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An inverse spectral problem

(M, g) an complete orientable Riemannian surface, K its curvature

For some a > 0 consider the operator L = �+ aK +W where � is the
(positive) Laplacian and W 2 L1

loc

(M).
The associated quadratic form is q(u) =

R

M

|du|2 + aKu2 +Wu2

This kind of operators naturally appear when studying the stability of
minimal or CMC surfaces

if M ,! R3 is minimal, its Jacobi operator is J = �+ 2K

if M ,! N is minimal, its Jacobi operator is

J = �+ K � (Scal
N

+ |A|2
2

)

Stable minimal surfaces are those for which the (quadratic form
associated to the) Jacobi operator is non-negative.

Inverse spectral problem

From the non-negativity of �+ aK +W on a surface M, derive

topological and/or geometrical properties of M

properties of W

For this talk, we shall assume that W ⌘ 0
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The compact case (R. Schoen & S.T. Yau)

Assume that M is a compact surface and that �+ aK � 0 on M.

Plugging the constant function u = 1 in the quadratic form we get

0 
Z

M

|du|2 + aKu2 = a

Z

M

K = 2⇡a�(M)

and M ⇠ S2 or M ⇠ T2.

Moreover, if M ⇠ T2, since
R

M

K = 0, we have

q(1)

k1k2 = 0 = inf
n q(u)

kuk2
�

�

�

u 2 C1(M)
o

The constant function 1 is an eigenfunction associated to the eigenvalue
0 and

0 = �1+ aK1 = aK

Therefore the surface is a flat torus.
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The non-compact case

If M is non-compact, the constant functions do not belong to H1(M).

A good property to check is the parabolicity of M : do we have

M
conf⇠ M̄ \ {p

1

, . . . , p
n

} with M̄ compact ?

On parabolic surfaces, there exist sequences of functions u
k

2 C1
c

(M)
such that u

k

! 1 and
R

M

|du
k

|2 ! 0.

This approach was used by D. Fischer-Colbrie and R. Schoen for the
study of stable minimal surfaces.

Theorem (D. Fischer-Colbrie & R. Schoen)

If �+ aK � 0 on M with a � 1 then

i. M
conf⇠ C or M

conf⇠ C⇤ (in particular �(M) � 0)

ii. if M
conf⇠ C⇤ and

R

M

|K | < 1 then K ⌘ 0

They mention that the finiteness of the total curvature should not be
essential in (ii.).
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The non-compact case

Question

Assume that �+ aK � 0 on M. For which values of a do we have that

i. M
conf⇠ C or M

conf⇠ C⇤

ii. K ⌘ 0 if M
conf⇠ C⇤

For the hyperbolic plane H2(�1) =
⇣

D,
�

2

1�z

2

�

2|dz |2
⌘

we have

K ⌘ �1

the spectrum of the Laplacian is �(�) = [ 1
4

,+1)

Therefore

�+
1

4
K = �� 1

4
� 0

To extend the result of D. Fischer-Colbrie and R. Schoen we have to
assume that a > 1

4

.
When a  1

4

we have to add some hypothesis on M to rule out the
hyperbolic plane.



Introduction An inverse spectral theorem Great lines of the proof

Known results

In the sequel, V (R) is the volume of the ball of radius R centered in
some fixed point p

0

.

Assume that �+ aK is non-negative on M. Then

if a > 1

4

M
conf⇠ C or M

conf⇠ C⇤ (S. Kawai, 1988 if K  0, and –, 2006)
if M is a cylinder, then K ⌘ 0 (M. Reiris 2010 for a � 1, and
J. Espinar 2011)

if a  1

4

if V (R) = O(Rk) for some k < 2 then M
conf⇠ C or M

conf⇠ C⇤

(J. Espinar & H. Rosenberg, 2010)

Questions

When a  1

4

,

Can we relax the hypothesis on the volume growth ?

Do we have a flatness result for cylinders ?



Introduction An inverse spectral theorem Great lines of the proof

Statement of the result

theorem (P. Bérard & —, 2011)

Let (M, g) be a complete non-compact Riemannian surface. Assume that
the operator �+ aK is non-negative on M, and that either

i. a > 1

4

, or

ii. a = 1

4

, and (M, g) has subexponential volume growth, or

iii. a < 1

4

, and (M, g) has k
a

-subpolynomial volume growth, with
k
a

= 2 + 4a

1�4a

Then,

a. The surface (M, g) is conformally equivalent to C or C⇤.

b. If M is a cylinder, then (M, g) is flat.

