New conformal methods in Riemannian and Lorentzian geometry

Olaf Müller

Universität Regensburg

Talk at Universidad de Granada Mach 10th, 2016

Plan of the talk

- Short introduction to globally hyperbolic manifolds
- Conformal extendibility and its physical consequences
- The flatzoomer technique and bounded geometry
- Onsequences for the Yamabe flow

Causality properties

Definition

A spacetime (= time oriented Lorentzian manifold) (M,g) is called

- causal :⇔ it contains no closed future causal curve,
- **diamond-compact** : $\Leftrightarrow J_g^+(p) \cap J_g^-(q)$ compact for all $p, q \in M$,
- globally hyperbolic : \Leftrightarrow it is causal and diamond-compact.

Examples of g.h. spacetimes

- $(M,g) = (\mathbb{R} \times N, -dt^2 \oplus g_N)$ for a complete Riemannian metric g_n on N (in particular $\mathbb{R}^{1,n}$)
- If (M, g) g.h. and (M, h) spacetime with $J_h \subset J_g$, then (M, h) g.h. (in particular: conformally invariant notion)
- If (M,g) g.h. and $A \subset M$ is **causally convex** Lorentzian submanifold (that is, no causal curve leaves and re-enters A), then A is g.h. as well
- To be g.h. is a fine- C^0 -stable property. Together with the third property: Every Lorentzian manifold is locally g.h.

Consequences of global hyperbolicity

- Geodesic connectedness of causally related points
- With K.O. Friedrich's classical results and the structural result of Bernal/Sánchez 2005-2006 (cf next slide): Well-posedness of Cauchy problems for **symmetric-hyperbolic** 1st order linear operators A (i.e such that $\operatorname{symb}(A)$ is symmetric and is positive-definite on $\operatorname{int}(J_g)$), and even of appropriate semilinear symmetric-hyperbolic operators as Yang-Mills (Chrusciel-Grant 2000)

Structural result

Theorem (OM - Miguel Sánchez 2009)

Any globally hyperbolic manifold is isometric to $(\mathbb{R} \times N, -fdt^2 + g_t)$ where g_t is some one-parameter family of Riemannian metrics on N and $f \in C^{\infty}(\mathbb{R} \times N)$ that can be chosen bounded.

Consequence: Lorentzian Nash's theorem: Every *stably causal* manifold can be embedded *conformally* into a Minkowski space; every g.h. even *isometrically*

→ analytical advantages: Morse Theory etc

Can we ask for more?

Question: Can we get additional bounds on $g(\operatorname{grad}^g t, \operatorname{grad}^g t)$ and \dot{g}_t ? Completeness of level sets? Would be important e.g. for

- Well-posedness for open Lorentzian minimal surfaces,
- Decay estimates for Dirac, Laplace, Yang-Mills...

In general: No!

But...

Conformal equivalence and conformal maps

Isometries $D:(M,g)\to (N,h)$ between Riemannian manifolds: condition $D^*(h)=g$. Now relax condition a bit:

Definition

Two Riemannian metrics g, h on a manifold M are called **conformally equivalent** if there is a smooth positive function f on M such that $h = f \cdot g$. A map $D : (M, g) \to (N, h)$ is called **conformal** iff D^*h is conformally equivalent to g.

- Conformal equivalence preserves angles (e.g. orthogonality).
- Many important equations possess some covariance under conformal transformations. Examples: Conformal Laplace (Yamabe) operators, Dirac operators...

Conformal compactifications

Definition

Let (M,g) be a g.h. spacetime. An open conformal embedding F of (M,g) into a g.h. spacetime $\underline{(N,h)}$ is called **conformal compactification of** (M,g) iff $\overline{F(M)}$ is compact and causally convex

A Riemannian ingredient

Figure: The stereographic projection

A Lorentzian example

Figure: A conformal compactification of $\mathbb{R}^{1,n}$, used for solving small initial value problem for neutral Dirac-YangMills-Higgs systems in $\mathbb{R}^{1,3}$

Definition

Let (M,g) be a g.h. spacetime and S_0 be a Cauchy surface of (M,g). An open conformal embedding F of $I^+(S_0)$ into a g.h. spacetime (N,h) is called **conformal future compactification** or **(future) conformal extension of** (M,g) iff $\overline{F(M)}$ is future compact and causally convex.

Anderson-Chrusciel: Each element of a weighted Sobolev neighborhood of the Minkowski metric in the space of Lorentzian metrics admits a sufficiently regular conformal extension.

