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Objective 1: a very general Hopf-type theorem

Theorem (Hopf, 1951)

Constant mean curvature spheres in R3 are round spheres.

1 We substitute R3 by an arbitrary three-manifold M.
2 CMC by an arbitrary elliptic PDE on each tangent plane.
3 Round spheres by existence of candidate examples.

Theorem (Gálvez, —)

Let A be a class of immersed oriented surfaces in M. Assume:

1 A is modeled by an elliptic PDE on each tangent plane.
2 There exists a family S ⊂ A (the candidate surfaces) whose

tangent planes foliate the Grassmannian G+
2 (M).

Then, any sphere Σ of A is a candidate sphere, i.e. Σ ∈ S.
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Examples of candidate families

(1) Planes in R3, horospheres in H3, round spheres in Q3(c).

(2) {S + a : a ∈ R3}, with S ⊂ R3 closed, strictly convex.

(3) S ⊂ R3 strictly convex graph over a bounded D ⊂ R2, that
converges asymptotically to ∂D × R.

S∗ = Φ(S) where Φ is a π-rotation around a horizontal line.

Then {S , S∗, ∂D × R} and their translations is a candidate family.

(4) Similar constructions when M is a homogeneous 3-manifold.
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Rotational symmetry of immersed spheres

M = simply connected homogeneous 3-manifold, n = dim(Iso(M)).

n = 6: R3, S3(c), H3(c), or
n = 4: rotational E3(κ, τ) space, or
n = 3: general Lie group with a left invariant metric.

Theorem (Abresch-Rosenberg, 2004)

CMC spheres in M = E3(κ, τ) are spheres of revolution.

Using our general theorem, we can extend the Abresch-Rosenberg
theorem and prove that for very general elliptic equations

W(H,K ,Kext) = 0, (1)

any sphere in E3(κ, τ) satisfying (1) is a sphere of revolution.

Gálvez, — , Rotational symmetry of immersed spheres in
homogeneous three-manifolds, in preparation (2016).
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Objective 2: Alexandrov’s conjecture

A surface Σ in R3 satisfies a prescribed curvature equation if

W (κ1, κ2, η) = 0

holds on Σ, where:

η is the unit normal of Σ,
κ1 ≥ κ2 are the principal curvatures,
W is C 1 for k1, k2.

The ellipticity condition of the equation is given by

∂W
∂k1

∂W
∂k2

> 0.



Prescribed curvature equations: classical examples

W (κ1, κ2, η) = 0

1. Weingarten surfaces: W (κ1, κ2) = 0.

2. Christoffel problem (1844): 1
κ1

+ 1
κ2

= f (η).

3. Minkowski problem (1903): κ1κ2 = f (η).

4. Prescribed mean curvature (1950s): κ1 + κ2 = f (η).

The classification of spheres of prescribed curvature has been
deeply studied:

(Alexandrov, Pogorelov, Minkowski, Nirenberg, Hopf, Hartman,
Wintner, Lewy, Chern...)
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The Alexandrov conjecture (1956)

Theorem (Gálvez, —)

Let S ⊂ R3 be closed, strictly convex, satisfying the prescribed
curvature equation

W (κ1, κ2, η) = 0, (2)

where W satisfies the ellipticity condition Wk1Wk2 > 0 on

Ω := {(λκ0
1(p), λκ0

2(p), η0(p) : p ∈ S , λ ∈ R}.

Then any other sphere Σ immersed in R3 that satisfies (2) is a
translation of S.

(The theorem is known if Σ is also strictly convex).
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The Alexandrov conjecture (1956)

Remark: The theorem is not true if S does not have positive
curvature.

These two (non-strictly) convex spheres in R3 have the same
principal curvatures at points with coinciding unit normals.



The Alexandrov conjecture (1956)

Our proof of Alexandrov’s conjecture settles another classical
problem: the classification of elliptic Weingarten spheres in R3:
(Hopf, Chern, Alexandrov, Pogorelov, Hartman-Wintner, ...).

