Higher genus helicoids

Martin Traizet
Joint work with David Hoffman \& Brian White

Granada, June 2013

Main theorem. For every positive integer k, there exists a genus- k helicoid in \mathbb{R}^{3}.

Setup

- Recall our model for \mathbb{S}^{2} is $\mathbb{C} \cup\{\infty\}$ with conformal metric obtained by stereographic projection.

Setup

- Recall our model for \mathbb{S}^{2} is $\mathbb{C} \cup\{\infty\}$ with conformal metric obtained by stereographic projection.
- Fix some positive even genus $g=2 k$. Consider a sequence $R_{n} \rightarrow \infty$. Let $M_{n} \subset \mathbb{S}^{2}\left(R_{n}\right) \times \mathbb{R}$ be one of the two genus- g helicoids that we constructed in previous lectures (asymptotic to the standard helicoid H with pitch 2π).

Setup

- Recall our model for \mathbb{S}^{2} is $\mathbb{C} \cup\{\infty\}$ with conformal metric obtained by stereographic projection.
- Fix some positive even genus $g=2 k$. Consider a sequence $R_{n} \rightarrow \infty$. Let $M_{n} \subset \mathbb{S}^{2}\left(R_{n}\right) \times \mathbb{R}$ be one of the two genus- g helicoids that we constructed in previous lectures (asymptotic to the standard helicoid H with pitch 2π).
- We know : as $n \rightarrow \infty, M_{n}$ converges (subsequentially) to a genus- g^{\prime} helicoid in \mathbb{R}^{3} with $g^{\prime} \leq k$.
Goal : $g^{\prime}=k$.

Setup

- Recall our model for \mathbb{S}^{2} is $\mathbb{C} \cup\{\infty\}$ with conformal metric obtained by stereographic projection.
- Fix some positive even genus $g=2 k$. Consider a sequence $R_{n} \rightarrow \infty$. Let $M_{n} \subset \mathbb{S}^{2}\left(R_{n}\right) \times \mathbb{R}$ be one of the two genus- g helicoids that we constructed in previous lectures (asymptotic to the standard helicoid H with pitch 2π).
- We know : as $n \rightarrow \infty, M_{n}$ converges (subsequentially) to a genus- g^{\prime} helicoid in \mathbb{R}^{3} with $g^{\prime} \leq k$.

Goal : $g^{\prime}=k$.

- Recall : g^{\prime} is even if M_{n} is positive at O and odd if M_{n} is negative. We choose the sign of M_{n} at O so that g^{\prime} and k have the same parity.

Catenoidal necks

For large values of R_{n}, M_{n} looks like this:

Catenoidal necks

For large values of R_{n}, M_{n} looks like this:

Let $2 N$ be the number of handles that are escaping from both Z and Z^{*} (red guys). Then

$$
g=2 k=2 g^{\prime}+2 N \quad \Rightarrow \quad N=k-g^{\prime}
$$

Observe that N is even.
Goal : prove that $N \leq 1$

Change scale

- Let $\widetilde{M}_{n}=\frac{1}{R_{n}} M_{n}$. This is a genus- g helicoid in $\mathbb{S}^{2}(1) \times \mathbb{R}$ asymptotic to the helicoid with pitch

$$
t_{n}=\frac{2 \pi}{R_{n}} \rightarrow 0
$$

Change scale

- Let $\widetilde{M}_{n}=\frac{1}{R_{n}} M_{n}$. This is a genus- g helicoid in $\mathbb{S}^{2}(1) \times \mathbb{R}$ asymptotic to the helicoid with pitch

$$
t_{n}=\frac{2 \pi}{R_{n}} \rightarrow 0
$$

- Let $p_{i, n} \in Y$ be the "center" of the i-th catenoidal neck (midpoint of the two intersection points of the catenoidal neck with Y-axis).
Label the necks so that $\operatorname{Im}\left(p_{i, n}\right)>0$ for $1 \leq i \leq N$ and $p_{N+i, n}=-p_{i, n}$.