Nicolas Ginoux-OM 2014: Conformal extendibility ⇒ well-posedness of neutral small Dirac-Higgs-YangMills systems

OM 2014: If a standard static g.h. spacetime has a conformal extension, its Cauchy surfaces are homeomorphic to cones, and the Busemann boundary of the standard slice is its Gromov boundary.

Definition

Let (M,g) be a g.h. spacetime and S_0 be a Cauchy surface of (M,g). An open conformal embedding F of $I^+(S_0)$ into a g.h. spacetime (N,h) is called **conformal future compactification** or **(future) conformal extension of** (M,g) iff $\overline{F(M)}$ is future compact and causally convex.

Anderson-Chrusciel: Each element of a weighted Sobolev neighborhood of the Minkowski metric in the space of Lorentzian metrics admits a sufficiently regular conformal extension.

Nicolas Ginoux-OM 2014: Conformal extendibility ⇒ well-posedness of neutral small Dirac-Higgs-YangMills systems OM 2014: If a standard static g.h. spacetime has a conformal extension, its Cauchy surfaces are homeomorphic to cones, and the Busemann boundary of the standard slice is its Gromov boundary.

Definition

Let (M,g) be a g.h. spacetime and S_0 be a Cauchy surface of (M,g). An open conformal embedding F of $I^+(S_0)$ into a g.h. spacetime (N,h) is called **conformal future compactification** or **(future) conformal extension of** (M,g) iff $\overline{F(M)}$ is future compact and causally convex.

Anderson-Chrusciel: Each element of a weighted Sobolev

neighborhood of the Minkowski metric in the space of Lorentzian metrics admits a sufficiently regular conformal extension.

Nicolas Ginoux-OM 2014: Conformal extendibility \Rightarrow well-posedness of neutral small Dirac-Higgs-YangMills systems

OM 2014: If a standard static g.h. spacetime has a conformal extension, its Cauchy surfaces are homeomorphic to cones, and the Busemann boundary of the standard slice is its Gromov boundary.

Definition

Let (M,g) be a g.h. spacetime and S_0 be a Cauchy surface of (M,g). An open conformal embedding F of $I^+(S_0)$ into a g.h. spacetime (N,h) is called **conformal future compactification** or **(future) conformal extension of** (M,g) iff $\overline{F(M)}$ is future compact and causally convex.

Anderson-Chrusciel: Each element of a weighted Sobolev neighborhood of the Minkowski metric in the space of Lorentzian metrics admits a sufficiently regular conformal extension.

Nicolas Ginoux-OM 2014: Conformal extendibility ⇒ well-posedness of neutral small Dirac-Higgs-YangMills systems OM 2014: If a standard static g.h. spacetime has a conformal extension, its Cauchy surfaces are homeomorphic to cones, and the Busemann boundary of the standard slice is its Gromov boundary.

Scheme of the global existence proof

Bounded geometry

For a (k, m)-tensor A with $m \in \{0, 1\}$ and a Riemannian metric g:

$$|A|_g := \sup\{|A(V_1, ... V_k)|_g : g(V_i, V_i) = 1 \ \forall i\}$$

 $\operatorname{inj}_g : M \to (0, \infty]$: injectivity radius of g

Definition

A Riemannian metric g on a manifold M is called **of bounded** geometry iff $\operatorname{inj}_g^{-1}$ and $|\nabla^i \operatorname{Riem}_g|_g$ are bounded, for all $i \in \mathbb{N}$.

Examples: compact manifolds, homogeneous spaces (e.g. \mathbb{R}^n), ... **Consequences of bounded geometry**:

- Sobolev and Morrey embeddings
- Uniformly good charts

(Roe, Atiyah & Bott & Patodi, Eichhorn...)

Bounded geometry

For a (k, m)-tensor A with $m \in \{0, 1\}$ and a Riemannian metric g:

$$|A|_g := \sup\{|A(V_1, ... V_k)|_g : g(V_i, V_i) = 1 \ \forall i\}$$

 $\operatorname{inj}_g : M \to (0, \infty]$: injectivity radius of g

Definition

A Riemannian metric g on a manifold M is called **of bounded** geometry iff $\operatorname{inj}_g^{-1}$ and $|\nabla^i \operatorname{Riem}_g|_g$ are bounded, for all $i \in \mathbb{N}$.