(M, g) has subexponential volume growth if lim sup
R!1

lnV (R)

R
= 0.

(M, g) has k-subpolynomial volume growth if lim sup
R!1

V (R)

Rk

= 0.



Introduction An inverse spectral theorem Great lines of the proof

Sharpness of the hypotheses

i. Because of the hyperbolic space, assuming a > 1

4

is necessary if
there is no assumption on the volume growth of M.

ii. The hyperbolic spaces H(�b2) satisfy �+ 1

4

K � 0 and have volume
growth V (R) ⇠ C ebR .
The hypothesis for a = 1

4

must rule out the surfaces with arbitrary
small exponential growth rate.
The hypothesis of subexponential volume growth is sharp.

iii. The surface
⇣

D,
�

2

1�z

2

�

2↵|dz |2
⌘

, with ↵ = 1

4a

, has the following

properties :

completeness because ↵ � 1
�+ aK = �+ 1

4↵K � 0

volume growth V (R) ⇠ C Rk

a , with k
a

= 2 + 4a

1�4a

The hypothesis for a < 1

4

must rule out the surfaces with polynomial
volume growth of degree k

a

.
The hypothesis of k

a

-subpolynomial volume growth is sharp.
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A technical lemma

Fix some point p
0

2 M and consider r the distance function to p
0

.

General method : plug some test functions ⇠(r) in the quadratic form
and use the following estimate due to Pogorelov and Colding-Minicozzi

Technical lemma

If ⇠ :]x , y [! R is C 1, piecewise C 2 with ⇠ � 0, ⇠0  0 and ⇠00 � 0, then

Z

C(x,y)
K⇠2(r)  ⇠2(s)G (s)

�

�

�

y

x

�2⇡A⇠2(s)
�

�

�

y

x

+2⇠(s)⇠0(s)L(s)
�

�

�

y

x

�
Z

C(x,y)
(⇠2)00(r)

Where

G (s) =
R

B(s)

K is the total curvature of the ball B(s)

L(s) = vol(@B(s)) is the length of the geodesic circle of radius s

A is an upper bound of the �(B(s)), s 2]x , y [
C (x , y) = {p 2 M | x < r(p) < y} = B(y)� B(x)
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A technical lemma

Consider the function b�(t) = sup
�

�
�

B(s)
�

| s 2]t,1)
 

.

non-increasing, with values in Z
discontinuities at the points
0 < t

1

< · · · < t
n

< . . .

at the discontinuity t
n

, a jump
!
n

= b�(t�
n

)� b�(t+
n

) 2 N⇤

Call N 2 N [ {1} the number of
discontinuities.

1

t
1

t
2

t
3

!
1

!
2

!
3

Topological Lemma

Let (M, g) be a complete Riemannian surface and �(M) its Euler
characteristic (with �(M) = �1 if M does not have finite topology)

1�
N

X

n=1

!
n

 �(M)
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A technical lemma

Z

C(x,y)
K⇠2(r)  ⇠2(s)G (s)

�

�

�

y

x

�2⇡A⇠2(s)
�

�

�

y

x

+2⇠(s)⇠0(s)L(s)
�

�

�

y

x

�
Z

C(x,y)
(⇠2)00(r)

For a function ⇠ : [0,Q] ! R, apply Colding-Minicozzi inequality on each
]t
n

, t
n+1

[ with A = b�(t
n

).

t
1

t
2

t
N(Q)

Q t
N(Q)+1

Technical lemma revisited

If ⇠ : [0,Q] ! R is C 1, piecewise C 2, with ⇠ � 0, ⇠0  0, ⇠00 � 0 and
⇠(Q) = 0, then

Z

B(Q)

K⇠2(r)  2⇡
⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

�
Z

B(Q)

(⇠2)00(r)
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A technical lemma

Consider a function ⇠ : [0,Q] ! R which is C 1, piecewise C 2 with ⇠ � 0,
⇠0  0, ⇠00 � 0 and ⇠(Q) = 0. By the technical lemma we have

Z

B(Q)

K⇠2(r)  2⇡
⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

�
Z

B(Q)

(⇠2)00(r)

The non-negativity of �+ aK gives

0 
Z

B(Q)

(⇠0)2(r) + aK⇠2(r)

 2⇡a
⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

+

Z

B(Q)

(1� 2a)(⇠0)2(r)� 2a(⇠⇠00)(r)

In the sequel we give the test functions for the case a = 1

4

.
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Finiteness of the topology

