Inverse Spectral Positivity on Surfaces

Philippe Castillon

Institut de Mathématiques et de Modélisation de Montpellier

Granada, April 25, 2012

joint work with Pierre Bérard (Grenoble)

Introduction

- An inverse spectral problem
- The compact case (R. Schoen & S.T. Yau)
- The non-compact case
- Known results

2 An inverse spectral theorem

- Statement of the result
- Sharpness of the hypotheses

3 Great lines of the proof

- A technical lemma
- Finiteness of the topology
- Finiteness of the conformal type
- Flatness of the cylinders

(M,g) an complete orientable Riemannian surface, K its curvature

For some a > 0 consider the operator $L = \Delta + aK + W$ where Δ is the (positive) Laplacian and $W \in L^1_{loc}(M)$. The associated quadratic form is $q(u) = \int_M |du|^2 + aKu^2 + Wu^2$

This kind of operators naturally appear when studying the stability of minimal or CMC surfaces

- if $M \hookrightarrow \mathbb{R}^3$ is minimal, its Jacobi operator is $J = \Delta + 2K$
- if $M \hookrightarrow N$ is minimal, its Jacobi operator is

$$J = \Delta + K - (\operatorname{Scal}_N + \frac{|A|^2}{2})$$

Stable minimal surfaces are those for which the (quadratic form associated to the) Jacobi operator is non-negative.

Inverse spectral problem

From the non-negativity of $\Delta + aK + W$ on a surface M, derive

- topological and/or geometrical properties of M
- properties of W

For this talk, we shall assume that $W\equiv 0$

Introduction	An inverse spectral theorem	Great lines of the proof
0000		
The compact case (R. Schoen & S.T. Yau)		

Assume that M is a compact surface and that $\Delta + aK \ge 0$ on M.

Plugging the constant function u = 1 in the quadratic form we get

$$0\leq\int_{M}|du|^{2}+aKu^{2}=a\int_{M}K=2\pi a\chi(M)$$

and $M \sim \mathbb{S}^2$ or $M \sim \mathbb{T}^2$.

Moreover, if $M \sim \mathbb{T}^2$, since $\int_M K = 0$, we have

$$\frac{q(\mathbf{1})}{\|\mathbf{1}\|^2} = 0 = \inf\left\{\frac{q(u)}{\|u\|^2} \mid u \in C^\infty(M)\right\}$$

The constant function ${\bf 1}$ is an eigenfunction associated to the eigenvalue 0 and

$$0 = \Delta \mathbf{1} + aK\mathbf{1} = aK$$

Therefore the surface is a flat torus.

Introduction	An inverse spectral theorem	Great lines of the proof
0000		
The non-compact case		

If M is non-compact, the constant functions do not belong to $H^1(M)$.

A good property to check is the parabolicity of M: do we have $M \stackrel{conf}{\sim} \overline{M} \setminus \{p_1, \ldots, p_n\}$ with \overline{M} compact ?

On parabolic surfaces, there exist sequences of functions $u_k \in C_c^{\infty}(M)$ such that $u_k \to \mathbf{1}$ and $\int_M |du_k|^2 \to 0$.

This approach was used by D. Fischer-Colbrie and R. Schoen for the study of stable minimal surfaces.

Theorem (D. Fischer-Colbrie & R. Schoen)

If
$$\Delta + aK \ge 0$$
 on M with $a \ge 1$ then

i.
$$M \stackrel{conf}{\sim} \mathbb{C}$$
 or $M \stackrel{conf}{\sim} \mathbb{C}^*$ (in particular $\chi(M) \ge 0$)

ii. if
$$M \stackrel{conf}{\sim} \mathbb{C}^*$$
 and $\int_M |K| < \infty$ then $K \equiv 0$

They mention that the finiteness of the total curvature should not be essential in (ii.).

Introduction	An inverse spectral theorem	Great lines of the proof
00000		
The non-compact case		

Question

Assume that $\Delta + aK \ge 0$ on M. For which values of a do we have that i. $M \stackrel{conf}{\sim} \mathbb{C}$ or $M \stackrel{conf}{\sim} \mathbb{C}^*$ ii. $K \equiv 0$ if $M \stackrel{conf}{\sim} \mathbb{C}^*$

For the hyperbolic plane $\mathbb{H}^2(-1)=\left(\mathbb{D}, \left(\frac{2}{1-z^2}\right)^2 |dz|^2\right)$ we have

• $K \equiv -1$

• the spectrum of the Laplacian is $\sigma(\Delta) = [\frac{1}{4}, +\infty)$ Therefore

$$\Delta + rac{1}{4} \mathcal{K} = \Delta - rac{1}{4} \geq 0$$

To extend the result of D. Fischer-Colbrie and R. Schoen we have to assume that $a > \frac{1}{4}$. When $a \le \frac{1}{4}$ we have to add some hypothesis on M to rule out the hyperbolic plane.

