Surfaces immersed in a half-space with the same Gaussian curvature induced by the Euclidean and Hyperbolic metrics

Pedro Roitman (Univ. de Brasília) joint with Nilton Barroso

Granada's Geometry Seminar, Jan. 2014

One Manifold, two metrics...

One Manifold, two metrics...

Let M be a differentiable manifold and consider two metrics g_{1} and g_{2} on M.

One Manifold, two metrics...

Let M be a differentiable manifold and consider two metrics g_{1} and g_{2} on M.
We will consider a particular case of the problem of finding submanifolds $N \subset M$ with a desired geometric property that is defined in terms of both metrics: g_{1} and g_{2}.

One Manifold, two metrics...

Let M be a differentiable manifold and consider two metrics g_{1} and g_{2} on M.
We will consider a particular case of the problem of finding submanifolds $N \subset M$ with a desired geometric property that is defined in terms of both metrics: g_{1} and g_{2}.

The Problem

Let S be an immersed \mathbb{R}_{+}^{3}, and denote by K_{e} and K_{h} the Gaussian curvatures of S induced by the Euclidean and hyperbolic metrics. Find surfaces such that $K_{h}=K_{e}$.

One Manifold, two metrics...

Let M be a differentiable manifold and consider two metrics g_{1} and g_{2} on M.
We will consider a particular case of the problem of finding submanifolds $N \subset M$ with a desired geometric property that is defined in terms of both metrics: g_{1} and g_{2}.

The Problem

Let S be an immersed \mathbb{R}_{+}^{3}, and denote by K_{e} and K_{h} the Gaussian curvatures of S induced by the Euclidean and hyperbolic metrics. Find surfaces such that $K_{h}=K_{e}$.

Terminology

Surfaces such that $K_{h}=K_{e}$ will be called isocurved surfaces.

Some simple examples

Some simple examples

- horizontal planes (Horospheres)

Some simple examples

- horizontal planes (Horospheres)
- spheres (properly placed)

Some simple examples

- horizontal planes (Horospheres)
- spheres (properly placed)
- Circular right cones (or geodesic cylinder)

Some simple examples

- horizontal planes (Horospheres)
- spheres (properly placed)
- Circular right cones (or geodesic cylinder)
- Other surfaces that are flat in both geometries

Some simple examples

- horizontal planes (Horospheres)
- spheres (properly placed)
- Circular right cones (or geodesic cylinder)
- Other surfaces that are flat in both geometries

For example: A ruled surface with horizontal rulings that are orthogonal to a vertical plane P and pass through a tractrix contained in P that has line in $\partial \mathbb{R}_{+}^{3}$ as its asymptotic line.

Some simple examples

- horizontal planes (Horospheres)
- spheres (properly placed)
- Circular right cones (or geodesic cylinder)
- Other surfaces that are flat in both geometries

For example: A ruled surface with horizontal rulings that are orthogonal to a vertical plane P and pass through a tractrix contained in P that has line in $\partial \mathbb{R}_{+}^{3}$ as its asymptotic line.

Question

Are there other examples? How to construct them?

The associated PDE

The associated PDE

Recall that the principal curvatures are related by the following expression:

$$
k_{h i}=x_{3} k_{e i}+n_{3} .
$$

The associated PDE

Recall that the principal curvatures are related by the following expression:

$$
k_{h i}=x_{3} k_{e i}+n_{3}
$$

So $K_{\text {hext }}$ and K_{e} are related by:

$$
\begin{equation*}
K_{h} e x t=x_{3}^{2} K_{e}+2 H_{e} x_{3} n_{3}+n_{3}^{2} \tag{1}
\end{equation*}
$$

The associated PDE

Recall that the principal curvatures are related by the following expression:

$$
k_{h i}=x_{3} k_{e i}+n_{3}
$$

So $K_{\text {hext }}$ and K_{e} are related by:

$$
\begin{equation*}
K_{h} e x t=x_{3}^{2} K_{e}+2 H_{e} x_{3} n_{3}+n_{3}^{2} \tag{1}
\end{equation*}
$$

We also recall that Gauss' equation gives us K_{h} ext $=K_{h}+1$.

