Seminario de Geometría, Universidad de Granada

Granada, 1 Abril 2016

Uniqueness of immersed spheres in three-manifolds. Proof of a conjecture by Alexandrov

Pablo Mira

Joint work with José A. Gálvez, available at arXiv.org

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 - の�?

Objective 1: a very general Hopf-type theorem

Theorem (Hopf, 1951)

Constant mean curvature spheres in \mathbb{R}^3 are round spheres.

Constant mean curvature spheres in \mathbb{R}^3 are round spheres.

- **(**) We substitute \mathbb{R}^3 by an arbitrary three-manifold M.
- **O** CMC by an arbitrary elliptic PDE on each tangent plane.

Sound spheres by existence of candidate examples.

Constant mean curvature spheres in \mathbb{R}^3 are round spheres.

- **(**) We substitute \mathbb{R}^3 by an arbitrary three-manifold M.
- **OKC** by an arbitrary elliptic PDE on each tangent plane.
- Sound spheres by existence of candidate examples.

Theorem (Gálvez, —)

Let A be a class of immersed oriented surfaces in M. Assume:

- **(**) A is modeled by an elliptic PDE on each tangent plane.
- ② There exists a family S ⊂ A (the candidate surfaces) whose tangent planes foliate the Grassmannian $G_2^+(M)$.

Then, any sphere Σ of A is a candidate sphere, i.e. $\Sigma \in S$.

Constant mean curvature spheres in \mathbb{R}^3 are round spheres.

- **(**) We substitute \mathbb{R}^3 by an arbitrary three-manifold M.
- **OKC** by an arbitrary elliptic PDE on each tangent plane.
- Sound spheres by existence of candidate examples.

Theorem (Gálvez, —)

Let A be a class of immersed oriented surfaces in M. Assume:

- **(**) A is modeled by an elliptic PDE on each tangent plane.
- ② There exists a family S ⊂ A (the candidate surfaces) whose tangent planes foliate the Grassmannian $G_2^+(M)$.

Then, any sphere Σ of \mathcal{A} is a candidate sphere, i.e. $\Sigma \in \mathcal{S}$.

Constant mean curvature spheres in \mathbb{R}^3 are round spheres.

- **(**) We substitute \mathbb{R}^3 by an arbitrary three-manifold M.
- **OKC** by an arbitrary elliptic PDE on each tangent plane.
- Sound spheres by existence of candidate examples.

Theorem (Gálvez, —)

Let A be a class of immersed oriented surfaces in M. Assume:

- **(**) A is modeled by an elliptic PDE on each tangent plane.
- ② There exists a family S ⊂ A (the candidate surfaces) whose tangent planes foliate the Grassmannian $G_2^+(M)$.

Then, any sphere Σ of \mathcal{A} is a candidate sphere, i.e. $\Sigma \in \mathcal{S}$.

(2) $\{S + a : a \in \mathbb{R}^3\}$, with $S \subset \mathbb{R}^3$ closed, strictly convex.

(2) $\{S + a : a \in \mathbb{R}^3\}$, with $S \subset \mathbb{R}^3$ closed, strictly convex.

(3) $S \subset \mathbb{R}^3$ strictly convex graph over a bounded $D \subset \mathbb{R}^2$, that converges asymptotically to $\partial D \times \mathbb{R}$.

 $S^* = \Phi(S)$ where Φ is a π -rotation around a horizontal line.

Then $\{S, S^*, \partial D \times \mathbb{R}\}$ and their translations is a candidate family.

(2) $\{S + a : a \in \mathbb{R}^3\}$, with $S \subset \mathbb{R}^3$ closed, strictly convex.

(3) $S \subset \mathbb{R}^3$ strictly convex graph over a bounded $D \subset \mathbb{R}^2$, that converges asymptotically to $\partial D \times \mathbb{R}$.

 $S^* = \Phi(S)$ where Φ is a π -rotation around a horizontal line.

Then $\{S, S^*, \partial D \times \mathbb{R}\}$ and their translations is a candidate family.

(4) Similar constructions when *M* is a homogeneous 3-manifold.

 $M = \text{simply connected homogeneous 3-manifold}, n = \dim(Iso(M)).$

- n = 6: \mathbb{R}^3 , $\mathbb{S}^3(c)$, $\mathbb{H}^3(c)$, or
- n = 4: rotational $\mathbb{E}^3(\kappa, \tau)$ space, or
- n = 3: general Lie group with a left invariant metric.

 $M = \text{simply connected homogeneous 3-manifold}, n = \dim(Iso(M)).$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● のへで

- n = 6: \mathbb{R}^3 , $\mathbb{S}^3(c)$, $\mathbb{H}^3(c)$, or
- n = 4: rotational $\mathbb{E}^3(\kappa, \tau)$ space, or
- n = 3: general Lie group with a left invariant metric.