Introduction	An inverse spectral theorem	Great lines of the proof
00000		
Known results		

In the sequel, V(R) is the volume of the ball of radius R centered in some fixed point p_0 .

Assume that $\Delta + aK$ is non-negative on M. Then

(J. Espinar & H. Rosenberg, 2010)

Questions

When $a \leq \frac{1}{4}$,

- Can we relax the hypothesis on the volume growth ?
- Do we have a flatness result for cylinders ?

theorem (P. Bérard & —, 2011)

Let (M,g) be a complete non-compact Riemannian surface. Assume that the operator $\Delta + aK$ is non-negative on M, and that either

i.
$$a > \frac{1}{4}$$
, or
ii. $a = \frac{1}{4}$, and (M, g) has subexponential volume growth, or
iii. $a < \frac{1}{4}$, and (M, g) has k_a -subpolynomial volume growth, with
 $k_a = 2 + \frac{4a}{1-4a}$

Then,

- a. The surface (M,g) is conformally equivalent to $\mathbb C$ or $\mathbb C^*$.
- b. If M is a cylinder, then (M, g) is flat.

(M,g) has subexponential volume growth if $\limsup_{R\to\infty} \frac{\ln V(R)}{R} = 0.$ (M,g) has k-subpolynomial volume growth if $\limsup_{R\to\infty} \frac{V(R)}{R^k} = 0.$

	An inverse spectral theorem	Great lines of the proof
	00	
Sharpness of the hypotheses		

- i. Because of the hyperbolic space, assuming $a > \frac{1}{4}$ is necessary if there is no assumption on the volume growth of M.
- ii. The hyperbolic spaces $\mathbb{H}(-b^2)$ satisfy $\Delta + \frac{1}{4}K \ge 0$ and have volume growth $V(R) \sim C e^{bR}$. The hypothesis for $a = \frac{1}{4}$ must rule out the surfaces with arbitrary small exponential growth rate.

The hypothesis of subexponential volume growth is sharp.

iii. The surface $\left(\mathbb{D}, \left(\frac{2}{1-z^2}\right)^{2\alpha} |dz|^2\right)$, with $\alpha = \frac{1}{4a}$, has the following properties :

- completeness because $\alpha \geq 1$
- $\Delta + aK = \Delta + \frac{1}{4\alpha}K \ge 0$
- volume growth $V(R) \sim C R^{k_a}$, with $k_a = 2 + rac{4a}{1-4a}$

The hypothesis for $a < \frac{1}{4}$ must rule out the surfaces with polynomial volume growth of degree k_a .

(日) (同) (三) (三) (三) (○) (○)

The hypothesis of k_a -subpolynomial volume growth is sharp.

	An inverse spectral theorem	Great lines of the proof
		• 000 0000000
A technical lemma		

Fix some point $p_0 \in M$ and consider r the distance function to p_0 .

General method : plug some test functions $\xi(r)$ in the quadratic form and use the following estimate due to Pogorelov and Colding-Minicozzi

Technical lemma

If
$$\xi :]x, y[\to \mathbb{R}$$
 is C^1 , piecewise C^2 with $\xi \ge 0$, $\xi' \le 0$ and $\xi'' \ge 0$, then

$$\int_{C(x,y)} \mathcal{K}\xi^{2}(r) \leq \xi^{2}(s)G(s)\Big|_{x}^{y} - 2\pi A\xi^{2}(s)\Big|_{x}^{y} + 2\xi(s)\xi'(s)L(s)\Big|_{x}^{y} - \int_{C(x,y)} (\xi^{2})''(r)$$

Where

- $G(s) = \int_{B(s)} K$ is the total curvature of the ball B(s)
- $L(s) = \operatorname{vol}(\partial B(s))$ is the length of the geodesic circle of radius s

- A is an upper bound of the $\chi(B(s)), s \in]x, y[$
- $C(x, y) = \{ p \in M \mid x < r(p) < y \} = B(y) \overline{B(x)}$

Introduction 00000 A technical lemma An inverse spectral theorem

Consider the function $\widehat{\chi}(t) = \sup \{\chi(B(s)) \mid s \in]t, \infty)\}.$