Examples: compact manifolds, homogeneous spaces (e.g. \mathbb{R}^n), ... **Consequences of bounded geometry**:

- Sobolev and Morrey embeddings
- Uniformly good charts

(Roe, Atiyah & Bott & Patodi, Eichhorn...)

An Unexpected Link, Riemannian version

Theorem (OM - Marc Nardmann 2013)

Every Riemannian metric is conformally equivalent to a metric of bounded geometry.

An Unexpected Link, Lorentzian version

Theorem (OM - Marc Nardmann 2013)

For every g.h. mf(M,g) and every Cauchy temporal function t on M, we can find a causally complete metric $h \in [g]$ s.t.

- t satisfies $h(\operatorname{grad}^h t, \operatorname{grad}^h t) > -1$,
- The 2nd fundamental form of all level sets is C^k -bounded, $\forall k$.
- All t-level sets (metric induced by h) are of bounded geometry.

Main result, general version for foliated mfs

Theorem (OM - Marc Nardmann 2013)

Let F be a foliation on a manifold M, let g_0 , h_0 be semi-Riemannian metrics on M which induce nondegenerate semi-Riemannian metrics on the leaves of F. Let $K=(K_i)_{i\in\mathbb{N}}$ be a smooth compact exhaustion of M, let $b\in C^0(M,\mathbb{R}_{>0})$. Then there exists a real-analytic function $u:M\to\mathbb{R}$ with $u>b^{-1}$ such that, for $g:=e^{2u}g_0$ and $h:=e^{2u}h_0$:

- For every $i \in \mathbb{N}$, $\left| {}^{g}\nabla^{i}\operatorname{Riem}_{g} \right|_{h} < b$ holds on $M \setminus K_{i}$.
- ② If g_0 Riemannian, then g complete with $\operatorname{conv}_g > b^{-1}$.
- **③** For every $i \in \mathbb{N}$, $|g_F \nabla^i \operatorname{Riem}_{g_F}|_{h_F} < b$ holds on $M \setminus K_i$.
- If $(g_0)_F$ is Riemannian, then for each F-leaf L, g_L is complete with $\operatorname{conv}_{g_L} > b^{-1}|_L$.
- **3** For every $i \in \mathbb{N}$, $\left| {}^{g}\nabla^{i} II_{g}^{F} \right|_{h} < b$ holds on $M \setminus K_{i}$.

Plan of the proof of the main result

Notation: $g[u] := e^{2u} \cdot g$.

- Step 1: Define flatzoomers.
- Step 2: Show: $u \mapsto \left| \nabla_{g[u]}^{(i)} \operatorname{Riem}_{g[u]} \right|_{g[u]}$ and $u \mapsto \left| \nabla_{g[u]}^{(i)} H_{t^{-1}(a)}^{g[u]} \right|_{g[u]}$ are flatzoomers, $\forall i \in \mathbb{N}, a \in \mathbb{R}$.
- **Step 3**: Define *quasi-flatzoomers*.
- **Step 4**: Show that $u \mapsto \operatorname{inj}_{g[u]}^{-1}$ is a quasi-flatzoomer.
- Step 5: Consider an appropriate sum of the QFZs above, which is a QFZ again. Show that every quasi-flatzoomer Q 'is surjective on rapid falloff classes', i.e. if ϵ is a continuous function (a 'falloff profile') then there is a smooth function u such that $Q(u) < \epsilon$ pointwise.

Step 1: Define flatzoomers

Definition

Let M be a manifold. A functional $\Phi \colon C^{\infty}(M,\mathbb{R}) \to C^{0}(M,\mathbb{R}_{\geq 0})$ is a **flatzoomer** iff for some — and hence every — Riemannian metric η on M, there exist $k, d \in \mathbb{N}$, $\alpha \in \mathbb{R}_{>0}$, $u_0 \in C^{0}(M,\mathbb{R})$ and a polynomial-valued map $P \in C^{0}(M,\mathbb{R}\operatorname{Poly}_{k+1}^{d})$ such that

$$|\Phi(u)(x)| \leq e^{-\alpha u(x)} P(x) \left(u(x), |\nabla^1_{\eta} u|_{\eta}(x), \ldots, |\nabla^k_{\eta} u|_{\eta}(x) \right)$$

holds for all $x \in M$ and all $u \in C^{\infty}(M, \mathbb{R})$ with $u(x) > u_0(x)$.