Theorem (Abresch-Rosenberg, 2004)

CMC spheres in $M = \mathbb{E}^3(\kappa, \tau)$ are spheres of revolution.

 $M = \text{simply connected homogeneous 3-manifold}, n = \dim(Iso(M)).$

- n = 6: \mathbb{R}^3 , $\mathbb{S}^3(c)$, $\mathbb{H}^3(c)$, or
- n = 4: rotational $\mathbb{E}^3(\kappa, \tau)$ space, or
- n = 3: general Lie group with a left invariant metric.

Theorem (Abresch-Rosenberg, 2004)

CMC spheres in $M = \mathbb{E}^3(\kappa, \tau)$ are spheres of revolution.

Using our general theorem, we can extend the Abresch-Rosenberg theorem and prove that for very general elliptic equations

$$\mathcal{W}(H, K, K_{\text{ext}}) = 0, \tag{1}$$

any sphere in $\mathbb{E}^3(\kappa, \tau)$ satisfying (1) is a sphere of revolution.

• Gálvez, —, *Rotational symmetry of immersed spheres in homogeneous three-manifolds*, in preparation (2016).

◆ロト ◆母ト ◆ヨト ◆ヨト → ヨー のへで

Objective 2: Alexandrov's conjecture

A surface Σ in \mathbb{R}^3 satisfies a *prescribed curvature equation* if

$$W(\kappa_1,\kappa_2,\eta)=0$$

holds on Σ , where:

- η is the unit normal of Σ ,
- $\kappa_1 \geq \kappa_2$ are the principal curvatures,
- W is C^1 for k_1, k_2 .

The ellipticity condition of the equation is given by

$$\frac{\partial W}{\partial k_1}\frac{\partial W}{\partial k_2} > 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Prescribed curvature equations: classical examples

 $W(\kappa_1,\kappa_2,\eta)=0$

Prescribed curvature equations: classical examples

 $W(\kappa_1,\kappa_2,\eta)=0$

- **1.** Weingarten surfaces: $W(\kappa_1, \kappa_2) = 0$.
- 2. Christoffel problem (1844): $\frac{1}{\kappa_1} + \frac{1}{\kappa_2} = f(\eta)$.
- 3. Minkowski problem (1903): $\kappa_1 \kappa_2 = f(\eta)$.
- 4. Prescribed mean curvature (1950s): $\kappa_1 + \kappa_2 = f(\eta)$.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● のへで

Prescribed curvature equations: classical examples

 $W(\kappa_1,\kappa_2,\eta)=0$

- **1.** Weingarten surfaces: $W(\kappa_1, \kappa_2) = 0$.
- 2. Christoffel problem (1844): $\frac{1}{\kappa_1} + \frac{1}{\kappa_2} = f(\eta)$.
- 3. Minkowski problem (1903): $\kappa_1 \kappa_2 = f(\eta)$.
- 4. Prescribed mean curvature (1950s): $\kappa_1 + \kappa_2 = f(\eta)$.

The classification of spheres of prescribed curvature has been deeply studied:

(Alexandrov, Pogorelov, Minkowski, Nirenberg, Hopf, Hartman, Wintner, Lewy, Chern...)

Theorem (Gálvez, —)

Let $S \subset \mathbb{R}^3$ be closed, strictly convex, satisfying the prescribed curvature equation

$$W(\kappa_1,\kappa_2,\eta)=0,$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

where W satisfies the ellipticity condition $W_{k_1}W_{k_2} > 0$ on

$$\Omega := \{ (\lambda \kappa_1^0(\boldsymbol{p}), \lambda \kappa_2^0(\boldsymbol{p}), \eta^0(\boldsymbol{p}) : \boldsymbol{p} \in \boldsymbol{S}, \lambda \in \mathbb{R} \}.$$

Then any other sphere Σ immersed in \mathbb{R}^3 that satisfies (2) is a translation of S.

Theorem (Gálvez, —)

Let $S \subset \mathbb{R}^3$ be closed, strictly convex, satisfying the prescribed curvature equation

$$W(\kappa_1,\kappa_2,\eta)=0,$$
 (2)

where W satisfies the ellipticity condition $W_{k_1}W_{k_2} > 0$ on

$$\Omega := \{ (\lambda \kappa_1^0(\boldsymbol{p}), \lambda \kappa_2^0(\boldsymbol{p}), \eta^0(\boldsymbol{p}) : \boldsymbol{p} \in \boldsymbol{S}, \lambda \in \mathbb{R} \}.$$

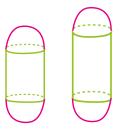
Then any other sphere Σ immersed in \mathbb{R}^3 that satisfies (2) is a translation of S.

