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1 Short introduction to globally hyperbolic manifolds

2 Conformal extendibility and its physical consequences

3 The flatzoomer technique and bounded geometry
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Causality properties

Definition

A spacetime (= time oriented Lorentzian manifold) (M, g) is called

causal :⇔ it contains no closed future causal curve,

diamond-compact :⇔ J+
g (p) ∩ J−g (q) compact for all

p, q ∈ M,

globally hyperbolic :⇔ it is causal and diamond-compact.
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Examples of g.h. spacetimes

(M, g) = (R× N,−dt2 ⊕ gN) for a complete Riemannian
metric gn on N (in particular R1,n)

If (M, g) g.h. and (M, h) spacetime with Jh ⊂ Jg , then
(M, h) g.h. (in particular: conformally invariant notion)

If (M, g) g.h. and A ⊂ M is causally convex Lorentzian
submanifold (that is, no causal curve leaves and re-enters A),
then A is g.h. as well

To be g.h. is a fine-C 0-stable property. Together with the
third property: Every Lorentzian manifold is locally g.h.
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Consequences of global hyperbolicity

Geodesic connectedness of causally related points

With K.O. Friedrich’s classical results and the structural result
of Bernal/Sánchez 2005-2006 (cf next slide): Well-posedness
of Cauchy problems for symmetric-hyperbolic 1st order
linear operators A (i.e such that symb(A) is symmetric and is
positive-definite on int(Jg )), and even of appropriate
semilinear symmetric-hyperbolic operators as Yang-Mills
(Chrusciel-Grant 2000)
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Structural result

Theorem (OM - Miguel Sánchez 2009)

Any globally hyperbolic manifold is isometric to
(R× N,−fdt2 + gt) where gt is some one-parameter family of
Riemannian metrics on N and f ∈ C∞(R× N) that can be chosen
bounded.

Consequence: Lorentzian Nash’s theorem: Every stably causal
manifold can be embedded conformally into a Minkowski space;
every g.h. even isometrically
 analytical advantages: Morse Theory etc
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Can we ask for more?

Question: Can we get additional bounds on g(gradg t, gradg t) and
ġt? Completeness of level sets? Would be important e.g. for

Well-posedness for open Lorentzian minimal surfaces,

Decay estimates for Dirac, Laplace, Yang-Mills...

In general: No!

But...
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Conformal equivalence and conformal maps

Isometries D : (M, g)→ (N, h) between Riemannian manifolds:
condition D∗(h) = g . Now relax condition a bit:

Definition

Two Riemannian metrics g , h on a manifold M are called
conformally equivalent if there is a smooth positive function f on
M such that h = f · g . A map D : (M, g)→ (N, h) is called
conformal iff D∗h is conformally equivalent to g .

Conformal equivalence preserves angles (e.g. orthogonality).

Many important equations possess some covariance under
conformal transformations. Examples: Conformal Laplace
(Yamabe) operators, Dirac operators...
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Conformal compactifications

Definition

Let (M, g) be a g.h. spacetime. An open conformal embedding F
of (M, g) into a g.h. spacetime (N, h) is called conformal
compactification of (M, g) iff F (M) is compact and causally
convex.
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A Riemannian ingredient

Figure: The stereographic projection
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A Lorentzian example

Figure: A conformal compactification of R1,n, used for solving small
initial value problem for neutral Dirac-YangMills-Higgs systems in R1,3
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Conformal extensions

Definition

Let (M, g) be a g.h. spacetime and S0 be a Cauchy surface of
(M, g). An open conformal embedding F of I+(S0) into a g.h.
spacetime (N, h) is called conformal future compactification or
(future) conformal extension of (M, g) iff F (M) is future
compact and causally convex.

Anderson-Chrusciel: Each element of a weighted Sobolev
neighborhood of the Minkowski metric in the space of Lorentzian
metrics admits a sufficiently regular conformal extension.
Nicolas Ginoux-OM 2014: Conformal extendibility ⇒
well-posedness of neutral small Dirac-Higgs-YangMills systems
OM 2014: If a standard static g.h. spacetime has a conformal
extension, its Cauchy surfaces are homeomorphic to cones, and the
Busemann boundary of the standard slice is its Gromov boundary.
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Scheme of the global existence proof

S∞

D+(S∞) = F (I+(S))

K1

C1 = A
(1)
1

K2

C2

S1

S2

A
(1)
2A

(1)
2

Figure: Scheme of the proof of global existence for small neutral
Dirac-Higgs-Yang-Mills systems: Construction of a sequence of subsets

A
(n)
i and associated C 4 bounds
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Bounded geometry

For a (k ,m)-tensor A with m ∈ {0, 1} and a Riemannian metric g :

|A|g := sup{|A(V1, ...Vk)|g : g(Vi ,Vi ) = 1 ∀i}

injg : M → (0,∞]: injectivity radius of g

Definition

A Riemannian metric g on a manifold M is called of bounded
geometry iff inj−1

g and |∇i Riemg |g are bounded, for all i ∈ N.

