Higher genus helicoids

Martin Traizet

Granada, November 2012

Main result (joint work with D. Hoffman and B. White)

Theorem For every $g \geq 1$, there exists a properly embedded, genus g minimal surface in \mathbb{R}^{3} that is asymptotic to the helicoid.

Previously known: the genus 1 helicoid

- Discovered by Hoffman Karcher Wei using Weierstrass Representation (1993)
- Proven to be embedded by Hoffman Weber Wolf (2009)

Picture of a genus 2 helicoid

Strategy

1. Construct minimal surfaces in $\mathbb{S}^{2}(r) \times \mathbb{R}$ of genus g, asymptotic to the helicoid

Strategy

1. Construct minimal surfaces in $\mathbb{S}^{2}(r) \times \mathbb{R}$ of genus g, asymptotic to the helicoid
2. Prove that for even g, these surfaces converge to a genus $g / 2$ helicoid in \mathbb{R}^{3} as $r \rightarrow \infty$.

Minimal surfaces in $\mathbb{S}^{2}(r) \times \mathbb{R}$

- Model for $\mathbb{S}^{2}(r): \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ with conformal metric

$$
\lambda^{2}|d z|^{2}, \quad \lambda=\frac{2 r^{2}}{r^{2}+|z|^{2}}
$$

Minimal surfaces in $\mathbb{S}^{2}(r) \times \mathbb{R}$

- Model for $\mathbb{S}^{2}(r): \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ with conformal metric

$$
\lambda^{2}|d z|^{2}, \quad \lambda=\frac{2 r^{2}}{r^{2}+|z|^{2}}
$$

- Model for $\mathbb{S}^{2}(r) \times \mathbb{R}: \overline{\mathbb{C}} \times \mathbb{R}$ with metric

$$
\lambda^{2}|d z|^{2}+d h^{2}, \quad(z, h) \in \mathbb{C} \times \mathbb{R}
$$

Minimal surfaces in $\mathbb{S}^{2}(r) \times \mathbb{R}$

- Model for $\mathbb{S}^{2}(r): \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ with conformal metric

$$
\lambda^{2}|d z|^{2}, \quad \lambda=\frac{2 r^{2}}{r^{2}+|z|^{2}}
$$

- Model for $\mathbb{S}^{2}(r) \times \mathbb{R}: \overline{\mathbb{C}} \times \mathbb{R}$ with metric

$$
\lambda^{2}|d z|^{2}+d h^{2}, \quad(z, h) \in \mathbb{C} \times \mathbb{R}
$$

- The standard helicoid H :

$$
z= \pm e^{i h}
$$

is minimal in $\mathbb{S}^{2}(r) \times \mathbb{R}$ for all r. It has two axes : $0 \times \mathbb{R}$ and $\infty \times \mathbb{R}$

Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal, genus g minimal surfaces $M_{g, r}^{+}$and $M_{g, r}^{-}$in $\mathbb{S}^{2}(r) \times \mathbb{R}$. Both have a top end and a bottom end asymptotic to a vertical translate of H.

Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal, genus g minimal surfaces $M_{g, r}^{+}$and $M_{g, r}^{-}$in $\mathbb{S}^{2}(r) \times \mathbb{R}$. Both have a top end and a bottom end asymptotic to a vertical translate of H.

Theorem 2 [Hoffman White] Given a sequence $r_{n} \rightarrow \infty$, there exists a subsequence such that $M_{g, r_{n}}^{ \pm}$converges to a minimal surface $M_{g}^{ \pm}$in \mathbb{R}^{3} which is asymptotic to the standard helicoid H. Moreover M_{g}^{+}has even genus and M_{g}^{-}has odd genus.

Main result follows from three theorems

Theorem 1 [Hoffman White] For each g there exists two helicoidal, genus g minimal surfaces $M_{g, r}^{+}$and $M_{g, r}^{-}$in $\mathbb{S}^{2}(r) \times \mathbb{R}$. Both have a top end and a bottom end asymptotic to a vertical translate of H.