For a = 1

4

we have

0  ⇡

2

⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

+
1

2

Z

B(Q)

(⇠0)2(r)� (⇠⇠00)(r)

Choosing ⇠(r) = e�↵r � e�↵Q gives

0  ⇡

2

⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

+
↵2

2
e�↵Q

Z

B(Q)

e�↵r

Because M has sub-exponential volume growth,
R

M

e�↵r < 1, and
letting Q ! 1 gives

0  ⇡

2

⇣

1�
N

X

1

!
n

e�2↵t
n

⌘

with ↵ ! 0, using the topological lemma we get

0  ⇡

2

⇣

1�
N

X

1

!
n

⌘

 ⇡

2
�(M)
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Finiteness of the conformal type

To prove that the surface is parabolic it is su�cient to prove that
V (R)  C R2 for some constant C .

0  ⇡

2

⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

+
1

2

Z

B(Q)

(⇠0)2(r)� (⇠⇠00)(r)

We want to choose ⇠ such that the integral term is negative and related
to the volume of the ball.

Choose

⇠(r) =

⇢

e(1�
r

2R

)

2

if r 2 [0,R]
�(e�↵r � e�↵Q) if r 2 [R ,Q]

with ↵ and � such that ⇠ is C 1.

R Qt
N(R)

t
N(R)+1
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Finiteness of the conformal type

With this choice of ⇠ we get

1

4R2

Z

B(R)

e2(1�
r

2R

)

2

 ⇡

2

⇣

⇠2(0)�
N(Q)

X

1

!
n

⇠2(t
n

)
⌘

+
↵2�2

2
e�↵Q

Z

C(R,Q)

e�↵r

and with Q ! +1

V (R)

R2

 2⇡
⇣

⇠2(0)�
N(R)

X

1

!
n

⇠2(t
n

)
⌘

 C

The surface has quadratic volume growth and is parabolic.
Moreover, if M ⇠ C⇤, then, for R > t

1

we have

V (R)

R2

 2⇡
⇣

e2 � e2(1�
t

1

2R

)

2

⌘

⇠1
C

R

The cylinders have linear volume growth.
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Flatness of the cylinders

The flatness of cylinders is a consequence of the following proposition

proposition

If M is a complete cylinder such that

�+ aK � 0 for some a > 0

lim sup
R!1

V (R)

R2

= 0

then K � 0.

Using Cohn-Vossen inequality we get

0 
Z

M

K  2⇡�(M) = 0

and K ⌘ 0
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Flatness of the cylinders

Z

C(x,y)
K⇠2(r)  ⇠2(s)G (s)

�

�

�

y

x

�2⇡A⇠2(s)
�

�

�

y

x

+2⇠(s)⇠0(s)L(s)
�

�

�

y

x

�
Z

C(x,y)
(⇠2)00(r)

To prove the proposition we use the boundary terms with the following
test function

R t
1

Q

1

1� ↵

0 
Z

B(Q)

(⇠0)2(r) + aK⇠2(r)  Boundary terms + (1� 2a)

Z

B(Q)

(⇠0)2(r)

 2⇡a
⇣

1� (1� ↵)2(
Q � t

1

Q � R
)2
⌘

+ 2a(1� ↵)
R � ↵Q

Q � R

L(R)

R

+(1� 2a)↵2

V (R)

R2

+ (1� 2a)
� 1� ↵

Q � R

�

2

⇣

V (Q)� V (R)
⌘
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Flatness of the cylinders

Letting Q ! +1 gives

0  2⇡a↵(2� ↵)� 2a↵(1� ↵)
L(R)

R
+ (1� 2a)↵2

V (R)

R2

The functions L(R) and V (R) have the following expansions at 0 :

L(R) = 2⇡R
⇣

1� K(p

0

)

6

R2 + R2"
1

(R)
⌘

V (R) = ⇡R2

⇣

1� K(p

0

)

12

R2 + R2"
2

(R)
⌘

where K (p
0

) is the curvature at p
0

. Using these expansions we get

0  ↵2+
K (p

0

)R2

12
↵
⇣

8a�(1+6a)↵
⌘

+↵R2

⇣

(1�2a)↵"
2

(R)�4a(1�↵)"
1

(R)
⌘

dividing by ↵ and letting ↵ ! 0 gives

0  2K (p
0

)

3
R2 � 4aR2"

1

(R)

which implies that K (p
0

) � 0
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Flatness of the cylinders

Thank you for your attention
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