(The theorem is known if Σ is also strictly convex).

The Alexandrov conjecture (1956)

Remark: The theorem is not true if S does not have positive curvature.

These two (non-strictly) convex spheres in \mathbb{R}^3 have the same principal curvatures at points with coinciding unit normals.



(ロト (昼) (目) (目) (目) つんの

Corollary

Let Σ be an immersed sphere in \mathbb{R}^3 . Assume that around each umbilical point of Σ , the principal curvatures satisfy a C^1 relation $W(\kappa_1, \kappa_2) = 0$ with $W_{\kappa_1}W_{\kappa_2} > 0$.

《曰》 《聞》 《臣》 《臣》 三臣 …

Then Σ is a round sphere.

Corollary

Let Σ be an immersed sphere in \mathbb{R}^3 . Assume that around each umbilical point of Σ , the principal curvatures satisfy a C^1 relation $W(\kappa_1, \kappa_2) = 0$ with $W_{\kappa_1}W_{\kappa_2} > 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Then Σ is a round sphere.

() Known if Σ is embedded (Alexandrov, 1956).

Corollary

Let Σ be an immersed sphere in \mathbb{R}^3 . Assume that around each umbilical point of Σ , the principal curvatures satisfy a C^1 relation $W(\kappa_1, \kappa_2) = 0$ with $W_{\kappa_1}W_{\kappa_2} > 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Then Σ is a round sphere.

- **(**) Known if Σ is embedded (Alexandrov, 1956).
- Known if Σ is real analytic (Voss, 1959).

Corollary

Let Σ be an immersed sphere in \mathbb{R}^3 . Assume that around each umbilical point of Σ , the principal curvatures satisfy a C^1 relation $W(\kappa_1, \kappa_2) = 0$ with $W_{\kappa_1}W_{\kappa_2} > 0$.

Then Σ is a round sphere.

- Known if Σ is embedded (Alexandrov, 1956).
- **②** Known if Σ is real analytic (Voss, 1959).
- Solution Schwarz Martinez, $W(\kappa_1, \kappa_2) = W(\kappa_2, \kappa_1)$ (Hartman-Wintner, 1954).

Corollary

Let Σ be an immersed sphere in \mathbb{R}^3 . Assume that around each umbilical point of Σ , the principal curvatures satisfy a C^1 relation $W(\kappa_1, \kappa_2) = 0$ with $W_{\kappa_1}W_{\kappa_2} > 0$.

Then Σ is a round sphere.

- Known if Σ is embedded (Alexandrov, 1956).
- **②** Known if Σ is real analytic (Voss, 1959).
- Solution Schwarz Martinez, $W(\kappa_1, \kappa_2) = W(\kappa_2, \kappa_1)$ (Hartman-Wintner, 1954).

(Cases like $\kappa_1 + 2\kappa_2 = 3$ were not known beforehand).

A general Hopf uniqueness theorem

Surfaces modeled by elliptic PDEs

A field of elliptic PDEs in M assigns to each $(p, \Pi) \in G_2^+(M)$ a second order PDE

$$\Phi_{(p,\Pi)}(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$$

where $\Phi_{(p,\Pi)} = \Phi(x, y, z, p, q, r, s, t) \in C^{1,\alpha}(\mathcal{U})$ satisfies the ellipticity conditions on a convex $\mathcal{U} \subset \mathbb{R}^8$:

$$\Phi_r > 0, \qquad 4\Phi_r \Phi_t - \Phi_s^2 > 0.$$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● のへで

A field of elliptic PDEs in M assigns to each $(p, \Pi) \in G_2^+(M)$ a second order PDE

$$\Phi_{(\boldsymbol{\rho},\boldsymbol{\Pi})}(x,y,u,u_x,u_y,u_{xx},u_{xy},u_{yy})=0$$

where $\Phi_{(p,\Pi)} = \Phi(x, y, z, p, q, r, s, t) \in C^{1,\alpha}(\mathcal{U})$ satisfies the ellipticity conditions on a convex $\mathcal{U} \subset \mathbb{R}^8$:

$$\Phi_r > 0, \qquad 4\Phi_r \Phi_t - \Phi_s^2 > 0.$$

Definition

A class of surfaces A in M is modeled by an elliptic PDE if its elements are the solutions of a field of elliptic PDEs in M.

The general uniqueness theorem

Theorem (Gálvez, —)

Let A be a class of oriented surfaces in M. Assume:

- Output: There exists a family S ⊂ A whose tangent planes foliate G₂⁺(M) (the candidate surfaces).

《日》 《聞》 《理》 《理》 三世

Then every sphere of the class A is a candidate sphere.