The associated PDE

Recall that the principal curvatures are related by the following expression:

$$
k_{h i}=x_{3} k_{e i}+n_{3}
$$

So $K_{\text {hext }}$ and K_{e} are related by:

$$
\begin{equation*}
K_{h} e x t=x_{3}^{2} K_{e}+2 H_{e} x_{3} n_{3}+n_{3}^{2} \tag{1}
\end{equation*}
$$

We also recall that Gauss' equation gives us K_{h} ext $=K_{h}+1$.
the associated PDE

the associated PDE

it follows that an isocurved surfaces satisfies the following equation:

$$
\left(1-x_{3}^{2}\right) K_{e}-2 H_{e} x_{3} n_{3}+1-n_{3}^{2}=0 .
$$

the associated PDE

it follows that an isocurved surfaces satisfies the following equation:

$$
\left(1-x_{3}^{2}\right) K_{e}-2 H_{e} x_{3} n_{3}+1-n_{3}^{2}=0 .
$$

and for an isocurved graph we have the PDE:

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{2}
\end{equation*}
$$

where $A=\left(1-\varphi^{2}\right), B=-\varphi\left(1+\varphi_{v}^{2}\right), C=\varphi \varphi_{v} \varphi_{u}$, $D=-\varphi\left(1+\varphi_{u}^{2}\right)$, and $E=\left(1+\varphi_{u}^{2}+\varphi_{v}^{2}\right)\left(\varphi_{u}^{2}+\varphi_{v}^{2}\right)$.

the associated PDE

it follows that an isocurved surfaces satisfies the following equation:

$$
\left(1-x_{3}^{2}\right) K_{e}-2 H_{e} x_{3} n_{3}+1-n_{3}^{2}=0 .
$$

and for an isocurved graph we have the PDE:

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{2}
\end{equation*}
$$

where $A=\left(1-\varphi^{2}\right), B=-\varphi\left(1+\varphi_{v}^{2}\right), C=\varphi \varphi_{v} \varphi_{u}$, $D=-\varphi\left(1+\varphi_{u}^{2}\right)$, and $E=\left(1+\varphi_{u}^{2}+\varphi_{v}^{2}\right)\left(\varphi_{u}^{2}+\varphi_{v}^{2}\right)$.
it follows that an isocurved surfaces satisfies the following equation:

$$
\left(1-x_{3}^{2}\right) K_{e}-2 H_{e} x_{3} n_{3}+1-n_{3}^{2}=0
$$

and for an isocurved graph we have the PDE:

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{2}
\end{equation*}
$$

where $A=\left(1-\varphi^{2}\right), B=-\varphi\left(1+\varphi_{v}^{2}\right), C=\varphi \varphi_{v} \varphi_{u}$, $D=-\varphi\left(1+\varphi_{u}^{2}\right)$, and $E=\left(1+\varphi_{u}^{2}+\varphi_{v}^{2}\right)\left(\varphi_{u}^{2}+\varphi_{v}^{2}\right)$.
Note that it seems difficult to find explicit solutions without symmetry assumptions.

Reminder about Monge-Ampère equations

A PDE with the following form

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{3}
\end{equation*}
$$

Reminder about Monge-Ampère equations

A PDE with the following form

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{3}
\end{equation*}
$$

where A, B, C, D and E are functions of $u, v, \varphi, \varphi_{u}$ and φ_{v} is a Monge-Ampère equation.