Change scale

- Let $\widetilde{M}_{n}=\frac{1}{R_{n}} M_{n}$. This is a genus- g helicoid in $\mathbb{S}^{2}(1) \times \mathbb{R}$ asymptotic to the helicoid with pitch

$$
t_{n}=\frac{2 \pi}{R_{n}} \rightarrow 0
$$

- Let $p_{i, n} \in Y$ be the "center" of the i-th catenoidal neck (midpoint of the two intersection points of the catenoidal neck with Y-axis).
Label the necks so that $\operatorname{Im}\left(p_{i, n}\right)>0$ for $1 \leq i \leq N$ and $p_{N+i, n}=-p_{i, n}$.
- Passing to a subsequence :

$$
p_{i}:=\lim p_{i, n} \in Y
$$

- First assume that all limit points p_{i} are distinct and $\neq 0, \infty$.

Write \widetilde{M}_{n} as a graph.

Remove vertical cylinders of axis Z and Z^{*} and $2 N$ small balls with centers $p_{i, n}$. This disconnects \widetilde{M}_{n} into two components which are both vertical graphs over the helicoid and are exchanged by Y-symmetry.

Write \widetilde{M}_{n} as a graph.

Remove vertical cylinders of axis Z and Z^{*} and $2 N$ small balls with centers $p_{i, n}$. This disconnects \widetilde{M}_{n} into two components which are both vertical graphs over the helicoid and are exchanged by
Y-symmetry.
Consider the component which contains the positive X-axis. We can write it as the graph over the plane of a multivalued function f_{n} which has the form :

$$
f_{n}=\frac{t_{n}}{2 \pi} \arg (z)+u_{n}
$$

with

- $u_{n}=0$ on $\arg (z)=0$
- $\left|u_{n}\right|<\frac{t_{n}}{2}$
- $u_{n}<0$ on $\arg (z)>0$
- $u_{n}\left(\frac{1}{\bar{z}}\right)=u_{n}(z)$

Write \widetilde{M}_{n} as a graph.

Remove vertical cylinders of axis Z and Z^{*} and $2 N$ small balls with centers $p_{i, n}$. This disconnects \widetilde{M}_{n} into two components which are both vertical graphs over the helicoid and are exchanged by
Y-symmetry.
Consider the component which contains the positive X-axis. We can write it as the graph over the plane of a multivalued function f_{n} which has the form :

$$
f_{n}=\frac{t_{n}}{2 \pi} \arg (z)+u_{n}
$$

with

- $u_{n}=0$ on $\arg (z)=0$
- $\left|u_{n}\right|<\frac{t_{n}}{2}$
- $u_{n}<0$ on $\arg (z)>0$
- $u_{n}\left(\frac{1}{\bar{z}}\right)=u_{n}(z)$

Observe : u_{n} is multivalued in the plane. It is well defined in the universal cover \mathbb{C}^{*} where $\arg (z)$ is well defined.

A simpler case

Assume for simplicity that u_{n} is a single-valued function of z. Geometrically, this means we are considering periodic helicoidal surfaces invariant by a vertical translation :

non-periodic case

periodic case

Limit of u_{n}

Key Proposition. In the periodic case :

$$
\widetilde{u}:=\lim \frac{\left|\log t_{n}\right|}{t_{n}} u_{n}=\sum_{i=1}^{2 N} c_{i} \log \left|z-p_{i}\right|
$$

Moreover $c_{i}>0$ for $1 \leq i \leq N$ and $c_{N+i}=-c_{i}<0$.