The general uniqueness theorem

Theorem (Gálvez, —)

Let A be a class of oriented surfaces in M. Assume:

- Output: There exists a family S ⊂ A whose tangent planes foliate G₂⁺(M) (the candidate surfaces).

Then every sphere of the class A is a candidate sphere.

Sketch of Proof: Let $\Sigma \in A$. We define the smooth tensor

$$\sigma := II - \Lambda : T\Sigma \times T\Sigma \to C^{1}(\Sigma),$$

where $\Lambda(p)$ is the 2nd fundamental form of $S(p, T_p \Sigma)$ at $p \in \Sigma$.

• $S = S(p, T_p \Sigma) \in S$ is the tangent candidate of Σ at p.

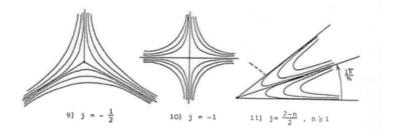
Properties of $\sigma = II - \Lambda$

- () σ vanishes identically on every candidate surface.

Properties of $\sigma = II - \Lambda$

() σ vanishes identically on every candidate surface.

We want to prove that σ is a Lorentzian metric on Σ whose null directions only have isolated zeros of negative index.



Properties of $\sigma = II - \Lambda$

() σ vanishes identically on every candidate surface.

[●] $\sigma(q) = 0$ if and only if Σ has contact of order $k \ge 2$ with its tangent candidate at $q \in Σ$.

We want to prove that σ is a Lorentzian metric on Σ whose null directions only have isolated zeros of negative index.

We write

$$\sigma = II - \Lambda = (II - II_S) + (II_S - \Lambda),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆

where S is the tangent candidate to Σ at some fixed $q\in\Sigma$

We are going to study each term separately.

We can parametrize locally Σ , S in a neighborhood of q as immersions

$$\psi(u, v) = (u, v, h(u, v)), \qquad \psi^0(u, v) = (u, v, h^0(u, v)).$$

Let e, f, g and e^0, f^0, g^0 be the coefficients of II and II_S .

A computation shows that

$$e-e^{0}=\Phi_{1}^{e}(h-h^{0})+\Phi_{2}^{e}(h_{u}-h_{u}^{0})+\Phi_{3}^{e}(h_{v}-h_{v}^{0})+\Phi_{4}^{e}(h_{uu}-h_{uu}^{0}),$$

where the functions $\Phi_i^e(u, v)$ are smooth a neighborhood of (0, 0).

Similar formulas hold for the other coefficients f, g of the second fundamental form.

Expressions for $II - II_S$ and $II_S - \Lambda$

As both h(u, v), $h^0(u, v)$ are solutions of the same $C^{1,\alpha}$ elliptic PDE, by Bers' theorem, we have $h = h^0$ or

$$h(u,v)-h^0(u,v)=p(u,v)+\cdots,$$

where p(u, v) is a homogeneous harmonic polynomial of degree $k \ge 2$. Thus

$$II - II_{S} = \begin{pmatrix} p_{uu} & p_{uv} \\ p_{uv} & p_{vv} \end{pmatrix} + o(\sqrt{u^{2} + v^{2}})^{k-2}.$$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Expressions for $II - II_S$ and $II_S - \Lambda$

As both h(u, v), $h^0(u, v)$ are solutions of the same $C^{1,\alpha}$ elliptic PDE, by Bers' theorem, we have $h = h^0$ or

$$h(u,v)-h^0(u,v)=p(u,v)+\cdots,$$

where p(u, v) is a homogeneous harmonic polynomial of degree $k \ge 2$. Thus

$$II - II_{S} = \begin{pmatrix} p_{uu} & p_{uv} \\ p_{uv} & p_{vv} \end{pmatrix} + o(\sqrt{u^{2} + v^{2}})^{k-2}.$$

For the blue part in

$$\sigma = II - \Lambda = (II - II_S) + (II_S - \Lambda)$$

we can prove similarly that

$$II_S - \Lambda = o(\sqrt{u^2 + v^2})^{k-2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Completion of the proof

• If $\sigma \not\equiv$ 0, we have proved that

$$\sigma = \begin{pmatrix} p_{uu} & p_{uv} \\ p_{uv} & p_{vv} \end{pmatrix} + o(\sqrt{u^2 + v^2})^{k-2}$$

where p(u, v) is a harmonic homogeneous polynomial of degree $k \ge 2$.

Completion of the proof

• If $\sigma \not\equiv$ 0, we have proved that

$$\sigma = \begin{pmatrix} p_{uu} & p_{uv} \\ p_{uv} & p_{vv} \end{pmatrix} + o(\sqrt{u^2 + v^2})^{k-2}$$

where p(u, v) is a harmonic homogeneous polynomial of degree $k \ge 2$.