Corollary

Let Σ be an immersed sphere in R3. Assume that around each
umbilical point of Σ, the principal curvatures satisfy a C 1 relation
W (κ1, κ2) = 0 with Wκ1Wκ2 > 0.

Then Σ is a round sphere.

1 Known if Σ is embedded (Alexandrov, 1956).
2 Known if Σ is real analytic (Voss, 1959).
3 Known if W (κ1, κ2) = W (κ2, κ1) (Hartman-Wintner, 1954).

(Cases like κ1 + 2κ2 = 3 were not known beforehand).
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A general Hopf uniqueness theorem



Surfaces modeled by elliptic PDEs

A field of elliptic PDEs in M assigns to each (p,Π) ∈ G+
2 (M) a

second order PDE

Φ(p,Π)(x , y , u, ux , uy , uxx , uxy , uyy ) = 0

where Φ(p,Π) = Φ(x , y , z , p, q, r , s, t) ∈ C 1,α(U) satisfies the
ellipticity conditions on a convex U ⊂ R8:

Φr > 0, 4Φr Φt − Φ2
s > 0.

Definition
A class of surfaces A in M is modeled by an elliptic PDE if its
elements are the solutions of a field of elliptic PDEs in M.
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The general uniqueness theorem

Theorem (Gálvez, —)

Let A be a class of oriented surfaces in M. Assume:

1 A is modeled by an elliptic PDE.
2 There exists a family S ⊂ A whose tangent planes foliate

G+
2 (M) (the candidate surfaces).

Then every sphere of the class A is a candidate sphere.

Sketch of Proof: Let Σ ∈ A. We define the smooth tensor

σ := II − Λ : TΣ× TΣ→ C 1(Σ),

where Λ(p) is the 2nd fundamental form of S(p,TpΣ) at p ∈ Σ.

S = S(p,TpΣ) ∈ S is the tangent candidate of Σ at p.
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Properties of σ = II − Λ

1 σ vanishes identically on every candidate surface.
2 σ(q) = 0 if and only if Σ has contact of order k ≥ 2 with its

tangent candidate at q ∈ Σ.

We want to prove that σ is a Lorentzian metric on Σ whose null
directions only have isolated zeros of negative index.



Properties of σ = II − Λ

1 σ vanishes identically on every candidate surface.
2 σ(q) = 0 if and only if Σ has contact of order k ≥ 2 with its

tangent candidate at q ∈ Σ.

We want to prove that σ is a Lorentzian metric on Σ whose null
directions only have isolated zeros of negative index.



Properties of σ = II − Λ

1 σ vanishes identically on every candidate surface.
2 σ(q) = 0 if and only if Σ has contact of order k ≥ 2 with its

tangent candidate at q ∈ Σ.

We want to prove that σ is a Lorentzian metric on Σ whose null
directions only have isolated zeros of negative index.

We write

σ = II − Λ = (II − IIS) + (IIS − Λ),

where S is the tangent candidate to Σ at some fixed q ∈ Σ

We are going to study each term separately.



Expressions for II − IIS and IIS − Λ

We can parametrize locally Σ, S in a neighborhood of q as
immersions

ψ(u, v) = (u, v , h(u, v)), ψ0(u, v) = (u, v , h0(u, v)).

Let e, f , g and e0, f 0, g0 be the coefficients of II and IIS .

A computation shows that

e − e0 = Φe
1(h− h0) + Φe

2(hu − h0
u) + Φe

3(hv − h0
v ) + Φe

4(huu − h0
uu),

where the functions Φe
i (u, v) are smooth a neighborhood of (0, 0).

Similar formulas hold for the other coefficients f , g of the second
fundamental form.



Expressions for II − IIS and IIS − Λ

As both h(u, v), h0(u, v) are solutions of the same C 1,α elliptic
PDE, by Bers’ theorem, we have h = h0 or

h(u, v)− h0(u, v) = p(u, v) + · · · ,

where p(u, v) is a homogeneous harmonic polynomial of degree
k ≥ 2. Thus

II − IIS =

(
puu puv
puv pvv

)
+ o(

√
u2 + v2)k−2.

For the blue part in

σ = II − Λ = (II − IIS) + (IIS − Λ)

we can prove similarly that

IIS − Λ = o(
√

u2 + v2)k−2.