Reminder about Monge-Ampère equations

A PDE with the following form

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{3}
\end{equation*}
$$

where A, B, C, D and E are functions of $u, v, \varphi, \varphi_{u}$ and φ_{v} is a Monge-Ampère equation.
Let $\Delta=A E-B D+C^{2}$.
The PDE is

- eliptic if $\Delta<0$,

Reminder about Monge-Ampère equations

A PDE with the following form

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{3}
\end{equation*}
$$

where A, B, C, D and E are functions of $u, v, \varphi, \varphi_{u}$ and φ_{v} is a Monge-Ampère equation.
Let $\Delta=A E-B D+C^{2}$.
The PDE is

- eliptic if $\Delta<0$,
- hiperbolic if $\Delta>0$,

Reminder about Monge-Ampère equations

A PDE with the following form

$$
\begin{equation*}
A\left(\varphi_{u u} \varphi_{v v}-\varphi_{u v}^{2}\right)+B \varphi_{u u}+D \varphi_{v v}+2 C \varphi_{u v}+E=0 \tag{3}
\end{equation*}
$$

where A, B, C, D and E are functions of $u, v, \varphi, \varphi_{u}$ and φ_{v} is a Monge-Ampère equation.
Let $\Delta=A E-B D+C^{2}$.
The PDE is

- eliptic if $\Delta<0$,
- hiperbolic if $\Delta>0$,
- parabolic if $\Delta=0$.

Remark

The PDE for isocurved graphs is a mixed type equation

A curious property (use examples)

A curious property (use examples)

Isocurved surfaces come in 1-parameter families
If S is isocurved, then its parallel surfaces (in the hyperbolic sense) are also isocurved.

A curious property (use examples)

Isocurved surfaces come in 1-parameter families

If S is isocurved, then its parallel surfaces (in the hyperbolic sense) are also isocurved.

This property motivates the study of congruence of (hyperbolic) geodesics such that its orthogonal surfaces are isocurved.

A curious property (use examples)

Isocurved surfaces come in 1-parameter families

If S is isocurved, then its parallel surfaces (in the hyperbolic sense)are also isocurved.

This property motivates the study of congruence of (hyperbolic) geodesics such that its orthogonal surfaces are isocurved.

Question:

How to construct such congruence of geodesics?

A curious property (use examples)

Isocurved surfaces come in 1-parameter families

If S is isocurved, then its parallel surfaces (in the hyperbolic sense) are also isocurved.

This property motivates the study of congruence of (hyperbolic) geodesics such that its orthogonal surfaces are isocurved.

Question:

How to construct such congruence of geodesics?

Intuition

Since isocurved surfaces are defined using both metrics, maybe we should think of a geometric construction that involves both geometries.

The geometric method

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{\text {hor }}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{h o r}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{\text {hor }}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.
For each $p \in \Sigma$, we define a (hyperbolic)geodesic as follows:

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{\text {hor }}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.
For each $p \in \Sigma$, we define a (hyperbolic)geodesic as follows:

- the center of the circle is $\pi_{h o r}(p)$.

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{\text {hor }}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.
For each $p \in \Sigma$, we define a (hyperbolic)geodesic as follows:

- the center of the circle is $\pi_{\text {hor }}(p)$.
- The direction of the circle is defined by the vertical plane parallel to $J \pi_{\text {hor }}(N(p))$.

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{h o r}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.
For each $p \in \Sigma$, we define a (hyperbolic)geodesic as follows:

- the center of the circle is $\pi_{\text {hor }}(p)$.
- The direction of the circle is defined by the vertical plane parallel to $J \pi_{\text {hor }}(N(p))$.
- The radius of the circle is $R(p)=\frac{1}{\left|\pi_{\text {hor }}(N(p))\right|}$.

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{\text {hor }}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.
For each $p \in \Sigma$, we define a (hyperbolic)geodesic as follows:

- the center of the circle is $\pi_{\text {hor }}(p)$.
- The direction of the circle is defined by the vertical plane parallel to $J \pi_{\text {hor }}(N(p))$.
- The radius of the circle is $R(p)=\frac{1}{\left|\pi_{\text {hor }}(N(p))\right|}$.
- If $N(p)$ is vertical, we associate to p the vertical half-line through p.