 If σ ≠ 0, σ is a Lorentzian metric with isolated singularities on Σ - {q : σ(q) = 0}, whose null lines coincide with the asymptotic directions in ℝ³ of the graph of p(u, v).

Completion of the proof

• If $\sigma \not\equiv$ 0, we have proved that

$$\sigma = \begin{pmatrix} p_{uu} & p_{uv} \\ p_{uv} & p_{vv} \end{pmatrix} + o(\sqrt{u^2 + v^2})^{k-2}$$

where p(u, v) is a harmonic homogeneous polynomial of degree $k \ge 2$.

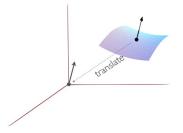
- If σ ≠ 0, σ is a Lorentzian metric with isolated singularities on Σ - {q : σ(q) = 0}, whose null lines coincide with the asymptotic directions in ℝ³ of the graph of p(u, v).
- By harmonicity of p(u, v), the index of these line fields is negative at every singularity. (Impossible if Σ is diffeomorphic to S², by Poincaré-Hopf). Thus, Σ is a candidate sphere S (since σ ≡ 0).

The Gauss map in homogeneous manifolds

Any simply connected homogeneous three-manifold other than $\mathbb{S}^2(\kappa) \times \mathbb{R}$ is a Lie group M with a left invariant metric.

The Gauss map η of a surface in such an M is obtained by left-translating its unit normal to the Lie algebra at e.

It takes its values in $\mathbb{S}^2 \subset T_e M$.



M = three-dimensional Lie group with a left-invariant metric.

Corollary

Let Σ_1, Σ_2 be immersed spheres in M such that

 $\mathcal{W}(\kappa_1,\kappa_2,\eta)=0$

where W is $C^{1,\alpha}$, symmetric in κ_1, κ_2 , and satisfies the ellipticity condition

 $\frac{\partial \mathcal{W}}{\partial k_1} \frac{\partial \mathcal{W}}{\partial k_2} > 0.$

Then, if the Gauss map of Σ_1 is a diffeomorphism, Σ_2 is a left translation of Σ_1 .

(Uniqueness of Christoffel-Minkowski problems in Lie groups).

Theorem (Guan-Guan, 2002)

Let
$$\mathcal{H} \in C^2(\mathbb{S}^2)$$
 satisfy $\mathcal{H}(-x) = \mathcal{H}(x) > 0$ for all $x \in \mathbb{S}^2$.

Then, there exists a closed strictly convex sphere $S_{\mathcal{H}} \subset \mathbb{R}^3$ of prescribed mean curvature \mathcal{H} , i.e.

$$H_{\Sigma}=\mathcal{H}(\eta),$$

where $\eta: \Sigma \to \mathbb{S}^2$ is the unit normal of Σ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Theorem (Guan-Guan, 2002)

Let
$$\mathcal{H}\in C^2(\mathbb{S}^2)$$
 satisfy $\mathcal{H}(-x)=\mathcal{H}(x)>0$ for all $x\in\mathbb{S}^2.$

Then, there exists a closed strictly convex sphere $S_{\mathcal{H}} \subset \mathbb{R}^3$ of prescribed mean curvature \mathcal{H} , i.e.

$$H_{\Sigma}=\mathcal{H}(\eta),$$

where $\eta: \Sigma \to \mathbb{S}^2$ is the unit normal of Σ .

Theorem (Gálvez, —)

Let Σ be an immersed sphere in \mathbb{R}^3 with prescribed mean curvature $\mathcal{H} \in C^2(\mathbb{S}^2)$, where

$$\mathcal{H}(-x) = \mathcal{H}(x) > 0 \qquad \forall x \in \mathbb{S}^2.$$

Then Σ is the Guan-Guan sphere $S_{\mathcal{H}}$.

Proof of Alexandrov's conjecture

◆□▶ ◆□▶ ◆□▶ ◆□▶ □目 - のへで

Theorem (Gálvez, —)

Let $S \subset \mathbb{R}^3$ be closed, strictly convex, satisfying the prescribed curvature equation

$$W(\kappa_1,\kappa_2,\eta)=0, \tag{3}$$

《曰》 《聞》 《臣》 《臣》 三臣

where W satisfies the ellipticity condition $W_{k_1}W_{k_2} > 0$ on

$$\Omega := \{ (\lambda \kappa_1^0(p), \lambda \kappa_2^0(p), \eta^0(p) : p \in S, \lambda \in \mathbb{R} \}.$$

Then any other sphere Σ immersed in \mathbb{R}^3 that satisfies (3) is a translation of S.