Theorem 2 [Hoffman White] Given a sequence $r_{n} \rightarrow \infty$, there exists a subsequence such that $M_{g, r_{n}}^{ \pm}$converges to a minimal surface $M_{g}^{ \pm}$in \mathbb{R}^{3} which is asymptotic to the standard helicoid H. Moreover M_{g}^{+}has even genus and M_{g}^{-}has odd genus.
Theorem 3 [Hoffman Traizet White] Assume g is even. If $g / 2$ is even then the limit M_{g}^{+}has genus $g / 2$. If $g / 2$ is odd then M_{g}^{-}has genus $g / 2$.

Notations

- $M \subset \mathbb{S}^{2}(r) \times \mathbb{R}$ denotes $M_{g, r}^{+}$or $M_{g, r}^{-}$
- The vertical axes $0 \times \mathbb{R}$ and $\infty \times \mathbb{R}$ are denoted Z and Z^{*}
- The horizontal axes $\mathbb{R} \times 0$ and $i \mathbb{R} \times 0$ are denoted X and Y
- The standard helicoid H divides $\mathbb{S}^{2} \times \mathbb{R}$ in two components denoted H^{+}and H^{-}so that H^{+}contains the positive Y axis
- $S=M \cap H^{+}$

Symmetries of higher genus helicoids in $\mathbb{S}^{2} \times \mathbb{R}$

1. $M \cap H=Z \cup Z^{*} \cup X$

So the boundary of S is $Z \cup Z^{*} \cup X$

Symmetries of higher genus helicoids in $\mathbb{S}^{2} \times \mathbb{R}$

1. $M \cap H=Z \cup Z^{*} \cup X$

So the boundary of S is $Z \cup Z^{*} \cup X$
2. M intersects Y in $2 g+2$ points. M is invariant by 180° rotation about the axis Y and the quotient is a disk.

Symmetries of higher genus helicoids in $\mathbb{S}^{2} \times \mathbb{R}$

1. $M \cap H=Z \cup Z^{*} \cup X$

So the boundary of S is $Z \cup Z^{*} \cup X$
2. M intersects Y in $2 g+2$ points. M is invariant by 180° rotation about the axis Y and the quotient is a disk.
3. if genus g is even : M is symmetric with respect to the vertical cylinder $\mathbb{S}^{1}(r) \times \mathbb{R}$.

Heuristic ideas for the Proof of Theorem 3

Let g^{\prime} be the genus of say $M_{g}^{+}=\lim M_{g, r_{n}}^{+}$. This means that g^{\prime} handles stay at bounded distance from Z axis.

Heuristic ideas for the Proof of Theorem 3

Let g^{\prime} be the genus of say $M_{g}^{+}=\lim M_{g, r_{n}}^{+}$. This means that g^{\prime} handles stay at bounded distance from Z axis.

If g is even, then by symmetry g^{\prime} handles stay at bounded distance from Z^{*} axis. It remains $g-2 g^{\prime}$ handles which escape, i.e. whose distance to Z and Z^{*} goes to infinity.

Heuristic ideas for the Proof of Theorem 3

Let g^{\prime} be the genus of say $M_{g}^{+}=\lim M_{g, r_{n}}^{+}$. This means that g^{\prime} handles stay at bounded distance from Z axis.

If g is even, then by symmetry g^{\prime} handles stay at bounded distance from Z^{*} axis. It remains $g-2 g^{\prime}$ handles which escape, i.e. whose distance to Z and Z^{*} goes to infinity.

Goal : prove that $g-2 g^{\prime} \leq 2$ so at most two handles escape.
Then $\frac{g}{2}-g^{\prime} \leq 1$ so if $\frac{g}{2}$ and g^{\prime} have the same parity, $g^{\prime}=\frac{g}{2}$.

Heuristic ideas for the Proof of Theorem 3

Let g^{\prime} be the genus of say $M_{g}^{+}=\lim M_{g, r_{n}}^{+}$. This means that g^{\prime} handles stay at bounded distance from Z axis.

If g is even, then by symmetry g^{\prime} handles stay at bounded distance from Z^{*} axis. It remains $g-2 g^{\prime}$ handles which escape, i.e. whose distance to Z and Z^{*} goes to infinity.

Goal : prove that $g-2 g^{\prime} \leq 2$ so at most two handles escape.
Then $\frac{g}{2}-g^{\prime} \leq 1$ so if $\frac{g}{2}$ and g^{\prime} have the same parity, $g^{\prime}=\frac{g}{2}$.
Idea : handles which escape interact via some forces which can be explicitely computed in the limit.

