Inverse Spectral Positivity on Surfaces

Philippe Castillon

Institut de Mathématiques et de Modélisation de Montpellier

Granada, April 25, 2012
joint work with Pierre Bérard (Grenoble)
(1) Introduction

- An inverse spectral problem
- The compact case (R. Schoen \& S.T. Yau)
- The non-compact case
- Known results
(2) An inverse spectral theorem
- Statement of the result
- Sharpness of the hypotheses
(3) Great lines of the proof
- A technical lemma
- Finiteness of the topology
- Finiteness of the conformal type
- Flatness of the cylinders
(M, g) an complete orientable Riemannian surface, K its curvature
For some $a>0$ consider the operator $L=\Delta+a K+W$ where Δ is the (positive) Laplacian and $W \in L_{l o c}^{1}(M)$.
The associated quadratic form is $q(u)=\int_{M}|d u|^{2}+a K u^{2}+W u^{2}$
This kind of operators naturally appear when studying the stability of minimal or CMC surfaces
- if $M \hookrightarrow \mathbb{R}^{3}$ is minimal, its Jacobi operator is $J=\Delta+2 K$
- if $M \hookrightarrow N$ is minimal, its Jacobi operator is

$$
J=\Delta+K-\left(\mathrm{Scal}_{N}+\frac{|A|^{2}}{2}\right)
$$

Stable minimal surfaces are those for which the (quadratic form associated to the) Jacobi operator is non-negative.

Inverse spectral problem

From the non-negativity of $\Delta+a K+W$ on a surface M, derive

- topological and/or geometrical properties of M
- properties of W

For this talk, we shall assume that $W \equiv 0$

Assume that M is a compact surface and that $\Delta+a K \geq 0$ on M.
Plugging the constant function $u=\mathbf{1}$ in the quadratic form we get

$$
0 \leq \int_{M}|d u|^{2}+a K u^{2}=a \int_{M} K=2 \pi a \chi(M)
$$

and $M \sim \mathbb{S}^{2}$ or $M \sim \mathbb{T}^{2}$.
Moreover, if $M \sim \mathbb{T}^{2}$, since $\int_{M} K=0$, we have

$$
\frac{q(\mathbf{1})}{\|\mathbf{1}\|^{2}}=0=\inf \left\{\left.\frac{q(u)}{\|u\|^{2}} \right\rvert\, u \in C^{\infty}(M)\right\}
$$

The constant function $\mathbf{1}$ is an eigenfunction associated to the eigenvalue 0 and

$$
0=\Delta \mathbf{1}+a K \mathbf{1}=a K
$$

Therefore the surface is a flat torus.

If M is non-compact, the constant functions do not belong to $H^{1}(M)$.
A good property to check is the parabolicity of M : do we have $M \stackrel{\text { conf }}{\sim} \bar{M} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ with \bar{M} compact ?

On parabolic surfaces, there exist sequences of functions $u_{k} \in C_{c}^{\infty}(M)$ such that $u_{k} \rightarrow \mathbf{1}$ and $\int_{M}\left|d u_{k}\right|^{2} \rightarrow 0$.
This approach was used by D. Fischer-Colbrie and R. Schoen for the study of stable minimal surfaces.

Theorem (D. Fischer-Colbrie \& R. Schoen)

If $\Delta+a K \geq 0$ on M with $a \geq 1$ then
i. $M \stackrel{\text { conf }}{\sim} \mathbb{C}$ or $M \stackrel{\text { conf }}{\sim} \mathbb{C}^{*}$ (in particular $\chi(M) \geq 0$)
ii. if $M \stackrel{\text { conf }}{\sim} \mathbb{C}^{*}$ and $\int_{M}|K|<\infty$ then $K \equiv 0$

They mention that the finiteness of the total curvature should not be essential in (ii.).

Question

Assume that $\Delta+a K \geq 0$ on M. For which values of a do we have that
i. $M \stackrel{\text { conf }}{\sim} \mathbb{C}$ or $M \stackrel{\text { conf }}{\sim} \mathbb{C}^{*}$
ii. $K \equiv 0$ if $M \stackrel{\text { conf }}{\sim} \mathbb{C}^{*}$

For the hyperbolic plane $\mathbb{H}^{2}(-1)=\left(\mathbb{D},\left(\frac{2}{1-z^{2}}\right)^{2}|d z|^{2}\right)$ we have

- $K \equiv-1$
- the spectrum of the Laplacian is $\sigma(\Delta)=\left[\frac{1}{4},+\infty\right)$

Therefore

$$
\Delta+\frac{1}{4} K=\Delta-\frac{1}{4} \geq 0
$$

To extend the result of D. Fischer-Colbrie and R. Schoen we have to assume that $a>\frac{1}{4}$.
When $a \leq \frac{1}{4}$ we have to add some hypothesis on M to rule out the hyperbolic plane.

