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Main theorem. For every positive integer k, there exists a genus-k
helicoid in R3.
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Setup

Recall our model for S? is C U {oo} with conformal metric
obtained by stereographic projection.

Fix some positive even genus g = 2k. Consider a sequence
R, — co. Let M, C S?(R,) x R be one of the two genus-g
helicoids that we constructed in previous lectures (asymptotic
to the standard helicoid H with pitch 27).

We know : as n — 0o, M, converges (subsequentially) to a
genus-g’ helicoid in R3 with g’ < k.
Goal : g’ = k.

Recall : g’ is even if M, is positive at O and odd if M,, is
negative. We choose the sign of M,, at O so that g’ and k
have the same parity.
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Catenoidal necks
For large values of R,, M, looks like this :

Let 2N be the number of handles that are escaping from both Z
and Z* (red guys). Then

g=2k=2¢g"+2N = N=k-g

Observe that N is even.

Goal : prove that N <1
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Change scale

> Let M, = Rinl\/l,,. This is a genus-g helicoid in S2(1) x R
asymptotic to the helicoid with pitch

> Let p;, € Y be the “center” of the i-th catenoidal neck
(midpoint of the two intersection points of the catenoidal
neck with Y-axis).
Label the necks so that Im(p; ,) > 0 for 1 </ < N and

PN+i,n = —Pi,n-
» Passing to a subsequence :

pi :=limp;, €Y

» First assume that all limit points p; are distinct and # 0, co.
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Write M, as a graph.
Remove vertical cylinders of axis Z and Z* and 2N small balls with
centers p; ,. This disconnects I\~/In into two components which are
both vertical graphs over the helicoid and are exchanged by
Y-symmetry.
Consider the component which contains the positive X-axis. We
can write it as the graph over the plane of a multivalued function
f, which has the form :

with

» u, =0onarg(z) =0

> lupl < %

» u, <0onarg(z) >0

- ua(2) = un(2)
Observe : up is multivalued in the plane. It is well defined in the
universal cover C* where arg(z) is well defined,



A simpler case

Assume for simplicity that u, is a single-valued function of z.
Geometrically, this means we are considering periodic helicoidal
surfaces invariant by a vertical translation :

non-periodic case periodic case
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Limit of u,

Key Proposition. In the periodic case :

2N
~ . |logt
u = lim |t"|un = Zc,- log |z — pil

n i=1
Moreover ¢; > 0 for 1 </ < N and cy4; = —¢i < 0.
In the non-periodic case :

2N

U, = coargz+Zc,- log | log z — log p;|
i=1

\log tn‘

n

lim
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Proof of key proposition (periodic case)

n

» Minimal graph equation in S x R :

f; fyr o hh

M A
32 ot (L 35y =255 oy H (B (S A+

1 2y
(1t UARIDY

f,) = 0.

" 2

|AT,| < clallogtal,

A barrier argument gives uniform estimate of i, on compact
subsets of C\ {0, p1, -, pon}-

Standard P.D.E. implies u, converges subsequentially to a
function which is harmonic in C\ {0, p1, - , pon}-

v

v

v

v

Bocher Theorem implies it has log singularities at p1,--- , pan-
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Flux

» M minimal surface in a Riemannian Manifold, x Killing field,
~ closed curve on M

Flux, (7) = / . v)

» Killing fields of S?(1) generated by
> xx(2) = 3(1+2°)
> xv(2z) = 5(1-2°)
» xe(z) =iz
» If M C S?(1) x R is the graph of a function f and x is a
horizontal Killing field

Flux,(7) = —Im / 2(£)2x(2)dz + O(£.|*)
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Limit of the flux (periodic case)

Fin = fluxy, (C(pi,€))

» Onone hand : F; , =0 by Y-symmetry.
» On the other hand we can compute the limit of F; , :

log tn|? -
Claim : F; = lim| og! - —Re/ (@)2(1 — 22)dz
t Cpie)

n

Compute :

1 — p:p-
Fi = wlmz GiCj Pibj
Iy pi — pj

: 0
Write p; = itan 3 :

0 — @:
F;:ch;cjcot ! > '
J#i
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Conclusion : N < 1.

O*



Case where some points p; , converge to O (or Ox)

A blowup at O produces a configuration like

O | O
(0]

Cannot be balanced!



Case where all points p; , for 1 < j < N converge to i

A blowup at i produces a configuration like

Cannot be balanced !



Forces in the non-periodic case

£ yl.2+1 C-21_yi2 —27? CiCj
I .
2yi | 'yP+1 2 (log yi — log y;)| log y; — log y; + im|?

where y; = Im(p;).