Step 2: *R* and its derivatives are flatzoomers

Theorem (covariant derivatives of the Riemann tensor)

Let (M,g) be a semi-Riemannian manifold, let $k \in \mathbb{N}$. Then $\Phi \colon C^{\infty}(M,\mathbb{R}) \to C^{\infty}(M,\mathbb{R}_{\geq 0})$ defined by

$$\Phi(u) := \left| \nabla_{g[u]}^k \operatorname{Riem}_{g[u]} \right|_{g[u]}^2$$

is a flatzoomer.

Proof: Riemann curvature (4,0)-tensor Riem_g under conformal change (with \otimes being the Kulkarni-Nomizu product)

$$\mathrm{Riem}_{g[u]} = \mathrm{e}^{2u} \left(\, \mathrm{Riem}_g - g \otimes \left(\, \mathrm{Hess}_g \, u - \mathrm{d} u \otimes \mathrm{d} u + \tfrac{1}{2} \, |\mathrm{d} u|_g^2 \, \, g \right) \right).$$

Higher derivatives: sophisticated induction

Step 2: *R* and its derivatives are flatzoomers

Theorem (covariant derivatives of the Riemann tensor)

Let (M,g) be a semi-Riemannian manifold, let $k \in \mathbb{N}$. Then $\Phi \colon C^{\infty}(M,\mathbb{R}) \to C^{\infty}(M,\mathbb{R}_{\geq 0})$ defined by

$$\Phi(u) := \left| \nabla_{g[u]}^k \operatorname{Riem}_{g[u]} \right|_{g[u]}^2$$

is a flatzoomer.

Proof: Riemann curvature (4,0)-tensor Riem_g under conformal change (with \otimes being the Kulkarni-Nomizu product)

$$\operatorname{Riem}_{g[u]} = \mathrm{e}^{2u} \Big(\operatorname{Riem}_g - g \otimes \Big(\operatorname{Hess}_g u - \mathrm{d} u \otimes \mathrm{d} u + \tfrac{1}{2} \left| \mathrm{d} u \right|_g^2 \, g \Big) \Big) \,.$$

Higher derivatives: sophisticated induction.

Step 3: Define quasi-flatzoomers

Beware: $\Phi: u \mapsto \inf_{g[u]}^{-1}$ is *not* a flatzoomer, because $\Phi(u)(x)$ cannot be bounded in terms of a k-jet $j_x^k u$ of u at x.

Definition

Let $\mathcal{K} = (K_i)_{i \in \mathbb{N}}$ be a compact exhaustion of a manifold M.

A functional $\Phi \colon C^\infty(M,\mathbb{R}) \to \operatorname{Fct}(M,\mathbb{R}_{\geq 0})$ is a **quasi-flatzoomer for** $\mathcal K$ iff for some — and hence every — Riemannian metric η on M, there exist $k,d\in\mathbb{N},\ \alpha\in\mathbb{R}_{\geq 0},\ u_0\in C^0(M,\mathbb{R})$ and $P\in C^0(M,\mathbb{R}\operatorname{Poly}_{k+1}^d)$ such that

$$\left|\Phi(u)(x)\right| \leq \sup \left\{ e^{-\alpha u(y)} P(y) \left(\left|\nabla^0_{\eta} u\right|_{\eta}(y), \ldots, \left|\nabla^k_{\eta} u\right|_{\eta}(y) \right) \mid y \in K_{i+1} \setminus K_{i-2} \right\}$$

 $\forall i \in \mathbb{N}, x \in K_i \setminus K_{i-1}, \ \forall u \in C^{\infty}(M, \mathbb{R}) \text{ with } u > u_0 \text{ on } K_{i+1} \setminus K_{i-2}$

Step 3: Define quasi-flatzoomers

Beware: $\Phi: u \mapsto \inf_{g[u]}^{-1}$ is *not* a flatzoomer, because $\Phi(u)(x)$ cannot be bounded in terms of a k-jet $j_x^k u$ of u at x.

Definition

Let $\mathcal{K} = (K_i)_{i \in \mathbb{N}}$ be a compact exhaustion of a manifold M.