Limit of u_{n}

Key Proposition. In the periodic case :

$$
\widetilde{u}:=\lim \frac{\left|\log t_{n}\right|}{t_{n}} u_{n}=\sum_{i=1}^{2 N} c_{i} \log \left|z-p_{i}\right|
$$

Moreover $c_{i}>0$ for $1 \leq i \leq N$ and $c_{N+i}=-c_{i}<0$.
In the non-periodic case :

$$
\lim \frac{\left|\log t_{n}\right|}{t_{n}} u_{n}=c_{0} \arg z+\sum_{i=1}^{2 N} c_{i} \log \left|\log z-\log p_{i}\right|
$$

Proof of key proposition (periodic case)

$$
\text { Let } \widetilde{u}_{n}=\frac{\left|\log t_{n}\right|}{t_{n}} u_{n} \text {. }
$$

Proof of key proposition (periodic case)

$$
\text { Let } \widetilde{u}_{n}=\frac{\left|\log t_{n}\right|}{t_{n}} u_{n} \text {. }
$$

- Minimal graph equation in $\mathbb{S}^{2} \times \mathbb{R}$:

$$
\left(1+\frac{f_{y}^{2}}{\lambda^{2}}\right) f_{x x}+\left(1+\frac{f_{x}^{2}}{\lambda^{2}}\right) f_{y y}-2 \frac{f_{x} f_{y}}{\lambda^{2}} f_{x y}+\left(f_{x}^{2}+f_{y}^{2}\right)\left(\frac{\lambda_{x}}{\lambda} f_{x}+\frac{\lambda_{y}}{\lambda} f_{y}\right)=0 .
$$

Proof of key proposition (periodic case)

$$
\text { Let } \widetilde{u}_{n}=\frac{\left|\log t_{n}\right|}{t_{n}} u_{n} \text {. }
$$

- Minimal graph equation in $\mathbb{S}^{2} \times \mathbb{R}$:

$$
\begin{aligned}
& \quad\left(1+\frac{f_{y}^{2}}{\lambda^{2}}\right) f_{x x}+\left(1+\frac{f_{x}^{2}}{\lambda^{2}}\right) f_{y y}-2 \frac{f_{x} f_{y}}{\lambda^{2}} f_{x y}+\left(f_{x}^{2}+f_{y}^{2}\right)\left(\frac{\lambda_{x}}{\lambda} f_{x}+\frac{\lambda_{y}}{\lambda} f_{y}\right)=0 . \\
& \\
& \left|\Delta \widetilde{u}_{n}\right| \leq C \frac{t_{n}^{2}\left|\log t_{n}\right|}{d^{4}} .
\end{aligned}
$$

Proof of key proposition (periodic case)

$$
\text { Let } \widetilde{u}_{n}=\frac{\left|\log t_{n}\right|}{t_{n}} u_{n} \text {. }
$$

- Minimal graph equation in $\mathbb{S}^{2} \times \mathbb{R}$:

$$
\left(1+\frac{f_{y}^{2}}{\lambda^{2}}\right) f_{x x}+\left(1+\frac{f_{x}^{2}}{\lambda^{2}}\right) f_{y y}-2 \frac{f_{x} f_{y}}{\lambda^{2}} f_{x y}+\left(f_{x}^{2}+f_{y}^{2}\right)\left(\frac{\lambda_{x}}{\lambda} f_{x}+\frac{\lambda_{y}}{\lambda} f_{y}\right)=0
$$

- $\left|\Delta \widetilde{u}_{n}\right| \leq C \frac{t_{n}^{2}\left|\log t_{n}\right|}{d^{4}}$.
- A barrier argument gives uniform estimate of \widetilde{u}_{n} on compact subsets of $\mathbb{C} \backslash\left\{0, p_{1}, \cdots, p_{2 N}\right\}$.

Proof of key proposition (periodic case)

$$
\text { Let } \widetilde{u}_{n}=\frac{\left|\log t_{n}\right|}{t_{n}} u_{n} \text {. }
$$

- Minimal graph equation in $\mathbb{S}^{2} \times \mathbb{R}$:

$$
\left(1+\frac{f_{y}^{2}}{\lambda^{2}}\right) f_{x x}+\left(1+\frac{f_{x}^{2}}{\lambda^{2}}\right) f_{y y}-2 \frac{f_{x} f_{y}}{\lambda^{2}} f_{x y}+\left(f_{x}^{2}+f_{y}^{2}\right)\left(\frac{\lambda_{x}}{\lambda} f_{x}+\frac{\lambda_{y}}{\lambda} f_{y}\right)=0 .
$$