Expressions for II − IIS and IIS − Λ

As both h(u, v), h0(u, v) are solutions of the same C 1,α elliptic
PDE, by Bers’ theorem, we have h = h0 or

h(u, v)− h0(u, v) = p(u, v) + · · · ,

where p(u, v) is a homogeneous harmonic polynomial of degree
k ≥ 2. Thus

II − IIS =

(
puu puv
puv pvv

)
+ o(

√
u2 + v2)k−2.

For the blue part in

σ = II − Λ = (II − IIS) + (IIS − Λ)

we can prove similarly that

IIS − Λ = o(
√

u2 + v2)k−2.



Completion of the proof

If σ 6≡ 0, we have proved that

σ =

(
puu puv
puv pvv

)
+ o(

√
u2 + v2)k−2

where p(u, v) is a harmonic homogeneous polynomial of
degree k ≥ 2.

If σ 6≡ 0, σ is a Lorentzian metric with isolated singularities
on Σ− {q : σ(q) = 0}, whose null lines coincide with the
asymptotic directions in R3 of the graph of p(u, v).

By harmonicity of p(u, v), the index of these line fields is
negative at every singularity.
(Impossible if Σ is diffeomorphic to S2, by Poincaré-Hopf).
Thus, Σ is a candidate sphere S (since σ ≡ 0).
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The Gauss map in homogeneous manifolds

Any simply connected homogeneous three-manifold other than
S2(κ)× R is a Lie group M with a left invariant metric.

The Gauss map η of a surface in such an M is obtained by
left-translating its unit normal to the Lie algebra at e.

It takes its values in S2 ⊂ TeM.



A geometric application

M = three-dimensional Lie group with a left-invariant metric.

Corollary
Let Σ1,Σ2 be immersed spheres in M such that

W(κ1, κ2, η) = 0

where W is C 1,α, symmetric in κ1, κ2, and satisfies the ellipticity
condition

∂W
∂k1

∂W
∂k2

> 0.

Then, if the Gauss map of Σ1 is a diffeomorphism, Σ2 is a left
translation of Σ1.

(Uniqueness of Christoffel-Minkowski problems in Lie groups).



Prescribed mean curvature spheres in R3

Theorem (Guan-Guan, 2002)

Let H ∈ C 2(S2) satisfy H(−x) = H(x) > 0 for all x ∈ S2.

Then, there exists a closed strictly convex sphere SH ⊂ R3 of
prescribed mean curvature H, i.e.

HΣ = H(η),

where η : Σ→ S2 is the unit normal of Σ.

Theorem (Gálvez, —)

Let Σ be an immersed sphere in R3 with prescribed mean curvature
H ∈ C 2(S2), where

H(−x) = H(x) > 0 ∀x ∈ S2.

Then Σ is the Guan-Guan sphere SH.
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The Alexandrov conjecture (1956)
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curvature equation
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Ω := {(λκ0
1(p), λκ0

2(p), η0(p) : p ∈ S , λ ∈ R}.

Then any other sphere Σ immersed in R3 that satisfies (3) is a
translation of S.

Difficulty 1: the ellipticity condition is not global.
Difficulty 2: Equation (3) is not C 1,α (problem at umbilics).
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Step 1: the Legendre transform

The Legendre transform of ψ = (ψ1, ψ2, ψ3) is:

Lψ =

(
−η1

η3
,−η2

η3
,−ψ1

η1

η3
− ψ2

η2

η3
− ψ3

)
.

If ψ is a graph of positive curvature, so is Lψ: (x , y , h(x , y)).

With respect to the parameters (x , y), we have for ψ = ψ(x , y):

The unit normal is

η =
(−x ,−y , 1)√
1 + x2 + y2

.

The second fundamental form is II = 1√
1+x2+y2

∇2h.

The principal curvatures are κi = Φi (x , y , hxx , hxy , hyy ).
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Step 2: a discontinuous linear elliptic PDE

Take p ∈ Σ with σ(p) = 0 and σ 6≡ 0.