A functional $\Phi \colon C^\infty(M,\mathbb{R}) \to \operatorname{Fct}(M,\mathbb{R}_{\geq 0})$ is a **quasi-flatzoomer for** $\mathcal K$ iff for some — and hence every — Riemannian metric η on M, there exist $k,d\in\mathbb{N},\ \alpha\in\mathbb{R}_{>0},\ u_0\in C^0(M,\mathbb{R})$ and $P\in C^0(M,\mathbb{R}\operatorname{Poly}_{k+1}^d)$ such that

$$\left|\Phi(u)(x)\right| \leq \sup \left\{ e^{-\alpha u(y)} P(y) \left(\left|\nabla^0_{\eta} u\right|_{\eta}(y), \ldots, \left|\nabla^k_{\eta} u\right|_{\eta}(y) \right) \mid y \in K_{i+1} \setminus K_{i-2} \right\}$$

 $\forall i \in \mathbb{N}, x \in K_i \setminus K_{i-1}, \ \forall u \in C^{\infty}(M, \mathbb{R}) \text{ with } u > u_0 \text{ on } K_{i+1} \setminus K_{i-2}.$

Step 4: Show that inj^{-1} is a quasi-flatzoomer

$\mathsf{Theorem}$

Let (M,g) be a Riemannian manifold M,

let $K = (K_i)_{i \in \mathbb{N}}$ be a compact exhaustion of M.

Then $\Phi \colon C^{\infty}(M,\mathbb{R}) \to \operatorname{Fct}(M,\mathbb{R}_{\geq 0})$ given by

$$\Phi(u) := 1/\inf_{g[u]}$$

is a quasi-flatzoomer for $\mathcal{K}.$

Step 4, ctd.

Theorem (Generalized Klingenberg's lemma)

Let (M,g) be a Riemannian manifold, let $x \in M$, let $r, \delta, \ell \in \mathbb{R}_{>0}$. Assume

- the ball $B_r^g(x) := \{z \in M \mid \operatorname{dist}_g(x, z) \leq r\}$ (which is closed in M) is compact;
- $\sec_g \le \delta$ holds on $B_r^g(x)$;
- every self-intersecting geodesic in (M,g) contained in $B_r^g(x)$ has length $\geq \ell$.

Then
$$\operatorname{inj}_{g}(x) \geq \min \left\{ r, \frac{\pi}{\sqrt{\delta}}, \frac{\ell}{2} \right\}.$$

 \rightsquigarrow Main task: bound ℓ from 0!

Step 4, ctd.

 \forall chart U_i of a locally finite chart cover $\mathcal{U} = \{U_i | i \in I\}$, $\exists A_i, C_i \in \mathbb{R}$:

$$\begin{split} \left| {}^{g[u]}\Gamma^{c}_{ab} \right| & \leq A_{i} \left(1 + \left| \mathrm{d}u \right|_{g} \right), \\ C_{i} \left| v \right|_{\mathrm{eucl}_{i}} & \geq \left| v \right|_{g} \geq C_{i}^{-1} \left| v \right|_{\mathrm{eucl}_{i}}. \end{split}$$

 \mathcal{U} locally finite, thus $\exists H \in C^0(M, \mathbb{R}_{>0})$ with $\forall x \in M : \forall i \in \mathbb{N} : x \in U_i \Rightarrow H(x) \geq 4n^2A_iC_i^3$.

Define the flatzoomer $\Phi_1 \colon u \mapsto \mathrm{e}^{-u} H \cdot \Big(1 + \left| \mathrm{d} u \right|_g \Big).$

Lemma

$$\sup \left\{ 4/\operatorname{length}(\gamma) \ \middle| \ \gamma \subset \mathcal{B}^{g[u]}_r(x) \text{ is a self-intersecting } g[u]\text{-geodesic} \right\}$$

$$\leq \sup \left\{ \Phi_1(u)(y) \ \middle| \ y \in K_{i+1} \setminus K_{i-2} \right\}$$

Step 4: Proof of Lemma

Let $\gamma\colon [0,\ell]\to B:=B^{g[u]}_r(x)$ be a self-intersecting unit speed g[u]-geodesic.

Compactness \Rightarrow There is s_0 with s.t. $u(\gamma(s_0)) = \min_{s \in [0,\ell]} u(\gamma(s))$.

Since $B \subset U_j$, we can regard B as subset of Euclidean \mathbb{R}^n .

Self-intersecting $\rightsquigarrow \exists s_1 \in [0,\ell] \text{ with } \langle \gamma'(s_1), \gamma'(s_0) \rangle_{\text{eucl}_i} < 0.$

In particular, $|\gamma'(s_0)|_{\mathrm{eucl}_j} \leq |\gamma'(s_1) - \gamma'(s_0)|_{\mathrm{eucl}_j}$ (*).

Figure: A self-intersecting g[u]-geodesic γ in $B \subseteq \mathbb{R}^n$.