- $\left|\Delta \widetilde{u}_{n}\right| \leq C \frac{t_{n}^{2}\left|\log t_{n}\right|}{d^{4}}$.
- A barrier argument gives uniform estimate of \widetilde{u}_{n} on compact subsets of $\mathbb{C} \backslash\left\{0, p_{1}, \cdots, p_{2 N}\right\}$.
- Standard P.D.E. implies \widetilde{u}_{n} converges subsequentially to a function which is harmonic in $\mathbb{C} \backslash\left\{0, p_{1}, \cdots, p_{2 N}\right\}$.

Proof of key proposition (periodic case)

$$
\text { Let } \widetilde{u}_{n}=\frac{\left|\log t_{n}\right|}{t_{n}} u_{n} \text {. }
$$

- Minimal graph equation in $\mathbb{S}^{2} \times \mathbb{R}$:

$$
\left(1+\frac{f_{y}^{2}}{\lambda^{2}}\right) f_{x x}+\left(1+\frac{f_{x}^{2}}{\lambda^{2}}\right) f_{y y}-2 \frac{f_{x} f_{y}}{\lambda^{2}} f_{x y}+\left(f_{x}^{2}+f_{y}^{2}\right)\left(\frac{\lambda_{x}}{\lambda} f_{x}+\frac{\lambda_{y}}{\lambda} f_{y}\right)=0 .
$$

- $\left|\Delta \widetilde{u}_{n}\right| \leq C \frac{t_{n}^{2}\left|\log t_{n}\right|}{d^{4}}$.
- A barrier argument gives uniform estimate of \widetilde{u}_{n} on compact subsets of $\mathbb{C} \backslash\left\{0, p_{1}, \cdots, p_{2 N}\right\}$.
- Standard P.D.E. implies \widetilde{u}_{n} converges subsequentially to a function which is harmonic in $\mathbb{C} \backslash\left\{0, p_{1}, \cdots, p_{2 N}\right\}$.
- Bôcher Theorem implies it has log singularities at $p_{1}, \cdots, p_{2 N}$.

Flux

- M minimal surface in a Riemannian Manifold, χ Killing field, γ closed curve on M

$$
\operatorname{Flux}_{\chi}(\gamma)=\int_{\gamma}\langle\chi, \nu\rangle
$$

Flux

- M minimal surface in a Riemannian Manifold, χ Killing field, γ closed curve on M

$$
\operatorname{Flux}_{\chi}(\gamma)=\int_{\gamma}\langle\chi, \nu\rangle
$$

- Killing fields of $\mathbb{S}^{2}(1)$ generated by
- $\chi_{X}(z)=\frac{1}{2}\left(1+z^{2}\right)$
- $\chi_{Y}(z)=\frac{i}{2}\left(1-z^{2}\right)$
- $\chi_{E}(z)=i z$

Flux

- M minimal surface in a Riemannian Manifold, χ Killing field, γ closed curve on M

$$
\operatorname{Flux}_{\chi}(\gamma)=\int_{\gamma}\langle\chi, \nu\rangle
$$

- Killing fields of $\mathbb{S}^{2}(1)$ generated by
- $\chi_{X}(z)=\frac{1}{2}\left(1+z^{2}\right)$
- $\chi_{Y}(z)=\frac{i}{2}\left(1-z^{2}\right)$
- $\chi_{E}(z)=i z$
- If $M \subset \mathbb{S}^{2}(1) \times \mathbb{R}$ is the graph of a function f and χ is a horizontal Killing field

$$
\operatorname{Flux}_{\chi}(\gamma)=-\operatorname{Im} \int_{\gamma} 2\left(f_{z}\right)^{2} \chi(z) d z+O\left(\left|f_{z}\right|^{4}\right)
$$

Limit of the flux (periodic case)

$$
F_{i, n}:=\operatorname{flux}_{\chi \gamma}\left(C\left(p_{i}, \varepsilon\right)\right)
$$

Limit of the flux (periodic case)

$$
F_{i, n}:=\operatorname{flux}_{\chi \gamma}\left(C\left(p_{i}, \varepsilon\right)\right)
$$

- On one hand : $F_{i, n}=0$ by Y-symmetry.