Theorem (Gálvez, —)

Let $S \subset \mathbb{R}^3$ be closed, strictly convex, satisfying the prescribed curvature equation

$$W(\kappa_1,\kappa_2,\eta)=0, \tag{3}$$

where W satisfies the ellipticity condition $W_{k_1}W_{k_2} > 0$ on

$$\Omega := \{ (\lambda \kappa_1^0(p), \lambda \kappa_2^0(p), \eta^0(p) : p \in S, \lambda \in \mathbb{R} \}.$$

Then any other sphere Σ immersed in \mathbb{R}^3 that satisfies (3) is a translation of S.

- **Difficulty 1:** the ellipticity condition is not global.
- **Difficulty 2:** Equation (3) is not $C^{1,\alpha}$ (problem at umbilics).

Step 1: the Legendre transform

The Legendre transform of $\psi = (\psi_1, \psi_2, \psi_3)$ is:

$$L_{\psi} = \left(-\frac{\eta_1}{\eta_3}, -\frac{\eta_2}{\eta_3}, -\psi_1\frac{\eta_1}{\eta_3} - \psi_2\frac{\eta_2}{\eta_3} - \psi_3\right).$$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

If ψ is a graph of positive curvature, so is L_{ψ} : (x, y, h(x, y)).

Step 1: the Legendre transform

The Legendre transform of $\psi = (\psi_1, \psi_2, \psi_3)$ is:

$$L_{\psi} = \left(-\frac{\eta_1}{\eta_3}, -\frac{\eta_2}{\eta_3}, -\psi_1\frac{\eta_1}{\eta_3} - \psi_2\frac{\eta_2}{\eta_3} - \psi_3\right).$$

If ψ is a graph of positive curvature, so is L_{ψ} : (x, y, h(x, y)). With respect to the parameters (x, y), we have for $\psi = \psi(x, y)$:

The unit normal is

$$\eta = \frac{(-x, -y, 1)}{\sqrt{1 + x^2 + y^2}}.$$

• The second fundamental form is $II = \frac{1}{\sqrt{1+x^2+y^2}} \nabla^2 h.$

• The principal curvatures are $\kappa_i = \Phi^i(x, y, h_{xx}, h_{xy}, h_{yy})$.

Step 2: a discontinuous linear elliptic PDE

Take
$$p \in \Sigma$$
 with $\sigma(p) = 0$ and $\sigma \not\equiv 0$.

(x, y, h(x, y)) and $(x, y, h^0(x, y)) =$ Legendre transforms of Σ, S .

Step 2: a discontinuous linear elliptic PDE

Take
$$p \in \Sigma$$
 with $\sigma(p) = 0$ and $\sigma \not\equiv 0$.
 $(x, y, h(x, y))$ and $(x, y, h^0(x, y)) =$ Legendre transforms of Σ, S .
That both Σ, S satisfy $W(\kappa_1, \kappa_2, \eta) = 0$ is rewritten as
 $F(x, y, h_{xx}, h_{xy}, h_{yy}) = F(x, y, h^0_{xx}, h^0_{yy}, h^0_{yy}),$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

uniformly elliptic on compact sets with $0 < c \le W_{k_i} \le C$.

Step 2: a discontinuous linear elliptic PDE

Take
$$p \in \Sigma$$
 with $\sigma(p) = 0$ and $\sigma \not\equiv 0$.

(x, y, h(x, y)) and $(x, y, h^0(x, y)) =$ Legendre transforms of Σ, S .

That both Σ , S satisfy $W(\kappa_1, \kappa_2, \eta) = 0$ is rewritten as

$$F(x, y, h_{xx}, h_{xy}, h_{yy}) = F(x, y, h_{xx}^{0}, h_{xy}^{0}, h_{yy}^{0}),$$

uniformly elliptic on compact sets with $0 < c \le W_{k_i} \le C$.

Lemma

The function $\varrho := h - h^0$ satisfies around the origin a uniformly elliptic linear homogeneous PDE

$$a_{11}\varrho_{xx}+2a_{12}\varrho_{xy}+a_{22}\varrho_{yy}=0,$$

where $a_{ij} = a_{ij}(x, y)$ are maybe not continuous.

Theorem (Bers-Nirenberg)

Let u(x, y) be a non-linear solution on \mathbb{D} to

$$L[u] \equiv a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = 0,$$

where L[u] is uniformly elliptic (maybe not continuous). Then

$$u_x - iu_y = F(\varphi(x, y)),$$

<ロト <部ト <きト <きト = 3

where

• F is a holomorphic map.

2 φ is a C^{α} homeomorphism, whose inverse is also C^{α} .

Theorem (Bers-Nirenberg)

Let u(x, y) be a non-linear solution on \mathbb{D} to

$$L[u] \equiv a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = 0,$$

where L[u] is uniformly elliptic (maybe not continuous). Then

$$u_x - iu_y = F(\varphi(x, y)),$$

where

• F is a holomorphic map.