Step 4: Proof of the lemma, ctd.

Choose reparametrization s.t. $s_0 = 0$ and define $\tau := s_1$.

$$1 =_{(\text{unit speed})} |\gamma'(0)|_{g[u]} =_{(\text{Def},g[u])} e^{u(\gamma(0))} |\gamma'(0)|_{g}$$

$$\leq_{(\text{Def},C_{j})} |C_{j}e^{u(\gamma(0))}|\gamma'(0)|_{\text{eucl}_{j}}$$

$$\leq_{(*)} |C_{j}e^{u(\gamma(0))}|\gamma'(\tau) - \gamma'(0)|_{\text{eucl}_{j}}$$

$$=_{(\text{fund.th.calc.})} |C_{j}e^{u(\gamma(0))}| \int_{0}^{\tau} \gamma''(s) \, ds \Big|_{\text{eucl}_{j}}$$

$$\leq_{(\text{geod.eq.})} |C_{j}e^{u(\gamma(0))}| \sum_{a,b,c=1}^{n} |\int_{0}^{\tau} |g[u]\Gamma_{ab}^{c}(\gamma(s))| \cdot |\gamma'_{a}(s)| \cdot |\gamma'_{b}(s)| \, ds$$

Step 4: Proof of the lemma, ctd.

Use definition of A_j and then $n^{1/2} |v|_{\text{eucl}_j} \ge \sum_{a=1}^n |v_a|$ (**):

$$\dots \leq C_{j} e^{u(\gamma(0))} \sum_{a,b,c=1}^{n} \int_{0}^{\tau} A_{j} \cdot \left(1 + |du|_{g}(\gamma(s))\right) \cdot |\gamma'_{a}(s)| \cdot |\gamma'_{b}(s)| ds
=_{(**)} nA_{j} C_{j} e^{u(\gamma(0))} \int_{0}^{\tau} \left(1 + |du|_{g}(\gamma(s))\right) \cdot \left(\sum_{a=1}^{n} |\gamma'_{a}(s)|\right)^{2} ds
\leq_{(\text{Def.}C_{j})} n^{2} A_{j} C_{j}^{3} \int_{0}^{\tau} \left(1 + |du|_{g}(\gamma(s))\right) \cdot e^{u(\gamma(0))} e^{-2u(\gamma(s))} ds
\leq_{(u \text{ min. at } \gamma(0))} n^{2} A_{j} C_{j}^{3} \int_{0}^{\tau} \left(1 + |du|_{g}(\gamma(s))\right) \cdot e^{-u(\gamma(s))} ds
\leq_{(\text{int.est.})} \ell n^{2} A_{j} C_{j}^{3} \left\| e^{-u} \left(1 + |du|_{g}\right) \right\|_{C^{0}(U_{j} \cap (K_{i+1} \setminus K_{i-2}))}.$$

Step 4: Proof of Lemma, last part

Consequently,

$$\begin{split} 4/\ell &\leq n^2 A_j C_j^3 \left\| \mathrm{e}^{-u} \Big(1 + \left| \mathrm{d} u \right|_g \Big) \right\|_{C^0(U_j \cap (K_{i+1} \setminus K_{i-2}))} \\ &\leq \left\| H \mathrm{e}^{-u} \Big(1 + \left| \mathrm{d} u \right|_g \Big) \right\|_{C^0(K_{i+1} \setminus K_{i-2})} \\ &= \sup \left\{ \Phi_1(u)(y) \ \middle| \ y \in K_{i+1} \setminus K_{i-2} \right\}. \end{split}$$

Step 5: Main result for general quasi-flatzoomers

Theorem (OM-Marc Nardmann 2013)

Let $\mathcal{K} = (K_i)_{i \in \mathbb{N}}$ be a smooth compact exhaustion of M, let $(\Phi_i)_{i \in \mathbb{N}}$ be a sequence of quasi-flatzoomers for \mathcal{K} , let $(\varepsilon_i)_{i \in \mathbb{N}}$ be a sequence in $C^0(M, \mathbb{R}_{>0})$, let $w \in C^0(M, \mathbb{R})$.