Topological Lemma

Let (M, g) be a complete Riemannian surface and $\chi(M)$ its Euler characteristic (with $\chi(M) = -\infty$ if M does not have finite topology)

$$1-\sum_{n=1}^{\overline{N}}\omega_n\leq\chi(M)$$

$$\int_{C(x,y)} \mathcal{K}\xi^{2}(r) \leq \xi^{2}(s)G(s)\Big|_{x}^{y} - 2\pi A\xi^{2}(s)\Big|_{x}^{y} + 2\xi(s)\xi'(s)L(s)\Big|_{x}^{y} - \int_{C(x,y)} (\xi^{2})''(r)\Big|_{x}^{y}$$

For a function $\xi : [0, Q] \to \mathbb{R}$, apply Colding-Minicozzi inequality on each $]t_n, t_{n+1}[$ with $A = \hat{\chi}(t_n)$.

Technical lemma revisited

If $\xi : [0, Q] \to \mathbb{R}$ is C^1 , piecewise C^2 , with $\xi \ge 0$, $\xi' \le 0$, $\xi'' \ge 0$ and $\xi(Q) = 0$, then

$$\int_{B(Q)} \mathcal{K}\xi^{2}(r) \leq 2\pi \Big(\xi^{2}(0) - \sum_{1}^{N(Q)} \omega_{n}\xi^{2}(t_{n})\Big) - \int_{B(Q)} (\xi^{2})''(r)$$

	An inverse spectral theorem	Great lines of the proof
		000000000
A technical lemma		

Consider a function $\xi : [0, Q] \to \mathbb{R}$ which is C^1 , piecewise C^2 with $\xi \ge 0$, $\xi' \le 0$, $\xi'' \ge 0$ and $\xi(Q) = 0$. By the technical lemma we have

$$\int_{B(Q)} \mathcal{K}\xi^{2}(r) \leq 2\pi \Big(\xi^{2}(0) - \sum_{1}^{N(Q)} \omega_{n}\xi^{2}(t_{n})\Big) - \int_{B(Q)} (\xi^{2})''(r)$$

The non-negativity of $\Delta + aK$ gives

$$\begin{array}{ll} 0 & \leq & \displaystyle \int_{B(Q)} (\xi')^2(r) + aK\xi^2(r) \\ \\ & \leq & \displaystyle 2\pi a \Big(\xi^2(0) - \sum_{1}^{N(Q)} \omega_n \xi^2(t_n)\Big) + \displaystyle \int_{B(Q)} (1 - 2a)(\xi')^2(r) - 2a(\xi\xi'')(r) \end{array}$$

In the sequel we give the test functions for the case $a = \frac{1}{4}$.

For $a = \frac{1}{4}$ we have

$$0 \leq \frac{\pi}{2} \Big(\xi^2(0) - \sum_{1}^{N(Q)} \omega_n \xi^2(t_n) \Big) + \frac{1}{2} \int_{B(Q)} (\xi')^2(r) - (\xi\xi'')(r)$$

Choosing $\xi(r) = e^{-\alpha r} - e^{-\alpha Q}$ gives

$$0 \leq \frac{\pi}{2} \left(\xi^2(0) - \sum_{1}^{N(Q)} \omega_n \xi^2(t_n) \right) + \frac{\alpha^2}{2} \mathrm{e}^{-\alpha Q} \int_{B(Q)} \mathrm{e}^{-\alpha r}$$

Because *M* has sub-exponential volume growth, $\int_M {\rm e}^{-\alpha r} < \infty$, and letting $Q \to \infty$ gives

$$0 \leq \frac{\pi}{2} \left(1 - \sum_{1}^{N} \omega_n \mathrm{e}^{-2\alpha t_n} \right)$$

with $\alpha \rightarrow$ 0, using the topological lemma we get

$$0 \leq \frac{\pi}{2} \left(1 - \sum_{1}^{\overline{N}} \omega_n \right) \leq \frac{\pi}{2} \chi(M)$$

	An inverse spectral theorem	Great lines of the proof
		00000000000
Finiteness of the conformal type		

To prove that the surface is parabolic it is sufficient to prove that $V(R) \leq C R^2$ for some constant C.

$$0 \leq rac{\pi}{2} \Big(\xi^2(0) - \sum_1^{\mathcal{N}(Q)} \omega_n \xi^2(t_n) \Big) + rac{1}{2} \int_{B(Q)} (\xi')^2(r) - (\xi\xi'')(r) \; .$$

We want to choose ξ such that the integral term is negative and related to the volume of the ball.