Proof of Theorem 3 in 8 slides

1. Change scale: work in $\mathbb{S}^{2}(1) \times \mathbb{R}$

- $t_{n}=\frac{1}{r_{n}} \rightarrow 0$
- $M_{n}=t_{n} M^{ \pm}\left(g, r_{n}\right) \subset \mathbb{S}^{2}(1) \times \mathbb{R}$
- $H_{n}=t_{n} H$ is a helicoid of vertical period $2 \pi t_{n}$
- $S_{n}=M_{n} \cap H_{n}^{+}$

2. Work in universal cover of $\mathbb{R}^{3} \backslash Z$

Work in cylindrical coordinates (r, θ, h)
Metric is still the metric of $\mathbb{S}^{2} \times \mathbb{R}$
H_{n}^{+}is the domain $t_{n}(\theta-\pi)<h<t_{n} \theta$

3. Limit as $t_{n} \rightarrow 0$

Proposition S_{n} converges to the plane $h=0$. Convergence is smooth outside of a discrete singular set \mathcal{S}. Multiplicity of the limit is

$$
\begin{cases}1 & \text { on } \theta<0 \text { and } \theta>\pi \\ 2 & \text { on } 0 \leq \theta \leq \pi\end{cases}
$$

4. Formation of catenoidal necks

Proposition Let $p \in \mathcal{S}, p \neq 0, \infty$. There exists $p_{n} \in S_{n}, p_{n} \rightarrow p$, and $\lambda_{n} \rightarrow \infty$ such that $\lambda_{n}\left(S_{n}-p_{n}\right)$ converges to the standard catenoid in \mathbb{R}^{3}. Moreover, $p \in Y$.

4. Formation of catenoidal necks

Proposition Let $p \in \mathcal{S}, p \neq 0, \infty$. There exists $p_{n} \in S_{n}, p_{n} \rightarrow p$, and $\lambda_{n} \rightarrow \infty$ such that $\lambda_{n}\left(S_{n}-p_{n}\right)$ converges to the standard catenoid in \mathbb{R}^{3}. Moreover, $p \in Y$.

Write $\mathcal{S}=\left\{p_{1}, \cdots, p_{N}\right\}$.
Goal : prove that $N \leq 1$.

4. Formation of catenoidal necks

Proposition Let $p \in \mathcal{S}, p \neq 0, \infty$. There exists $p_{n} \in S_{n}, p_{n} \rightarrow p$, and $\lambda_{n} \rightarrow \infty$ such that $\lambda_{n}\left(S_{n}-p_{n}\right)$ converges to the standard catenoid in \mathbb{R}^{3}. Moreover, $p \in Y$.

Write $\mathcal{S}=\left\{p_{1}, \cdots, p_{N}\right\}$.
Goal : prove that $N \leq 1$.
Remark: there could be several handles converging to the same singular point. There could also be handles converging to 0 or ∞ at this scale but not fast enough to be captured by the limit helicoids.

5. Write S_{n} as a graph

Remove vertical cylinders of small radius about Z and Z^{*}
Remove small balls centered at p_{1}, \cdots, p_{N}
This disconnects S_{n} in two components. The top one is the graph of a function f_{n} on a domain $\Omega_{n} \subset \widetilde{\mathbb{C}^{*}}$

5. Write S_{n} as a graph

Remove vertical cylinders of small radius about Z and Z^{*}
Remove small balls centered at p_{1}, \cdots, p_{N}
This disconnects S_{n} in two components. The top one is the graph of a function f_{n} on a domain $\Omega_{n} \subset \mathbb{C}^{*}$

$f_{n}(z)=t_{n} \arg z-u_{n}(z)$

- $u_{n}=0$ on $\theta=0$
- $0<u_{n}<t_{n} \pi$ on Ω_{n}

6. Limit of u_{n}

Proposition

$$
\lim \frac{\left|\log t_{n}\right|}{t_{n}} u_{n}(z)=c_{0} \arg z-\sum_{i=1}^{N} c_{i} \log \left|\frac{\log z-\log p_{i}}{\log z-\log \overline{p_{i}}}\right|
$$

Moreover $c_{i}>0$ for $1 \leq i \leq N$.