In the sequel, $V(R)$ is the volume of the ball of radius R centered in some fixed point p_{0}.

Assume that $\Delta+a K$ is non-negative on M. Then

- if $a>\frac{1}{4}$
- $M \stackrel{\text { conf }}{\sim} \mathbb{C}$ or $M \stackrel{\text { conf }}{\sim} \mathbb{C}^{*}(S$. Kawai, 1988 if $K \leq 0$, and,- 2006)
- if M is a cylinder, then $K \equiv 0$ (M. Reiris 2010 for $a \geq 1$, and
J. Espinar 2011)
- if $a \leq \frac{1}{4}$
- if $V(R)=O\left(R^{k}\right)$ for some $k<2$ then $M \stackrel{\text { conf }}{\sim} \mathbb{C}$ or $M \stackrel{\text { conf }}{\sim} \mathbb{C}^{*}$ (J. Espinar \& H. Rosenberg, 2010)

Questions

When $a \leq \frac{1}{4}$,

- Can we relax the hypothesis on the volume growth ?
- Do we have a flatness result for cylinders ?

theorem (P. Bérard \& —, 2011)

Let (M, g) be a complete non-compact Riemannian surface. Assume that the operator $\Delta+a K$ is non-negative on M, and that either
i. $a>\frac{1}{4}$, or
ii. $a=\frac{1}{4}$, and (M, g) has subexponential volume growth, or
iii. $a<\frac{1}{4}$, and (M, g) has k_{a}-subpolynomial volume growth, with $k_{a}=2+\frac{4 a}{1-4 a}$
Then,
a. The surface (M, g) is conformally equivalent to \mathbb{C} or \mathbb{C}^{*}.
b. If M is a cylinder, then (M, g) is flat.
(M, g) has subexponential volume growth if $\limsup _{R \rightarrow \infty} \frac{\ln V(R)}{R}=0$.
(M, g) has k-subpolynomial volume growth if $\limsup _{R \rightarrow \infty} \frac{V(R)}{R^{k}}=0$.
i. Because of the hyperbolic space, assuming $a>\frac{1}{4}$ is necessary if there is no assumption on the volume growth of M.
ii. The hyperbolic spaces $\mathbb{H}\left(-b^{2}\right)$ satisfy $\Delta+\frac{1}{4} K \geq 0$ and have volume growth $V(R) \sim C e^{b R}$.
The hypothesis for $a=\frac{1}{4}$ must rule out the surfaces with arbitrary small exponential growth rate.
The hypothesis of subexponential volume growth is sharp.
iii. The surface $\left(\mathbb{D},\left(\frac{2}{1-z^{2}}\right)^{2 \alpha}|d z|^{2}\right)$, with $\alpha=\frac{1}{4 a}$, has the following properties :

- completeness because $\alpha \geq 1$
- $\Delta+a K=\Delta+\frac{1}{4 \alpha} K \geq 0$
- volume growth $V(R) \sim C R^{k_{a}}$, with $k_{a}=2+\frac{4 a}{1-4 a}$

The hypothesis for $a<\frac{1}{4}$ must rule out the surfaces with polynomial volume growth of degree k_{a}.
The hypothesis of k_{a}-subpolynomial volume growth is sharp.

Fix some point $p_{0} \in M$ and consider r the distance function to p_{0}.
General method : plug some test functions $\xi(r)$ in the quadratic form and use the following estimate due to Pogorelov and Colding-Minicozzi

Technical lemma

If $\xi:] x, y\left[\rightarrow \mathbb{R}\right.$ is C^{1}, piecewise C^{2} with $\xi \geq 0, \xi^{\prime} \leq 0$ and $\xi^{\prime \prime} \geq 0$, then

$$
\int_{C(x, y)} K \xi^{2}(r) \leq\left.\xi^{2}(s) G(s)\right|_{x} ^{y}-\left.2 \pi A \xi^{2}(s)\right|_{x} ^{y}+\left.2 \xi(s) \xi^{\prime}(s) L(s)\right|_{x} ^{y}-\int_{C(x, y)}\left(\xi^{2}\right)^{\prime \prime}(r)
$$

Where

- $G(s)=\int_{B(s)} K$ is the total curvature of the ball $B(s)$
- $L(s)=\operatorname{vol}(\partial B(s))$ is the length of the geodesic circle of radius s
- A is an upper bound of the $\chi(B(s)), s \in] x, y[$
- $C(x, y)=\{p \in M \mid x<r(p)<y\}=B(y)-\overline{B(x)}$

Consider the function $\widehat{\chi}(t)=\sup \{\chi(B(s)) \mid s \in] t, \infty)\}$.

