ ,pn}-
Goal : prove that N < 1.

Remark : there could be several handles converging to the same
singular point. There could also be handles converging to 0 or co at
this scale but not fast enough to be captured by the limit helicoids.



5. Write S,, as a graph

Remove vertical cylinders of small radius about Z and Z*

Remove small balls centered at p1,--- , pn
This disconnects S, in two components. The top one is the graph

of a function f, on a domain Q,, C C*
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fo(z) = thargz — up(z)
» up,=00n 6 =0
» 0 < u, < tymon Q,



6. Limit of u,

Proposition

| log 5|

n

log z — log p;

lim —
log z — log p;

N
un(z) = cpargz — Z cilog
i=1

Moreover ¢; >0 for 1 << N.
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7. Compute forces

» N3 Riemannian mfd, M C N minimal surface, x Killing field

Flux,(M,~) = /<X7V>

~

» xy(z) = £(1 — 2?) Killing field on S?(1) x R unitary tangent
toY

» If M C S?(1) x R is the graph of a function f, and x is a
horizontal Killing field

Flux, (M, ~) = —%/2(fz)2x(z)dz + O(I£|*)
0
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8. Conclude

Fi,n = FIUXXY(Sm C(Pi,€))

log t,, 2
F,‘ = lim ( ) F,' n
ty ’

Fin = 0 because S, is invariant by 180° symmetry about Y

v

v

On the other hand a residue computation gives

272 ¢ic
Fi= h i
C1 sin Xj — ; (X, — X_] XI o XJ) + 7T2)

where p; = ie¥, x1 < xo < xn
If N> 2 then F; > 0, contradiction.
If N=1 then p; =1i.

v
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