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Main theorem. For every positive integer k , there exists a genus-k
helicoid in R3.



Setup

I Recall our model for S2 is C ∪ {∞} with conformal metric
obtained by stereographic projection.

I Fix some positive even genus g = 2k . Consider a sequence
Rn →∞. Let Mn ⊂ S2(Rn)× R be one of the two genus-g
helicoids that we constructed in previous lectures (asymptotic
to the standard helicoid H with pitch 2π).

I We know : as n→∞, Mn converges (subsequentially) to a
genus-g ′ helicoid in R3 with g ′ ≤ k.

Goal : g ′ = k.

I Recall : g ′ is even if Mn is positive at O and odd if Mn is
negative. We choose the sign of Mn at O so that g ′ and k
have the same parity.
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Catenoidal necks

For large values of Rn, Mn looks like this :

Let 2N be the number of handles that are escaping from both Z
and Z ∗ (red guys). Then

g = 2k = 2g ′ + 2N ⇒ N = k − g ′

Observe that N is even.

Goal : prove that N ≤ 1
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Change scale

I Let M̃n = 1
Rn
Mn. This is a genus-g helicoid in S2(1)× R

asymptotic to the helicoid with pitch

tn =
2π

Rn
→ 0

I Let pi ,n ∈ Y be the “center” of the i-th catenoidal neck
(midpoint of the two intersection points of the catenoidal
neck with Y -axis).
Label the necks so that Im(pi ,n) > 0 for 1 ≤ i ≤ N and
pN+i ,n = −pi ,n.

I Passing to a subsequence :

pi := lim pi ,n ∈ Y

I First assume that all limit points pi are distinct and 6= 0,∞.
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Write M̃n as a graph.
Remove vertical cylinders of axis Z and Z ∗ and 2N small balls with
centers pi ,n. This disconnects M̃n into two components which are
both vertical graphs over the helicoid and are exchanged by
Y -symmetry.

Consider the component which contains the positive X -axis. We
can write it as the graph over the plane of a multivalued function
fn which has the form :

fn =
tn
2π

arg(z) + un

with

I un = 0 on arg(z) = 0

I |un| < tn
2

I un < 0 on arg(z) > 0

I un(1z ) = un(z)

Observe : un is multivalued in the plane. It is well defined in the
universal cover C̃∗ where arg(z) is well defined.
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A simpler case

Assume for simplicity that un is a single-valued function of z .
Geometrically, this means we are considering periodic helicoidal
surfaces invariant by a vertical translation :

non-periodic case periodic case



Limit of un

Key Proposition. In the periodic case :

ũ := lim
| log tn|

tn
un =

2N∑
i=1

ci log |z − pi |

Moreover ci > 0 for 1 ≤ i ≤ N and cN+i = −ci < 0.

In the non-periodic case :

lim
| log tn|

tn
un = c0 arg z +

2N∑
i=1

ci log | log z − log pi |
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Proof of key proposition (periodic case)

Let ũn =
| log tn|

tn
un.

I Minimal graph equation in S2 × R :

(1+
f 2y
λ2

)fxx+(1+
f 2x
λ2

)fyy−2
fx fy
λ2

fxy+(f 2x +f 2y )(
λx
λ
fx+

λy
λ
fy ) = 0.

I |∆ũn| ≤ C t2n | log tn|
d4 .

I A barrier argument gives uniform estimate of ũn on compact
subsets of C \ {0, p1, · · · , p2N}.

I Standard P.D.E. implies ũn converges subsequentially to a
function which is harmonic in C \ {0, p1, · · · , p2N}.

I Bôcher Theorem implies it has log singularities at p1, · · · , p2N .
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I Standard P.D.E. implies ũn converges subsequentially to a
function which is harmonic in C \ {0, p1, · · · , p2N}.
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Flux

I M minimal surface in a Riemannian Manifold, χ Killing field,
γ closed curve on M

Fluxχ(γ) =

∫
γ
〈χ, ν〉

I Killing fields of S2(1) generated by
I χX (z) = 1

2 (1 + z2)
I χY (z) = i

2 (1− z2)
I χE (z) = iz

I If M ⊂ S2(1)× R is the graph of a function f and χ is a
horizontal Killing field

Fluxχ(γ) = −Im
∫
γ

2(fz)2χ(z)dz + O(|fz |4)
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Limit of the flux (periodic case)

Fi ,n := fluxχY
(C (pi , ε))

I On one hand : Fi ,n = 0 by Y -symmetry.

I On the other hand we can compute the limit of Fi ,n :

Claim : Fi := lim
| log tn|2

t2n
Fi ,n = −Re

∫
C(pi ,ε)

(ũz)2(1− z2)dz

Compute :

Fi = πIm
∑
j 6=i

cicj
1− pipj
pi − pj

Write pj = i tan
θj
2 :

Fi = π
∑
j 6=i

cicj cot
θj − θi

2
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Physical model (periodic case)

Conclusion : N ≤ 1.
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Case where some points pi ,n converge to O (or O∗)

A blowup at O produces a configuration like

Cannot be balanced !



Case where all points pj ,n for 1 ≤ j ≤ N converge to i

A blowup at i produces a configuration like

Cannot be balanced !



Forces in the non-periodic case

Fi =
y2i + 1

2yi

c2i 1− y2i
y2i + 1

+
∑
j 6=i

1≤j≤N

−2π2 cicj
(log yi − log yj)| log yi − log yj + iπ|2

 .
where yi = Im(pi ).