Limit of the flux (periodic case)

$$
F_{i, n}:=\operatorname{flux}_{\chi_{y}}\left(C\left(p_{i}, \varepsilon\right)\right)
$$

- On one hand : $F_{i, n}=0$ by Y-symmetry.
- On the other hand we can compute the limit of $F_{i, n}$:

Claim : $F_{i}:=\lim \frac{\left|\log t_{n}\right|^{2}}{t_{n}^{2}} F_{i, n}=-\operatorname{Re} \int_{C\left(p_{i}, \varepsilon\right)}\left(\widetilde{u}_{z}\right)^{2}\left(1-z^{2}\right) d z$

Limit of the flux (periodic case)

$$
F_{i, n}:=\operatorname{flux}_{\chi_{y}}\left(C\left(p_{i}, \varepsilon\right)\right)
$$

- On one hand: $F_{i, n}=0$ by Y-symmetry.
- On the other hand we can compute the limit of $F_{i, n}$:

Claim : $F_{i}:=\lim \frac{\left|\log t_{n}\right|^{2}}{t_{n}^{2}} F_{i, n}=-\operatorname{Re} \int_{C\left(p_{i}, \varepsilon\right)}\left(\widetilde{u}_{z}\right)^{2}\left(1-z^{2}\right) d z$
Compute :

$$
F_{i}=\pi \operatorname{Im} \sum_{j \neq i} c_{i} c_{j} \frac{1-p_{i} p_{j}}{p_{i}-p_{j}}
$$

Limit of the flux (periodic case)

$$
F_{i, n}:=\operatorname{flux}_{\chi_{y}}\left(C\left(p_{i}, \varepsilon\right)\right)
$$

- On one hand: $F_{i, n}=0$ by Y-symmetry.
- On the other hand we can compute the limit of $F_{i, n}$:

Claim : $F_{i}:=\lim \frac{\left|\log t_{n}\right|^{2}}{t_{n}^{2}} F_{i, n}=-\operatorname{Re} \int_{C\left(p_{i}, \varepsilon\right)}\left(\widetilde{u}_{z}\right)^{2}\left(1-z^{2}\right) d z$
Compute :

$$
F_{i}=\pi \operatorname{Im} \sum_{j \neq i} c_{i} c_{j} \frac{1-p_{i} p_{j}}{p_{i}-p_{j}}
$$

Write $p_{j}=i \tan \frac{\theta_{j}}{2}$:

$$
F_{i}=\pi \sum_{j \neq i} c_{i} c_{j} \cot \frac{\theta_{j}-\theta_{i}}{2}
$$

Physical model (periodic case)

Physical model (periodic case)

Physical model (periodic case)

Conclusion : $N \leq 1$.

Case where some points $p_{i, n}$ converge to O (or $O *$)

A blowup at O produces a configuration like

Cannot be balanced!

Case where all points $p_{j, n}$ for $1 \leq j \leq N$ converge to i

A blowup at i produces a configuration like

Cannot be balanced!

Forces in the non-periodic case

$$
F_{i}=\frac{y_{i}^{2}+1}{2 y_{i}}\left[c_{i}^{2} \frac{1-y_{i}^{2}}{y_{i}^{2}+1}+\sum_{\substack{j \neq i \\ 1 \leq j \leq N}} \frac{-2 \pi^{2} c_{i} c_{j}}{\left(\log y_{i}-\log y_{j}\right)\left|\log y_{i}-\log y_{j}+i \pi\right|^{2}}\right] .
$$

where $y_{i}=\operatorname{Im}\left(p_{i}\right)$.