- non-increasing, with values in \mathbb{Z}
- discontinuities at the points $0<t_{1}<\cdots<t_{n}<\ldots$
- at the discontinuity t_{n}, a jump $\omega_{n}=\widehat{\chi}\left(t_{n}^{-}\right)-\widehat{\chi}\left(t_{n}^{+}\right) \in \mathbb{N}^{*}$
Call $\bar{N} \in \mathbb{N} \cup\{\infty\}$ the number of discontinuities.

Topological Lemma

Let (M, g) be a complete Riemannian surface and $\chi(M)$ its Euler characteristic (with $\chi(M)=-\infty$ if M does not have finite topology)

$$
1-\sum_{n=1}^{\bar{N}} \omega_{n} \leq \chi(M)
$$

$$
\int_{C(x, y)} K \xi^{2}(r) \leq\left.\xi^{2}(s) G(s)\right|_{x} ^{y}-\left.2 \pi A \xi^{2}(s)\right|_{x} ^{y}+\left.2 \xi(s) \xi^{\prime}(s) L(s)\right|_{x} ^{y}-\int_{C(x, y)}\left(\xi^{2}\right)^{\prime \prime}(r)
$$

For a function $\xi:[0, Q] \rightarrow \mathbb{R}$, apply Colding-Minicozzi inequality on each] $t_{n}, t_{n+1}\left[\right.$ with $A=\widehat{\chi}\left(t_{n}\right)$.

Technical lemma revisited

If $\xi:[0, Q] \rightarrow \mathbb{R}$ is C^{1}, piecewise C^{2}, with $\xi \geq 0, \xi^{\prime} \leq 0, \xi^{\prime \prime} \geq 0$ and $\xi(Q)=0$, then

$$
\int_{B(Q)} K \xi^{2}(r) \leq 2 \pi\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)-\int_{B(Q)}\left(\xi^{2}\right)^{\prime \prime}(r)
$$

Consider a function $\xi:[0, Q] \rightarrow \mathbb{R}$ which is C^{1}, piecewise C^{2} with $\xi \geq 0$, $\xi^{\prime} \leq 0, \xi^{\prime \prime} \geq 0$ and $\xi(Q)=0$. By the technical lemma we have

$$
\int_{B(Q)} K \xi^{2}(r) \leq 2 \pi\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)-\int_{B(Q)}\left(\xi^{2}\right)^{\prime \prime}(r)
$$

The non-negativity of $\Delta+a K$ gives

$$
\begin{aligned}
0 & \leq \int_{B(Q)}\left(\xi^{\prime}\right)^{2}(r)+a K \xi^{2}(r) \\
& \leq 2 \pi a\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)+\int_{B(Q)}(1-2 a)\left(\xi^{\prime}\right)^{2}(r)-2 a\left(\xi \xi^{\prime \prime}\right)(r)
\end{aligned}
$$

In the sequel we give the test functions for the case $a=\frac{1}{4}$.

For $a=\frac{1}{4}$ we have

$$
0 \leq \frac{\pi}{2}\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)+\frac{1}{2} \int_{B(Q)}\left(\xi^{\prime}\right)^{2}(r)-\left(\xi \xi^{\prime \prime}\right)(r)
$$

Choosing $\xi(r)=\mathrm{e}^{-\alpha r}-\mathrm{e}^{-\alpha Q}$ gives

$$
0 \leq \frac{\pi}{2}\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)+\frac{\alpha^{2}}{2} \mathrm{e}^{-\alpha Q} \int_{B(Q)} \mathrm{e}^{-\alpha r}
$$

Because M has sub-exponential volume growth, $\int_{M} \mathrm{e}^{-\alpha r}<\infty$, and letting $Q \rightarrow \infty$ gives

$$
0 \leq \frac{\pi}{2}\left(1-\sum_{1}^{\bar{N}} \omega_{n} \mathrm{e}^{-2 \alpha t_{n}}\right)
$$

with $\alpha \rightarrow 0$, using the topological lemma we get

$$
0 \leq \frac{\pi}{2}\left(1-\sum_{1}^{\bar{N}} \omega_{n}\right) \leq \frac{\pi}{2} \chi(M)
$$

To prove that the surface is parabolic it is sufficient to prove that $V(R) \leq C R^{2}$ for some constant C.

$$
0 \leq \frac{\pi}{2}\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)+\frac{1}{2} \int_{B(Q)}\left(\xi^{\prime}\right)^{2}(r)-\left(\xi \xi^{\prime \prime}\right)(r)
$$

We want to choose ξ such that the integral term is negative and related to the volume of the ball.