The geometric method

Start with an oriented immersed surface Σ, with orientation given by a unit vector field N.
Let $\pi_{\text {hor }}$ be the horizontal projection onto $\partial \mathbb{R}_{+}^{3}$ Let J be the $\frac{\pi}{2}$ positive rotation in $\partial \mathbb{R}_{+}^{3} \approx \mathbb{R}^{2}$.
For each $p \in \Sigma$, we define a (hyperbolic)geodesic as follows:

- the center of the circle is $\pi_{h o r}(p)$.
- The direction of the circle is defined by the vertical plane parallel to $J \pi_{\text {hor }}(N(p))$.
- The radius of the circle is $R(p)=\frac{1}{\left|\pi_{\text {hor }}(N(p))\right|}$.
- If $N(p)$ is vertical, we associate to p the vertical half-line through p.
This procedure defines a congruence of geodesics: C_{Σ}.

A picture might help...

A picture might help...

Natural question

Natural question

What is the condition on Σ for C_{Σ} to be integrable?

Natural question

What is the condition on Σ for C_{Σ} to be integrable?

Integrability Condition

C_{Σ} is integrable if and only if Σ is a minimal surface (euclidean sense).

Natural question

What is the condition on Σ for C_{Σ} to be integrable?

Integrability Condition

C_{Σ} is integrable if and only if Σ is a minimal surface (euclidean sense).

Assuming C_{Σ} to be integrable, is there any geometric property that characterizes the orthogonal surfaces?

Natural question

What is the condition on Σ for C_{Σ} to be integrable?
Integrability Condition
C_{Σ} is integrable if and only if Σ is a minimal surface (euclidean sense).

Assuming C_{Σ} to be integrable, is there any geometric property that characterizes the orthogonal surfaces?

Intriguing Property
If Σ is minimal, then the orthogonal surfaces of C_{Σ} are isocurved (at smooth points).

The integrable system

Let Σ be the graph of $\psi(u, v)$. Let's look for the surfaces orthogonal to C_{Σ}.

Let Σ be the graph of $\psi(u, v)$. Let's look for the surfaces orthogonal to C_{Σ}.
A local parametrization of such surfaces would look like:

$$
\begin{equation*}
\mathbf{Y}=\boldsymbol{\sigma}+R\left(\cos \theta \mathbf{e}_{\mathbf{1}}+\sin \theta \mathbf{e}_{\mathbf{3}}\right) \tag{4}
\end{equation*}
$$

where σ is the center of the circle and so on...

Let Σ be the graph of $\psi(u, v)$. Let's look for the surfaces orthogonal to C_{Σ}.
A local parametrization of such surfaces would look like:

$$
\begin{equation*}
\mathbf{Y}=\boldsymbol{\sigma}+R\left(\cos \theta \mathbf{e}_{\mathbf{1}}+\sin \theta \mathbf{e}_{\mathbf{3}}\right) \tag{4}
\end{equation*}
$$

where σ is the center of the circle and so on...
The orthogonality condition is equivalent to

$$
\left\langle d \mathbf{Y},-\sin \theta \mathbf{e}_{\mathbf{1}}+\cos \theta \mathbf{e}_{\mathbf{3}}\right\rangle=0
$$

where \langle,$\rangle stands for the euclidean inner product.$

the integrable system

the integrable system

After some computations...we arrive at this system

$$
\begin{equation*}
\theta_{u}=\frac{\sin \theta}{R}\left\langle\boldsymbol{\sigma}_{u}, \mathbf{e}_{\mathbf{1}}\right\rangle, \quad \theta_{v}=\frac{\sin \theta}{R}\left\langle\boldsymbol{\sigma}_{v}, \mathbf{e}_{\mathbf{1}}\right\rangle \tag{5}
\end{equation*}
$$

the integrable system

After some computations...we arrive at this system

$$
\begin{equation*}
\theta_{u}=\frac{\sin \theta}{R}\left\langle\boldsymbol{\sigma}_{u}, \mathbf{e}_{\mathbf{1}}\right\rangle, \quad \theta_{v}=\frac{\sin \theta}{R}\left\langle\boldsymbol{\sigma}_{v}, \mathbf{e}_{\mathbf{1}}\right\rangle \tag{5}
\end{equation*}
$$