Then there exists a real-analytic $u \colon M \to \mathbb{R}$ with u > w such that

 $\forall i \in \mathbb{N} \colon |\Phi_i(u)| < \varepsilon_i \text{ holds on } M \setminus K_i.$

- Basic problem: Look for natural best metric in a given conformal class.
- Candidate: Metric of constant scalar curvature (Yamabe problem).
- On compact manifolds: Such a metric exists. It is unique if there is a solution of negative constant scalar curvature (Yamabe, Trudinger, Aubin, Schoen)
- To do Morse theory of the underlying functional: Ensure that the space of solutions is compact.
- Critical tool: Yamabe flow
- In the noncompact case, even existence is in general not true (counterexamples by Jin (1988) on \mathbb{R}^n , $n \ge 3$)

- Basic problem: Look for natural best metric in a given conformal class.
- Candidate: Metric of constant scalar curvature (Yamabe problem).
- On compact manifolds: Such a metric exists. It is unique if there is a solution of negative constant scalar curvature (Yamabe, Trudinger, Aubin, Schoen)
- To do Morse theory of the underlying functional: Ensure that the space of solutions is compact.
- Critical tool: Yamabe flow
- In the noncompact case, even existence is in general not true (counterexamples by Jin (1988) on \mathbb{R}^n , $n \ge 3$)

- Basic problem: Look for natural best metric in a given conformal class.
- Candidate: Metric of constant scalar curvature (Yamabe problem).
- On compact manifolds: Such a metric exists. It is unique if there is a solution of negative constant scalar curvature (Yamabe, Trudinger, Aubin, Schoen)
- To do Morse theory of the underlying functional: Ensure that the space of solutions is compact.
- Critical tool: Yamabe flow
- In the noncompact case, even existence is in general not true (counterexamples by Jin (1988) on \mathbb{R}^n , $n \geq 3$)

- Basic problem: Look for natural best metric in a given conformal class.
- Candidate: Metric of constant scalar curvature (Yamabe problem).
- On compact manifolds: Such a metric exists. It is unique if there is a solution of negative constant scalar curvature (Yamabe, Trudinger, Aubin, Schoen)
- To do Morse theory of the underlying functional: Ensure that the space of solutions is compact.
- Critical tool: Yamabe flow
- In the noncompact case, even existence is in general not true (counterexamples by Jin (1988) on \mathbb{R}^n , $n \ge 3$)

- Basic problem: Look for natural best metric in a given conformal class.
- Candidate: Metric of constant scalar curvature (Yamabe problem).
- On compact manifolds: Such a metric exists. It is unique if there is a solution of negative constant scalar curvature (Yamabe, Trudinger, Aubin, Schoen)
- To do Morse theory of the underlying functional: Ensure that the space of solutions is compact.
- Critical tool: Yamabe flow
- In the noncompact case, even existence is in general not true (counterexamples by Jin (1988) on \mathbb{R}^n , $n \ge 3$)

The Yamabe flow: Definition and properties

$$g_t = -\operatorname{scal}^g \cdot g$$
, $g(0) = g_0$
For $g = u^{4/n-2}g_0$ we have $\operatorname{scal}^g = -u^N L u$, where $N = \frac{n+2}{n-2}$ and $L = \frac{4(n-1)}{n-2}\Delta^{g_0}$.
Equation for u after rescaling of the time: $\partial(u^N) = L u - \operatorname{scal}^g \cdot u$, $u(0,x) = 1$.

On compact manifolds: Eternal existence of an equivalent normalised version (R.S. Hamilton) and convergence to a csc metric for $dim \le 5$ or M spin (Brendle)

On a noncompact manifold, little is known except for a lifetime estimate $T \sim |scal|_{C^0}^{-1}$ (*) and eternal existence if Ric^{g_0} bounded from below and $\mathrm{scal}^{g_0} \leq 0$. This can be proven via elementary parabolic methods (cf. Ma-An 1999).

Consequence of (*) and of the main theorem: In every conformal class there are representatives of arbitrarily large lifetime.

The Yamabe flow: Definition and properties

$$g_t = -\operatorname{scal}^g \cdot g$$
, $g(0) = g_0$
For $g = u^{4/n-2}g_0$ we have $\operatorname{scal}^g = -u^N L u$, where $N = \frac{n+2}{n-2}$ and $L = \frac{4(n-1)}{n-2} \Delta^{g_0}$.
Equation for u after rescaling of the time: $\partial(u^N) = L u - \operatorname{scal}^g \cdot u$, $u(0,x) = 1$.