Choose

$$\xi(r) = \begin{cases} e^{(1-\frac{r}{2R})^2} & \text{if } r \in [0, R] \\ \beta(e^{-\alpha r} - e^{-\alpha Q}) & \text{if } r \in [R, Q] \end{cases}$$

with α and β such that ξ is C^1 .

イロト イポト イヨト イヨト

э

	An inverse spectral theorem	Great lines of the proof
		00000000000
Finiteness of the conformal type		

With this choice of ξ we get

$$\frac{1}{4R^2} \int_{B(R)} e^{2(1-\frac{r}{2R})^2} \leq \frac{\pi}{2} \left(\xi^2(0) - \sum_{1}^{N(Q)} \omega_n \xi^2(t_n) \right) + \frac{\alpha^2 \beta^2}{2} e^{-\alpha Q} \int_{C(R,Q)} e^{-\alpha r}$$

and with $Q o +\infty$

$$rac{V(R)}{R^2} \leq 2\pi \Bigl(\xi^2(0) - \sum_1^{N(R)} \omega_n \xi^2(t_n) \Bigr) \leq C$$

The surface has quadratic volume growth and is parabolic. Moreover, if $M \sim \mathbb{C}^*$, then, for $R > t_1$ we have

$$rac{V(R)}{R^2} \leq 2\pi \Big(\mathrm{e}^2 - \mathrm{e}^{2(1-rac{t_1}{2R})^2} \Big) \sim_\infty rac{C}{R}$$

The cylinders have linear volume growth.

	An inverse spectral theorem	Great lines of the proof
		0000000000000
Flatness of the cylinders		

The flatness of cylinders is a consequence of the following proposition

proposition

If M is a complete cylinder such that

•
$$\Delta + aK \ge 0$$
 for some $a > 0$

•
$$\limsup_{R \to \infty} \frac{V(R)}{R^2} = 0$$

then $K \geq 0$.

Using Cohn-Vossen inequality we get

$$0\leq\int_M K\leq 2\pi\chi(M)=0$$

and $K \equiv 0$

$$\int_{C(x,y)} \mathcal{K}\xi^{2}(r) \leq \xi^{2}(s)G(s)\Big|_{x}^{y} - 2\pi \mathcal{A}\xi^{2}(s)\Big|_{x}^{y} + 2\xi(s)\xi'(s)L(s)\Big|_{x}^{y} - \int_{C(x,y)} (\xi^{2})''(r)\Big|_{x}^{y}$$

To prove the proposition we use the boundary terms with the following test function

$$0 \leq \int_{B(Q)} (\xi')^{2}(r) + aK\xi^{2}(r) \leq \text{Boundary terms} + (1-2a) \int_{B(Q)} (\xi')^{2}(r)$$

$$\leq 2\pi a \left(1 - (1-\alpha)^{2} \left(\frac{Q-t_{1}}{Q-R}\right)^{2}\right) + 2a(1-\alpha) \frac{R-\alpha Q}{Q-R} \frac{L(R)}{R}$$

$$+ (1-2a)\alpha^{2} \frac{V(R)}{R^{2}} + (1-2a) \left(\frac{1-\alpha}{Q-R}\right)^{2} \left(V(Q) - V(R)\right)$$

Letting $Q \to +\infty$ gives

$$0 \leq 2\pi$$
ə $lpha(2-lpha)-2$ ə $lpha(1-lpha)rac{L(R)}{R}+(1-2$ ə $)lpha^2rac{V(R)}{R^2}$

The functions L(R) and V(R) have the following expansions at 0 :

•
$$L(R) = 2\pi R \left(1 - \frac{K(p_0)}{6} R^2 + R^2 \varepsilon_1(R) \right)$$

• $V(R) = \pi R^2 \left(1 - \frac{K(p_0)}{12} R^2 + R^2 \varepsilon_2(R) \right)$

where $K(p_0)$ is the curvature at p_0 . Using these expansions we get

$$0 \leq \alpha^{2} + \frac{\mathcal{K}(p_{0})R^{2}}{12}\alpha \Big(8a - (1+6a)\alpha\Big) + \alpha R^{2}\Big((1-2a)\alpha\varepsilon_{2}(R) - 4a(1-\alpha)\varepsilon_{1}(R)\Big)$$

dividing by α and letting $\alpha \rightarrow {\rm 0}$ gives

$$0 \leq \frac{2K(p_0)}{3}R^2 - 4aR^2\varepsilon_1(R)$$

which implies that $K(p_0) \ge 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Thank you for your attention