It is better to make the following change of variables: $\sin \theta=1 / \cosh \beta$ e $\cos \theta=\tanh \beta$, and work with the equations:

$$
\begin{equation*}
\beta_{u}=-\frac{\left\langle\boldsymbol{\sigma}_{u}, \mathbf{e}_{1}\right\rangle}{R}, \quad \beta_{v}=-\frac{\left\langle\boldsymbol{\sigma}_{v}, \mathbf{e}_{\mathbf{1}}\right\rangle}{R}, \tag{6}
\end{equation*}
$$

Integrability condition

Integrability condition

Frobenius' theorem gives us the integrability condition:

$$
\begin{equation*}
\left(\frac{\left\langle\sigma_{u}, \mathbf{e}_{\mathbf{1}}\right\rangle}{R}\right)_{v}=\left(\frac{\left\langle\sigma_{v}, \mathbf{e}_{\mathbf{1}}\right\rangle}{R}\right)_{u} . \tag{7}
\end{equation*}
$$

Integrability condition

Frobenius' theorem gives us the integrability condition:

$$
\begin{equation*}
\left(\frac{\left\langle\sigma_{u}, \mathbf{e}_{\mathbf{1}}\right\rangle}{R}\right)_{v}=\left(\frac{\left\langle\sigma_{v}, \mathbf{e}_{\mathbf{1}}\right\rangle}{R}\right)_{u} . \tag{7}
\end{equation*}
$$

Since

$$
\begin{gathered}
\boldsymbol{\sigma}(u, v)=(u, v, 0), \\
R=\frac{\sqrt{1+\psi_{u}^{2}+\psi_{v}^{2}}}{\sqrt{\psi_{u}^{2}+\psi_{v}^{2}}} \\
\mathbf{e}_{1}=\frac{\left(-\psi_{v}, \psi_{u}\right)}{\sqrt{\psi_{u}^{2}+\psi_{v}^{2}}}
\end{gathered}
$$

it follows from simple computations that (7) is equivalent to

$$
\left(1+\psi_{v}^{2}\right) \psi_{u u}-2 \psi_{u} \psi_{v} \psi_{u v}+\left(1+\psi_{u}^{2}\right) \psi_{v v}=0
$$

Integrable system for β

Integrable system for β

Given ψ, (minimal graph), we have to find solutions of the system:

$$
\begin{gathered}
\beta_{u}=-\frac{\psi_{v}}{\sqrt{1+|\nabla \psi|^{2}}} \\
\beta_{v}=\frac{\psi_{u}}{\sqrt{1+|\nabla \psi|^{2}}}
\end{gathered}
$$

Integrable system for β

Given ψ, (minimal graph), we have to find solutions of the system:

$$
\begin{aligned}
\beta_{u} & =-\frac{\psi_{v}}{\sqrt{1+|\nabla \psi|^{2}}} \\
\beta_{v} & =\frac{\psi_{u}}{\sqrt{1+|\nabla \psi|^{2}}}
\end{aligned}
$$

Apparently weak points for the constructions of explicit examples:

Integrable system for β

Given ψ, (minimal graph), we have to find solutions of the system:

$$
\begin{aligned}
\beta_{u} & =-\frac{\psi_{v}}{\sqrt{1+|\nabla \psi|^{2}}} \\
\beta_{v} & =\frac{\psi_{u}}{\sqrt{1+|\nabla \psi|^{2}}}
\end{aligned}
$$

Apparently weak points for the constructions of explicit examples:

- We need to start with a minimal graph(there aren't many explicit solutions).