On compact manifolds: Eternal existence of an equivalent normalised version (R.S. Hamilton) and convergence to a csc metric for $dim \leq 5$ or M spin (Brendle)

On a noncompact manifold, little is known except for a lifetime estimate $T \sim |scal|_{C^0}^{-1}$ (*) and eternal existence if Ric^{g_0} bounded from below and $\mathrm{scal}^{g_0} \leq 0$. This can be proven via elementary parabolic methods (cf. Ma-An 1999).

Consequence of (*) and of the main theorem: In every conformal class there are representatives of arbitrarily large lifetime.

The Yamabe flow: Definition and properties

$$g_t = -\operatorname{scal}^g \cdot g$$
, $g(0) = g_0$
For $g = u^{4/n-2}g_0$ we have $\operatorname{scal}^g = -u^N L u$, where $N = \frac{n+2}{n-2}$ and $L = \frac{4(n-1)}{n-2}\Delta^{g_0}$.
Equation for u after rescaling of the time: $\partial(u^N) = L u - \operatorname{scal}^g \cdot u$, $u(0,x) = 1$.

On compact manifolds: Eternal existence of an equivalent normalised version (R.S. Hamilton) and convergence to a csc metric for $dim \leq 5$ or M spin (Brendle)

On a noncompact manifold, little is known except for a lifetime estimate $T \sim |scal|_{C^0}^{-1}$ (*) and eternal existence if Ric^{g_0} bounded from below and $\mathrm{scal}^{g_0} \leq 0$. This can be proven via elementary parabolic methods (cf. Ma-An 1999).

Consequence of (*) and of the main theorem: In every conformal class there are representatives of arbitrarily large lifetime.

Shao-Simonett (J.Evol.Eq. 2014): Using the flatzoomer result, it can be shown that there is a lifetime estimate uniform for the entire class of metrics ug_0 for u uniformly positive and of bounded C^1 norm, for appropriate g_0 .

Conjecture: In every conformal class there is a metric of infinite lifetime for the Yamabe flow. (Work in Progress)

Envisaged joint work with Alexander Grigoryan (Bielefeld): Flatzoomability of pseudo-isometry invariant properties from stochastic geometry (heat kernels, *p*-parabolicity...)

Partially prepublished work with Boris Botvinnik: Flatzoomer estimates are used to prove a Cheeger-Gromov compactness result in a conformal setting implying a proof of the concordance conjecture for positive scalar curvature.

Shao-Simonett (J.Evol.Eq. 2014): Using the flatzoomer result, it can be shown that there is a lifetime estimate uniform for the entire class of metrics ug_0 for u uniformly positive and of bounded C^1 norm, for appropriate g_0 .

Conjecture: In every conformal class there is a metric of infinite lifetime for the Yamabe flow. (Work in Progress)

Envisaged joint work with Alexander Grigoryan (Bielefeld): Flatzoomability of pseudo-isometry invariant properties from stochastic geometry (heat kernels, *p*-parabolicity...) Partially prepublished work with Boris Botvinnik: Flatzoomer estimates are used to prove a Cheeger-Gromov compactness result in a conformal setting implying a proof of the concordance conjecture for positive scalar curvature.

Shao-Simonett (J.Evol.Eq. 2014): Using the flatzoomer result, it can be shown that there is a lifetime estimate uniform for the entire class of metrics ug_0 for u uniformly positive and of bounded C^1 norm, for appropriate g_0 .

Conjecture: In every conformal class there is a metric of infinite lifetime for the Yamabe flow. (Work in Progress)

Envisaged joint work with Alexander Grigoryan (Bielefeld): Flatzoomability of pseudo-isometry invariant properties from **stochastic geometry** (heat kernels, *p*-parabolicity...)

Partially prepublished work with Boris Botvinnik: Flatzoomer estimates are used to prove a Cheeger-Gromov compactness result in a conformal setting implying a proof of the concordance conjecture for positive scalar curvature.

Shao-Simonett (J.Evol.Eq. 2014): Using the flatzoomer result, it can be shown that there is a lifetime estimate uniform for the entire class of metrics ug_0 for u uniformly positive and of bounded C^1 norm, for appropriate g_0 .

Conjecture: In every conformal class there is a metric of infinite lifetime for the Yamabe flow. (Work in Progress)

Envisaged joint work with Alexander Grigoryan (Bielefeld): Flatzoomability of pseudo-isometry invariant properties from

stochastic geometry (heat kernels, *p*-parabolicity...)

Partially prepublished work with Boris Botvinnik: Flatzoomer estimates are used to prove a Cheeger-Gromov compactness result in a conformal setting implying a proof of the concordance conjecture for positive scalar curvature.