Examples: compact manifolds, homogeneous spaces (e.g. Rn), ...
Consequences of bounded geometry:

Sobolev and Morrey embeddings

Uniformly good charts

(Roe, Atiyah & Bott & Patodi, Eichhorn...)
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An Unexpected Link, Riemannian version

Theorem (OM - Marc Nardmann 2013)

Every Riemannian metric is conformally equivalent to a metric of
bounded geometry.
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An Unexpected Link, Lorentzian version

Theorem (OM - Marc Nardmann 2013)

For every g.h. mf (M, g) and every Cauchy temporal function t on
M, we can find a causally complete metric h ∈ [g ] s.t.

t satisfies h(gradht, gradht) > −1,

The 2nd fundamental form of all level sets is C k -bounded, ∀k .

All t-level sets (metric induced by h) are of bounded geometry.
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Main result, general version for foliated mfs

Theorem (OM - Marc Nardmann 2013)

Let F be a foliation on a manifold M, let g0, h0 be
semi-Riemannian metrics on M which induce nondegenerate
semi-Riemannian metrics on the leaves of F . Let K = (Ki )i∈N be a
smooth compact exhaustion of M, let b ∈ C 0(M,R>0). Then
there exists a real-analytic function u : M → R with u > b−1 such
that, for g := e2ug0 and h := e2uh0:

1 For every i ∈ N,
∣∣g∇i Riemg

∣∣
h
< b holds on M \ Ki .

2 If g0 Riemannian, then g complete with convg > b−1.

3 For every i ∈ N,
∣∣gF∇i RiemgF

∣∣
hF
< b holds on M \ Ki .

4 If (g0)F is Riemannian, then for each F -leaf L, gL is complete
with convgL > b−1

∣∣
L
.

5 For every i ∈ N,
∣∣g∇i II Fg

∣∣
h
< b holds on M \ Ki .
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Plan of the proof of the main result

Notation: g [u] := e2u · g .

Step 1: Define flatzoomers.

Step 2: Show: u 7→
∣∣∣∇(i)

g [u] Riemg [u]

∣∣∣
g [u]

and

u 7→
∣∣∣∇(i)

g [u] II
g [u]
t−1(a)

∣∣∣
g [u]

are flatzoomers, ∀i ∈ N, a ∈ R.

Step 3: Define quasi-flatzoomers.

Step 4: Show that u 7→ inj−1
g [u] is a quasi-flatzoomer.

Step 5: Consider an appropriate sum of the QFZs above,
which is a QFZ again. Show that every quasi-flatzoomer Q
’is surjective on rapid falloff classes’, i.e. if ε is a continuous
function (a ’falloff profile’) then there is a smooth function u
such that Q(u) < ε pointwise.

Olaf Müller New conformal methods



Step 1: Define flatzoomers

Definition

Let M be a manifold. A functional Φ: C∞(M,R)→ C 0(M,R≥0)
is a flatzoomer iff for some — and hence every — Riemannian
metric η on M, there exist k, d ∈ N, α ∈ R>0, u0 ∈ C 0(M,R) and
a polynomial-valued map P ∈ C 0

(
M,RPolydk+1

)
such that∣∣Φ(u)(x)

∣∣ ≤ e−αu(x)P(x)
(
u(x),

∣∣∇1
ηu
∣∣
η
(x), . . . ,

∣∣∇k
ηu
∣∣
η
(x)
)

holds for all x ∈ M and all u ∈ C∞(M,R) with u(x) > u0(x).
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Step 2: R and its derivatives are flatzoomers

Theorem (covariant derivatives of the Riemann tensor)

Let (M, g) be a semi-Riemannian manifold, let k ∈ N. Then
Φ: C∞(M,R)→ C∞(M,R≥0) defined by

Φ(u) :=
∣∣∣∇k

g [u] Riemg [u]

∣∣∣2
g [u]

is a flatzoomer.

Proof: Riemann curvature (4, 0)-tensor Riemg under conformal
change (with 7 being the Kulkarni-Nomizu product)

Riemg [u] = e2u
(
Riemg −g 7

(
Hessg u − du ⊗ du + 1

2 |du|
2
g g
))

.

Higher derivatives: sophisticated induction.
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Step 3: Define quasi-flatzoomers

Beware: Φ: u 7→ inj−1
g [u] is not a flatzoomer, because Φ(u)(x)

cannot be bounded in terms of a k-jet jkx u of u at x .