Integrable system for β

Given ψ, (minimal graph), we have to find solutions of the system:

$$
\begin{aligned}
\beta_{u} & =-\frac{\psi_{v}}{\sqrt{1+|\nabla \psi|^{2}}} \\
\beta_{v} & =\frac{\psi_{u}}{\sqrt{1+|\nabla \psi|^{2}}}
\end{aligned}
$$

Apparently weak points for the constructions of explicit examples:

- We need to start with a minimal graph(there aren't many explicit solutions).
- Integration can be difficult.

Remarks about the geometric construction

Remarks about the geometric construction

- The existence of β assures the existence of the map Y. But Y is not always an immersion.(In other words, we may have natural singularities).

Remarks about the geometric construction

- The existence of β assures the existence of the map Y. But Y is not always an immersion.(In other words, we may have natural singularities).
- If we start with an immersion Y into \mathbb{R}_{+}^{3} and ask if Y comes from a surface by the inverse process then Y must be isocurved.

Remarks about the geometric construction

- The existence of β assures the existence of the map Y. But Y is not always an immersion. (In other words, we may have natural singularities).
- If we start with an immersion Y into \mathbb{R}_{+}^{3} and ask if Y comes from a surface by the inverse process then Y must be isocurved.
- Stricktly speaking, we actually don't need a surface to start our geometric construction, all we need is a smooth two parameter family of contact elements of \mathbb{R}^{3}.

Geometric Remark

Geometric Remark

Bonus

The integrable system for β admits an interpretation in terms of the minimal surface.

Geometric Remark

Bonus

The integrable system for β admits an interpretation in terms of the minimal surface.

The solutions of the integrable system associated to a minimal surface Σ has the form $\beta=x_{3}^{*}+C$, where x_{3}^{*} is the height function of the conjugate surface Σ^{*}.

Geometric Remark

Bonus

The integrable system for β admits an interpretation in terms of the minimal surface.

The solutions of the integrable system associated to a minimal surface Σ has the form $\beta=x_{3}^{*}+C$, where x_{3}^{*} is the height function of the conjugate surface Σ^{*}.
This fact frees us from the limitations of working with minimal graphs.

Geometric Remark

Bonus

The integrable system for β admits an interpretation in terms of the minimal surface.

The solutions of the integrable system associated to a minimal surface Σ has the form $\beta=x_{3}^{*}+C$, where x_{3}^{*} is the height function of the conjugate surface Σ^{*}.
This fact frees us from the limitations of working with minimal graphs.

A few examples

A few examples

Surface of Revolution
Consider $f(z)=i e^{z}$ and $g(z)=c e^{-z}, c \in \mathbb{R}, c \neq 0$.

A few examples

Surface of Revolution
Consider $f(z)=i e^{z}$ and $g(z)=c e^{-z}, c \in \mathbb{R}, c \neq 0$. Using f and g as Weierstrass data we have a helicoid. The associated isocurved surface is a surface of revolution. As an example let's choose $c=2$:

$$
\mathbf{X}(x, y)=(\alpha(x) \sin y, \alpha(x) \cos y, \gamma(x))
$$

where

$$
\alpha(x)=\frac{1}{4} \frac{\left(-\mathrm{e}^{5 x}+8 \mathrm{e}^{3 x}+45 \mathrm{e}^{x}-8 \mathrm{e}^{-x}+16 \mathrm{e}^{-3 x}\right)}{\left(4 \mathrm{e}^{-2 x}+1\right)\left(\mathrm{e}^{4 x}+1\right)}
$$

and

$$
\gamma(x)=\frac{1}{2} \frac{\mathrm{e}^{3 x} \sqrt{1+8 \mathrm{e}^{-2 x}+16 \mathrm{e}^{-4 x}}}{\mathrm{e}^{4 x}+1}
$$