2 φ is a C^{α} homeomorphism, whose inverse is also C^{α} .

Consequence 1: The zeros of u_x , u_y are of finite order.

Consequence 2: u_x , u_y have no interior extrema.

Define again $\sigma := II - \Lambda$. Note that Λ is a Riemannian metric on Σ .

Define again $\sigma := II - \Lambda$. Note that Λ is a Riemannian metric on Σ . Let $p \in \Sigma$ where $\sigma(p) = 0$ but $\sigma \neq 0$ around p. Then:

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0.$$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Define again $\sigma := II - \Lambda$. Note that Λ is a Riemannian metric on Σ . Let $p \in \Sigma$ where $\sigma(p) = 0$ but $\sigma \not\equiv 0$ around p. Then:

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0.$$

By Bers-Nirenberg, $\varrho(x, y) = w(x, y) + o(\sqrt{x^2 + y^2})^k$ for $k \ge 3$.

Define again $\sigma := II - \Lambda$. Note that Λ is a Riemannian metric on Σ . Let $p \in \Sigma$ where $\sigma(p) = 0$ but $\sigma \not\equiv 0$ around p. Then:

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0.$$

By Bers-Nirenberg, $\rho(x, y) = w(x, y) + o(\sqrt{x^2 + y^2})^k$ for $k \ge 3$. By uniform ellipticity of $L[\rho] = 0$, we have

$$w_{xx}w_{yy} - w_{xy}^2 \leq -\varepsilon^2(w_{xx} + w_{yy})^2, \qquad \varepsilon \neq 0.$$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Define again $\sigma := II - \Lambda$. Note that Λ is a Riemannian metric on Σ . Let $p \in \Sigma$ where $\sigma(p) = 0$ but $\sigma \not\equiv 0$ around p. Then:

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0.$$

By Bers-Nirenberg, $\rho(x, y) = w(x, y) + o(\sqrt{x^2 + y^2})^k$ for $k \ge 3$. By uniform ellipticity of $L[\rho] = 0$, we have

$$w_{xx}w_{yy} - w_{xy}^2 \leq -\varepsilon^2(w_{xx} + w_{yy})^2, \qquad \varepsilon \neq 0.$$

From here, we have

$$w(x,y) = w_0(x,y) \prod_{j=1}^r (\alpha_j x + \beta_j y)^{m_j}, \qquad m_j = 1 \quad \forall j$$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● のへで

Define again $\sigma := II - \Lambda$. Note that Λ is a Riemannian metric on Σ . Let $p \in \Sigma$ where $\sigma(p) = 0$ but $\sigma \not\equiv 0$ around p. Then:

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0.$$

By Bers-Nirenberg, $\varrho(x, y) = w(x, y) + o(\sqrt{x^2 + y^2})^k$ for $k \ge 3$. By uniform ellipticity of $L[\varrho] = 0$, we have

$$w_{xx}w_{yy} - w_{xy}^2 \leq -\varepsilon^2(w_{xx} + w_{yy})^2, \qquad \varepsilon \neq 0.$$

From here, we have

$$w(x,y) = w_0(x,y) \prod_{j=1}^r (\alpha_j x + \beta_j y)^{m_j}, \qquad m_j = 1 \quad \forall j$$

Thus $w_{xx}w_{yy} - w_{xy}^2 < 0$ on $\mathbb{R}^2 \setminus \{(0,0)\}$.

Thus, $\rho_{xx}\rho_{yy} - \rho_{xy}^2 < 0$ on $D^*(0,\delta)$, i.e.

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0$$

is a Lorentzian metric with an isolated singularity at p.

Thus, $\rho_{xx}\rho_{yy} - \rho_{xy}^2 < 0$ on $D^*(0,\delta)$, i.e.

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0$$

is a Lorentzian metric with an isolated singularity at p.

Lemma

The index of the null lines of σ at the origin is ≤ 0 if and only if the index of $\nabla \varrho_x := (\varrho_{xx}, \varrho_{xy})$ is ≤ 0 .

◆ロト ◆昼下 ◆臣下 ◆臣下 ● ● ●

Thus, $\rho_{xx}\rho_{yy} - \rho_{xy}^2 < 0$ on $D^*(0,\delta)$, i.e.

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0$$

is a Lorentzian metric with an isolated singularity at p.

Lemma

The index of the null lines of σ at the origin is ≤ 0 if and only if the index of $\nabla \varrho_x := (\varrho_{xx}, \varrho_{xy})$ is ≤ 0 .

◆ロト ◆昼下 ◆臣下 ◆臣下 ○日下

Lemma

The index of $\nabla \varrho_x$ is ≤ 0 .