Choose

$$
\xi(r)=\left\{\begin{aligned}
\mathrm{e}^{\left(1-\frac{r}{2 R}\right)^{2}} & \text { if } r \in[0, R] \\
\beta\left(\mathrm{e}^{-\alpha r}-\mathrm{e}^{-\alpha Q}\right) & \text { if } r \in[R, Q]
\end{aligned}\right.
$$

with α and β such that ξ is C^{1}.

With this choice of ξ we get

$$
\frac{1}{4 R^{2}} \int_{B(R)} \mathrm{e}^{2\left(1-\frac{r}{2 R}\right)^{2}} \leq \frac{\pi}{2}\left(\xi^{2}(0)-\sum_{1}^{N(Q)} \omega_{n} \xi^{2}\left(t_{n}\right)\right)+\frac{\alpha^{2} \beta^{2}}{2} \mathrm{e}^{-\alpha Q} \int_{C(R, Q)} \mathrm{e}^{-\alpha r}
$$

and with $Q \rightarrow+\infty$

$$
\frac{V(R)}{R^{2}} \leq 2 \pi\left(\xi^{2}(0)-\sum_{1}^{N(R)} \omega_{n} \xi^{2}\left(t_{n}\right)\right) \leq C
$$

The surface has quadratic volume growth and is parabolic. Moreover, if $M \sim \mathbb{C}^{*}$, then, for $R>t_{1}$ we have

$$
\frac{V(R)}{R^{2}} \leq 2 \pi\left(\mathrm{e}^{2}-\mathrm{e}^{2\left(1-\frac{t_{1}}{2 R}\right)^{2}}\right) \sim_{\infty} \frac{C}{R}
$$

The cylinders have linear volume growth.

The flatness of cylinders is a consequence of the following proposition

proposition

If M is a complete cylinder such that

- $\Delta+a K \geq 0$ for some $a>0$
- $\limsup _{R \rightarrow \infty} \frac{V(R)}{R^{2}}=0$
then $K \geq 0$.

Using Cohn-Vossen inequality we get

$$
0 \leq \int_{M} K \leq 2 \pi \chi(M)=0
$$

and $K \equiv 0$

$$
\int_{C(x, y)} K \xi^{2}(r) \leq\left.\xi^{2}(s) G(s)\right|_{x} ^{y}-\left.2 \pi A \xi^{2}(s)\right|_{x} ^{y}+\left.2 \xi(s) \xi^{\prime}(s) L(s)\right|_{x} ^{y}-\int_{C(x, y)}\left(\xi^{2}\right)^{\prime \prime}(r)
$$

To prove the proposition we use the boundary terms with the following test function

$$
\begin{aligned}
0 \leq & \int_{B(Q)}\left(\xi^{\prime}\right)^{2}(r)+a K \xi^{2}(r) \leq \text { Boundary terms }+(1-2 a) \int_{B(Q)}\left(\xi^{\prime}\right)^{2}(r) \\
\leq & 2 \pi a\left(1-(1-\alpha)^{2}\left(\frac{Q-t_{1}}{Q-R}\right)^{2}\right)+2 a(1-\alpha) \frac{R-\alpha Q}{Q-R} \frac{L(R)}{R} \\
& +(1-2 a) \alpha^{2} \frac{V(R)}{R^{2}}+(1-2 a)\left(\frac{1-\alpha}{Q-R}\right)^{2}(V(Q)-V(R))
\end{aligned}
$$

Letting $Q \rightarrow+\infty$ gives

$$
0 \leq 2 \pi a \alpha(2-\alpha)-2 a \alpha(1-\alpha) \frac{L(R)}{R}+(1-2 a) \alpha^{2} \frac{V(R)}{R^{2}}
$$

The functions $L(R)$ and $V(R)$ have the following expansions at 0 :

- $L(R)=2 \pi R\left(1-\frac{K\left(p_{0}\right)}{6} R^{2}+R^{2} \varepsilon_{1}(R)\right)$
- $V(R)=\pi R^{2}\left(1-\frac{K\left(p_{0}\right)}{12} R^{2}+R^{2} \varepsilon_{2}(R)\right)$
where $K\left(p_{0}\right)$ is the curvature at p_{0}. Using these expansions we get

$$
0 \leq \alpha^{2}+\frac{K\left(p_{0}\right) R^{2}}{12} \alpha(8 a-(1+6 a) \alpha)+\alpha R^{2}\left((1-2 a) \alpha \varepsilon_{2}(R)-4 a(1-\alpha) \varepsilon_{1}(R)\right)
$$

dividing by α and letting $\alpha \rightarrow 0$ gives

$$
0 \leq \frac{2 K\left(p_{0}\right)}{3} R^{2}-4 a R^{2} \varepsilon_{1}(R)
$$

which implies that $K\left(p_{0}\right) \geq 0$

Thank you for your attention