Surface of Revolution

Figure: Isocurved of revolution

Scherk type example

Scherk type example

Consider the function defined in a fundamental domain:

$$
\varphi(x, y)=\ln \frac{\cos y}{\cos x} .
$$

Scherk type example

Consider the function defined in a fundamental domain:

$$
\varphi(x, y)=\ln \frac{\cos y}{\cos x} .
$$

the conjugate function in this case is well known:

$$
\varphi^{*}(x, y)=\arcsin (\sin x \sin y)
$$

Scherk type example

Consider the function defined in a fundamental domain:

$$
\varphi(x, y)=\ln \frac{\cos y}{\cos x} .
$$

the conjugate function in this case is well known:

$$
\varphi^{*}(x, y)=\arcsin (\sin x \sin y)
$$

From our method we get the following isocurved parametrized surface:

$$
\mathbf{X}(x, y)=\left(x-\Lambda_{1} \sin y \cos x, y-\Lambda_{1} \sin x \cos y, \Lambda_{2}\right)
$$

where

$$
\Lambda_{1}=\frac{\sqrt{\cos ^{2} x+\cos ^{2} y-\cos ^{2} x \cos ^{2} y} \tanh (\arcsin (\sin x \sin y))}{\sin ^{2} x \cos ^{2} y+\sin ^{2} y \cos ^{2} x}
$$

and

$$
\Lambda_{2}=\frac{\sqrt{\cos ^{2} x+\cos ^{2} y-\cos ^{2} x \cos ^{2} y}}{\cosh (\arcsin (\sin x \sin y)) \sqrt{\cos ^{2} x+\cos ^{2} y-2 \cos ^{2} x \cos ^{2} y}}
$$

Scherk type

Figure: 2-periodic Scherk type Isocurved

Scherk...

Figure: Top view

Are all isocurved generated in this way?

Are all isocurved generated in this way?

Some remarks:

Are all isocurved generated in this way?

Some remarks:

- No, not all isocurved are generated by our method.

Are all isocurved generated in this way?

Some remarks:

- No, not all isocurved are generated by our method.
- However, locally we can generate all the elliptic isocurved surfaces.

Are all isocurved generated in this way?

Some remarks:

- No, not all isocurved are generated by our method.
- However, locally we can generate all the elliptic isocurved surfaces.
- The hyperbolic isocurved surfaces are generated in a similar way using timelike minimal surfaces in \mathbb{L}^{3}.

Are all isocurved generated in this way?

Some remarks:

- No, not all isocurved are generated by our method.
- However, locally we can generate all the elliptic isocurved surfaces.
- The hyperbolic isocurved surfaces are generated in a similar way using timelike minimal surfaces in \mathbb{L}^{3}.
- There are also parabolic examples and probably a degenerate type of minimal surface can be associated to it.

Final Remarks

Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties defined by two Riemannian metrics in the ambient manifold.

Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties defined by two Riemannian metrics in the ambient manifold.

About Isocurved, there's probably no better place than Granada to ask:

Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties defined by two Riemannian metrics in the ambient manifold.

About Isocurved, there's probably no better place than Granada to ask:

- Why do minimal surfaces appear as uninvited guests in this world of isocurved surfaces?

Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties defined by two Riemannian metrics in the ambient manifold.

About Isocurved, there's probably no better place than Granada to ask:

- Why do minimal surfaces appear as uninvited guests in this world of isocurved surfaces?
- And why do isocurved surfaces appear in 1-parameter family as parallel surfaces in the hyperbolic sense?

Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties defined by two Riemannian metrics in the ambient manifold.

About Isocurved, there's probably no better place than Granada to ask:

- Why do minimal surfaces appear as uninvited guests in this world of isocurved surfaces?
- And why do isocurved surfaces appear in 1-parameter family as parallel surfaces in the hyperbolic sense?

Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties defined by two Riemannian metrics in the ambient manifold.

About Isocurved, there's probably no better place than Granada to ask:

- Why do minimal surfaces appear as uninvited guests in this world of isocurved surfaces?
- And why do isocurved surfaces appear in 1-parameter family as parallel surfaces in the hyperbolic sense?

Muchas Gracias!!