Thus, $\rho_{xx}\rho_{yy} - \rho_{xy}^2 < 0$ on $D^*(0,\delta)$, i.e.

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0$$

is a Lorentzian metric with an isolated singularity at p.

Lemma

The index of the null lines of σ at the origin is ≤ 0 if and only if the index of $\nabla \varrho_x := (\varrho_{xx}, \varrho_{xy})$ is ≤ 0 .

Lemma

The index of $\nabla \varrho_x$ is ≤ 0 .

Proof.

By Bers-Nirenberg, ρ_x has no local extrema. So, the origin is a saddle point of $\rho_x \Rightarrow \operatorname{Index}(\nabla \rho_x) \leq 0$.

Thus, $\rho_{xx}\rho_{yy} - \rho_{xy}^2 < 0$ on $D^*(0,\delta)$, i.e.

$$\sigma = \frac{1}{\sqrt{1 + x^2 + y^2}} \begin{pmatrix} \varrho_{xx} & \varrho_{xy} \\ \varrho_{xy} & \varrho_{yy} \end{pmatrix}, \qquad \varrho := h - h^0$$

is a Lorentzian metric with an isolated singularity at p.

Lemma

The index of the null lines of σ at the origin is ≤ 0 if and only if the index of $\nabla \varrho_x := (\varrho_{xx}, \varrho_{xy})$ is ≤ 0 .

Lemma

The index of $\nabla \varrho_x$ is ≤ 0 .

The null lines of σ have isolated singularities of index ≤ 0 .

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Let $T : \mathfrak{X}(\Sigma) \to \mathfrak{X}(\Sigma)$ be given by

 $\Lambda(T(X), Y) = \sigma(X, Y).$

The eigenspaces $\mathcal{L}_1, \mathcal{L}_2$ of \mathcal{T} define on $\Sigma - \{\sigma = 0\}$ two smooth line fields with isolated singularities at the points $\sigma = 0$.

Let $T : \mathfrak{X}(\Sigma) \to \mathfrak{X}(\Sigma)$ be given by

 $\Lambda(T(X), Y) = \sigma(X, Y).$

The eigenspaces $\mathcal{L}_1, \mathcal{L}_2$ of \mathcal{T} define on $\Sigma - \{\sigma = 0\}$ two smooth line fields with isolated singularities at the points $\sigma = 0$.

Lemma

If σ is Lorentzian at a point, the lines $\mathcal{L}_1, \mathcal{L}_2$ bisect the null directions of σ (w.r.t. the Riemannian metric Λ).

Let $T : \mathfrak{X}(\Sigma) \to \mathfrak{X}(\Sigma)$ be given by

 $\Lambda(T(X), Y) = \sigma(X, Y).$

The eigenspaces $\mathcal{L}_1, \mathcal{L}_2$ of \mathcal{T} define on $\Sigma - \{\sigma = 0\}$ two smooth line fields with isolated singularities at the points $\sigma = 0$.

Lemma

If σ is Lorentzian at a point, the lines $\mathcal{L}_1, \mathcal{L}_2$ bisect the null directions of σ (w.r.t. the Riemannian metric Λ).

 \implies the index of \mathcal{L}_i at the isolated zeros of σ is **non-positive** (since the index of the null directions of σ is non-positive).

(Impossible if Σ diffeomorphic to \mathbb{S}^2) END.

Two related open problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ □目 - のへで

Two related open problems

(1) Consider a warped product 3-space $\mathbb{Q}^2(c) \times_f \mathbb{R}$ with metric

$$\langle,\rangle = f(t)\langle,\rangle_{\mathbb{Q}^2(c)} + dt^2, \quad f > 0.$$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● のへで

Problem

Are CMC spheres in $\mathbb{Q}^2(c) \times_f \mathbb{R}$ spheres of revolution?

(Proved by Abresch-Rosenberg if f(t) is constant).

Two related open problems

(1) Consider a warped product 3-space $\mathbb{Q}^2(c) \times_f \mathbb{R}$ with metric

$$\langle,\rangle = f(t)\langle,\rangle_{\mathbb{Q}^2(c)} + dt^2, \quad f > 0.$$

Problem

Are CMC spheres in $\mathbb{Q}^2(c) \times_f \mathbb{R}$ spheres of revolution?

(Proved by Abresch-Rosenberg if f(t) is constant).

(2) A self-similar shrinker of the mean curvature flow is a surface $x : \Sigma \to \mathbb{R}^3$ satisfying $H_{\Sigma} = \frac{1}{2} \langle x, \eta \rangle$.

Conjecture

Self-similar shrinkers diffeomorphic to \mathbb{S}^2 are spheres of revolution.

(Proved by Brendle in the embedded case).