(x , y , h(x , y)) and (x , y , h0(x , y)) = Legendre transforms of Σ, S .

That both Σ, S satisfy W (κ1, κ2, η) = 0 is rewritten as

F (x , y , hxx , hxy , hyy ) = F (x , y , h0
xx , h

0
xy , h

0
yy ),

uniformly elliptic on compact sets with 0 < c ≤Wki ≤ C .

Lemma

The function % := h − h0 satisfies around the origin a uniformly
elliptic linear homogeneous PDE

a11%xx + 2a12%xy + a22%yy = 0,

where aij = aij(x , y) are maybe not continuous.
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The Bers-Nirenberg representation

Theorem (Bers-Nirenberg)

Let u(x , y) be a non-linear solution on D to

L[u] ≡ a11uxx + 2a12uxy + a22uyy = 0,

where L[u] is uniformly elliptic (maybe not continuous). Then

ux − iuy = F (ϕ(x , y)),

where
1 F is a holomorphic map.
2 ϕ is a Cα homeomorphism, whose inverse is also Cα.

Consequence 1: The zeros of ux , uy are of finite order.

Consequence 2: ux , uy have no interior extrema.
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Step 3: σ has isolated zeros of non-positive index

Define again σ := II − Λ. Note that Λ is a Riemannian metric on Σ.

Let p ∈ Σ where σ(p) = 0 but σ 6≡ 0 around p. Then:

σ =
1√

1 + x2 + y2

(
%xx %xy
%xy %yy

)
, % := h − h0.

By Bers-Nirenberg, %(x , y) = w(x , y) + o(
√

x2 + y2)k for k ≥ 3.

By uniform ellipticity of L[%] = 0, we have

wxxwyy − w2
xy ≤ −ε2(wxx + wyy )2, ε 6= 0.

From here, we have

w(x , y) = w0(x , y) Πr
j=1(αjx + βjy)mj , mj = 1 ∀j .

Thus wxxwyy − w2
xy < 0 on R2 \ {(0, 0)}.
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Step 3: σ has isolated zeros of non-positive index

Thus, %xx%yy − %2
xy < 0 on D∗(0, δ), i.e.

σ =
1√

1 + x2 + y2

(
%xx %xy
%xy %yy

)
, % := h − h0

is a Lorentzian metric with an isolated singularity at p.

Lemma
The index of the null lines of σ at the origin is ≤ 0 if and only if
the index of ∇%x := (%xx , %xy ) is ≤ 0.

Lemma
The index of ∇%x is ≤ 0.

Proof.
By Bers-Nirenberg, %x has no local extrema. So, the origin is a
saddle point of %x ⇒ Index(∇%x) ≤ 0.
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The index of the null lines of σ at the origin is ≤ 0 if and only if
the index of ∇%x := (%xx , %xy ) is ≤ 0.
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The null lines of σ have isolated singularities of index ≤ 0.



Step 4: A global line field with isolated singularities

Let T : X(Σ)→ X(Σ) be given by

Λ(T (X ),Y ) = σ(X ,Y ).

The eigenspaces L1,L2 of T define on Σ− {σ = 0} two smooth
line fields with isolated singularities at the points σ = 0.

Lemma
If σ is Lorentzian at a point, the lines L1,L2 bisect the null
directions of σ (w.r.t. the Riemannian metric Λ).

=⇒ the index of Li at the isolated zeros of σ is non-positive
(since the index of the null directions of σ is non-positive).

(Impossible if Σ diffeomorphic to S2) END.
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Two related open problems

(1) Consider a warped product 3-space Q2(c)×f R with metric

〈, 〉 = f (t) 〈, 〉Q2(c) + dt2, f > 0.

Problem

Are CMC spheres in Q2(c)×f R spheres of revolution?

(Proved by Abresch-Rosenberg if f (t) is constant).

(2) A self-similar shrinker of the mean curvature flow is a surface
x : Σ→ R3 satisfying HΣ = 1

2〈x , η〉.

Conjecture

Self-similar shrinkers diffeomorphic to S2 are spheres of revolution.

(Proved by Brendle in the embedded case).
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