7. Compute forces

- N^{3} Riemannian mfd, $M \subset N$ minimal surface, χ Killing field

$$
\operatorname{Flux}_{\chi}(M, \gamma)=\int_{\gamma}\langle\chi, \nu\rangle
$$

7. Compute forces

- N^{3} Riemannian mfd, $M \subset N$ minimal surface, χ Killing field

$$
\operatorname{Flux}_{\chi}(M, \gamma)=\int_{\gamma}\langle\chi, \nu\rangle
$$

- $\chi_{Y}(z)=\frac{i}{2}\left(1-z^{2}\right)$ Killing field on $\mathbb{S}^{2}(1) \times \mathbb{R}$ unitary tangent to Y

7. Compute forces

- N^{3} Riemannian mfd, $M \subset N$ minimal surface, χ Killing field

$$
\operatorname{Flux}_{\chi}(M, \gamma)=\int_{\gamma}\langle\chi, \nu\rangle
$$

- $\chi_{Y}(z)=\frac{i}{2}\left(1-z^{2}\right)$ Killing field on $\mathbb{S}^{2}(1) \times \mathbb{R}$ unitary tangent to Y
- If $M \subset \mathbb{S}^{2}(1) \times \mathbb{R}$ is the graph of a function f_{n} and χ is a horizontal Killing field

$$
\operatorname{Flux}_{\chi}(M, \gamma)=-\Im \int_{\gamma} 2\left(f_{z}\right)^{2} \chi(z) d z+O\left(\left|f_{z}\right|^{4}\right)
$$

8. Conclude

$$
\begin{aligned}
F_{i, n} & =\operatorname{Flux}_{\chi y}\left(S_{n}, C\left(p_{i}, \varepsilon\right)\right) \\
F_{i} & =\lim \left(\frac{\log t_{n}}{t_{n}}\right)^{2} F_{i, n}
\end{aligned}
$$

8. Conclude

$$
\begin{aligned}
F_{i, n} & =\operatorname{Flux}_{\chi Y}\left(S_{n}, C\left(p_{i}, \varepsilon\right)\right) \\
F_{i} & =\lim \left(\frac{\log t_{n}}{t_{n}}\right)^{2} F_{i, n}
\end{aligned}
$$

- $F_{i, n}=0$ because S_{n} is invariant by 180° symmetry about Y

8. Conclude

$$
\begin{aligned}
F_{i, n} & =\operatorname{Flux}_{\chi Y}\left(S_{n}, C\left(p_{i}, \varepsilon\right)\right) \\
F_{i} & =\lim \left(\frac{\log t_{n}}{t_{n}}\right)^{2} F_{i, n}
\end{aligned}
$$

- $F_{i, n}=0$ because S_{n} is invariant by 180° symmetry about Y
- On the other hand a residue computation gives

$$
F_{i}=-c_{1}^{2} \sinh x_{i}-\sum_{j \neq i} \frac{2 \pi^{2} c_{i} c_{j}}{\left(x_{i}-x_{j}\right)\left(\left(x_{i}-x_{j}\right)^{2}+\pi^{2}\right)}
$$

where $p_{j}=i e^{x_{j}}, x_{1}<x_{2}<x_{N}$

8. Conclude

$$
\begin{aligned}
F_{i, n} & =\operatorname{Flux}_{\chi Y}\left(S_{n}, C\left(p_{i}, \varepsilon\right)\right) \\
F_{i} & =\lim \left(\frac{\log t_{n}}{t_{n}}\right)^{2} F_{i, n}
\end{aligned}
$$

- $F_{i, n}=0$ because S_{n} is invariant by 180° symmetry about Y
- On the other hand a residue computation gives

$$
F_{i}=-c_{1}^{2} \sinh x_{i}-\sum_{j \neq i} \frac{2 \pi^{2} c_{i} c_{j}}{\left(x_{i}-x_{j}\right)\left(\left(x_{i}-x_{j}\right)^{2}+\pi^{2}\right)}
$$

where $p_{j}=i e^{x_{j}}, x_{1}<x_{2}<x_{N}$

- If $N \geq 2$ then $F_{1}>0$, contradiction.
- If $N=1$ then $p_{1}=i$.