Definition

Let K = (Ki )i∈N be a compact exhaustion of a manifold M.
A functional Φ: C∞(M,R)→ Fct(M,R≥0) is a quasi-flatzoomer for K
iff for some — and hence every — Riemannian metric η on M, there exist
k, d ∈ N, α ∈ R>0, u0 ∈ C 0(M,R) and P ∈ C 0

(
M,RPolydk+1

)
such that

∣∣Φ(u)(x)
∣∣ ≤ sup

{
e−αu(y)P(y)

(∣∣∇0
ηu
∣∣
η

(y), . . . ,
∣∣∇k

ηu
∣∣
η

(y)
) ∣∣∣ y ∈ Ki+1 \ Ki−2

}
∀i ∈ N, x ∈ Ki \ Ki−1, ∀u ∈ C∞(M,R) with u > u0 on Ki+1 \ Ki−2.
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Step 4: Show that inj−1 is a quasi-flatzoomer

Theorem

Let (M, g) be a Riemannian manifold M,
let K = (Ki )i∈N be a compact exhaustion of M.
Then Φ: C∞(M,R)→ Fct(M,R≥0) given by

Φ(u) := 1/ injg [u]

is a quasi-flatzoomer for K.
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Step 4, ctd.

Theorem (Generalized Klingenberg’s lemma)

Let (M, g) be a Riemannian manifold, let x ∈ M, let r , δ, ` ∈ R>0.
Assume

the ball Bg
r (x) := {z ∈ M | distg (x , z) ≤ r}

(which is closed in M) is compact;

secg ≤ δ holds on Bg
r (x);

every self-intersecting geodesic in (M, g) contained in Bg
r (x)

has length ≥ `.

Then injg (x) ≥ min
{
r , π√

δ
, `2

}
.

 Main task: bound ` from 0!
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Step 4, ctd.

∀ chart Ui of a locally finite chart cover U = {Ui |i ∈ I},
∃Ai ,Ci ∈ R: ∣∣∣g [u]Γc

ab

∣∣∣ ≤ Ai

(
1 +

∣∣du∣∣
g

)
,

Ci |v |eucli ≥ |v |g ≥ C−1
i |v |eucli .

U locally finite, thus ∃ H ∈ C 0(M,R>0) with ∀x ∈ M : ∀i ∈ N :
x ∈ Ui ⇒ H(x) ≥ 4n2AiC

3
i .

Define the flatzoomer Φ1 : u 7→ e−uH ·
(

1 +
∣∣du∣∣

g

)
.

Lemma

sup
{

4/ length(γ)
∣∣∣ γ ⊂ B

g [u]
r (x) is a self-intersecting g [u]-geodesic

}
≤ sup

{
Φ1(u)(y)

∣∣∣ y ∈ Ki+1 \ Ki−2

}
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Step 4: Proof of Lemma

Let γ : [0, `]→ B := B
g [u]
r (x) be a self-intersecting unit speed

g [u]-geodesic.
Compactness ⇒ There is s0 with s.t. u(γ(s0)) = mins∈[0,`] u(γ(s)).
Since B ⊂ Uj , we can regard B as subset of Euclidean Rn.
Self-intersecting  ∃s1 ∈ [0, `] with 〈γ′(s1), γ′(s0)〉euclj < 0.

In particular, |γ′(s0)|euclj ≤ |γ
′(s1)− γ′(s0)|euclj (*).

γ(0) = γ(`)
γ(s0)

γ(s1)

γ′(s0)

γ′(s1)

γ′(s1)

Figure: A self-intersecting g [u]-geodesic γ in B ⊆ Rn.
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Step 4: Proof of the lemma, ctd.

Choose reparametrization s.t. s0 = 0 and define τ := s1.

1 =(unit speed)

∣∣γ′(0)
∣∣
g [u]

=(Def.g [u]) eu(γ(0))
∣∣γ′(0)

∣∣
g

≤(Def.Cj ) Cje
u(γ(0))

∣∣γ′(0)
∣∣
euclj

≤(∗) Cje
u(γ(0))

∣∣γ′(τ)− γ′(0)
∣∣
euclj

=(fund.th.calc.) Cje
u(γ(0))

∣∣∣∣∫ τ

0
γ′′(s)ds

∣∣∣∣
euclj

≤(geod.eq.) Cje
u(γ(0))

n∑
a,b,c=1

∫ τ

0

∣∣∣g [u]Γc
ab

(
γ(s)

)∣∣∣ · ∣∣γ′a(s)
∣∣ · ∣∣γ′b(s)

∣∣ ds
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Step 4: Proof of the lemma, ctd.

Use definition of Aj and then n1/2 |v |euclj ≥
∑n

a=1 |va| (**):

... ≤ Cj e
u(γ(0))

n∑
a,b,c=1

∫ τ

0
Aj ·

(
1 +

∣∣du∣∣
g

(γ(s))
)
·
∣∣γ′a(s)

∣∣ · ∣∣γ′b(s)
∣∣ ds

=(∗∗) nAjCje
u(γ(0))

∫ τ

0

(
1 +

∣∣du∣∣
g

(γ(s))
)
·

(
n∑

a=1

∣∣γ′a(s)
∣∣)2

ds

≤(Def.Cj ) n2AjC
3
j

∫ τ

0

(
1 +

∣∣du∣∣
g

(γ(s))
)
· eu(γ(0)) e−2u(γ(s)) ds

≤(u min. at γ(0)) n2AjC
3
j

∫ τ

0

(
1 +

∣∣du∣∣
g

(γ(s))
)
· e−u(γ(s)) ds

≤(int.est.) `n2AjC
3
j

∥∥∥e−u(1 +
∣∣du∣∣

g

)∥∥∥
C0(Uj∩(Ki+1\Ki−2))

.
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Step 4: Proof of Lemma, last part

Consequently,

4/` ≤ n2AjC
3
j

∥∥∥e−u(1 +
∣∣du∣∣

g

)∥∥∥
C0(Uj∩(Ki+1\Ki−2))

≤
∥∥∥He−u

(
1 +

∣∣du∣∣
g

)∥∥∥
C0(Ki+1\Ki−2)

= sup
{

Φ1(u)(y)
∣∣∣ y ∈ Ki+1 \ Ki−2

}
.
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Step 5: Main result for general quasi-flatzoomers

Theorem (OM-Marc Nardmann 2013)

Let K = (Ki )i∈N be a smooth compact exhaustion of M,
let (Φi )i∈N be a sequence of quasi-flatzoomers for K,
let (εi )i∈N be a sequence in C 0(M,R>0), let w ∈ C 0(M,R).

Then there exists a real-analytic u : M → R with u > w such that

∀i ∈ N :
∣∣Φi (u)

∣∣ < εi holds on M \ Ki .
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The Yamabe flow: Motivation

Basic problem: Look for natural best metric in a given
conformal class.

Candidate: Metric of constant scalar curvature (Yamabe
problem).

On compact manifolds: Such a metric exists. It is unique if
there is a solution of negative constant scalar curvature
(Yamabe, Trudinger, Aubin, Schoen)

To do Morse theory of the underlying functional: Ensure that
the space of solutions is compact.

Critical tool: Yamabe flow

In the noncompact case, even existence is in general not true
(counterexamples by Jin (1988) on Rn, n ≥ 3)
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The Yamabe flow: Definition and properties

gt = − scalg ·g , g(0) = g0

For g = u4/n−2g0 we have scalg = −uNLu,
where N = n+2

n−2 and L = 4(n−1)
n−2 ∆g0 .

Equation for u after rescaling of the time:
∂(uN) = Lu − scalg ·u, u(0, x) = 1.

On compact manifolds: Eternal existence of an equivalent
normalised version (R.S. Hamilton) and convergence to a csc
metric for dim ≤ 5 or M spin (Brendle)

On a noncompact manifold, little is known except for a lifetime
estimate T ∼ |scal |−1

C0 (*) and eternal existence if Ricg0 bounded
from below and scalg0 ≤ 0. This can be proven via elementary
parabolic methods (cf. Ma-An 1999).
Consequence of (*) and of the main theorem: In every conformal
class there are representatives of arbitrarily large lifetime.
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The Yamabe flow: Definition and properties

gt = − scalg ·g , g(0) = g0

For g = u4/n−2g0 we have scalg = −uNLu,
where N = n+2

n−2 and L = 4(n−1)
n−2 ∆g0 .

Equation for u after rescaling of the time:
∂(uN) = Lu − scalg ·u, u(0, x) = 1.
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The Yamabe flow: A recent result and a conjecture

Shao-Simonett (J.Evol.Eq. 2014): Using the flatzoomer result, it
can be shown that there is a lifetime estimate uniform for the
entire class of metrics ug0 for u uniformly positive and of bounded
C 1 norm, for appropriate g0.

Conjecture: In every conformal class there is a metric of infinite
lifetime for the Yamabe flow. (Work in Progress)
Envisaged joint work with Alexander Grigoryan (Bielefeld):
Flatzoomability of pseudo-isometry invariant properties from
stochastic geometry (heat kernels, p-parabolicity...)
Partially prepublished work with Boris Botvinnik: Flatzoomer
estimates are used to prove a Cheeger-Gromov compactness result
in a conformal setting implying a proof of the concordance
conjecture for positive scalar curvature.
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