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One Manifold, two metrics...

Let M be a differentiable manifold and consider two metrics g1 and
g2 on M.
We will consider a particular case of the problem of finding
submanifolds N ⊂ M with a desired geometric property that is
defined in terms of both metrics: g1 and g2.

The Problem

Let S be an immersed R3
+, and denote by Ke and Kh the Gaussian

curvatures of S induced by the Euclidean and hyperbolic metrics.
Find surfaces such that Kh = Ke .

Terminology

Surfaces such that Kh = Ke will be called isocurved surfaces.
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Some simple examples

horizontal planes (Horospheres)

spheres (properly placed)

Circular right cones (or geodesic cylinder)

Other surfaces that are flat in both geometries

For example: A ruled surface with horizontal rulings that are
orthogonal to a vertical plane P and pass through a tractrix
contained in P that has line in ∂R3

+ as its asymptotic line.

Question

Are there other examples? How to construct them?
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The associated PDE

Recall that the principal curvatures are related by the following
expression:

khi = x3kei + n3.

So Khext and Ke are related by:

Khext = x2
3Ke + 2Hex3n3 + n2

3, (1)

We also recall that Gauss’ equation gives us Khext = Kh + 1.
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the associated PDE

it follows that an isocurved surfaces satisfies the following equation:

(1− x2
3 )Ke − 2Hex3n3 + 1− n2

3 = 0.

and for an isocurved graph we have the PDE:

A(ϕuuϕvv − ϕ2
uv ) + Bϕuu + Dϕvv + 2Cϕuv + E = 0, (2)

where A = (1− ϕ2), B = −ϕ(1 + ϕ2
v ), C = ϕϕvϕu,

D = −ϕ(1 + ϕ2
u), and E = (1 + ϕ2

u + ϕ2
v )(ϕ2

u + ϕ2
v ).

Note that it seems difficult to find explicit solutions without
symmetry assumptions.
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Pedro Roitman (Univ. de Braśılia) joint with Nilton Barroso Surfaces immersed in a half-space with the same Gaussian curvature induced by the Euclidean and Hyperbolic metrics



Reminder about Monge-Ampère equations

A PDE with the following form

A(ϕuuϕvv − ϕ2
uv ) + Bϕuu + Dϕvv + 2Cϕuv + E = 0, (3)

where A,B,C ,D and E are functions of u, v , ϕ, ϕu and ϕv is a
Monge-Ampère equation.
Let ∆ = AE − BD + C 2.
The PDE is

eliptic if ∆ < 0,

hiperbolic if ∆ > 0,

parabolic if ∆ = 0.

Remark

The PDE for isocurved graphs is a mixed type equation
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A curious property (use examples)

Isocurved surfaces come in 1-parameter families

If S is isocurved, then its parallel surfaces (in the hyperbolic
sense)are also isocurved.

This property motivates the study of congruence of (hyperbolic)
geodesics such that its orthogonal surfaces are isocurved.

Question:

How to construct such congruence of geodesics?

Intuition

Since isocurved surfaces are defined using both metrics, maybe we
should think of a geometric construction that involves both
geometries.
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The geometric method

Start with an oriented immersed surface Σ, with orientation given
by a unit vector field N.
Let πhor be the horizontal projection onto ∂R3

+

Let J be the π
2 positive rotation in ∂R3

+ ≈ R2.
For each p ∈ Σ, we define a (hyperbolic)geodesic as follows:

the center of the circle is πhor (p).

The direction of the circle is defined by the vertical plane
parallel to Jπhor (N(p)).

The radius of the circle is R(p) = 1
|πhor (N(p))| .

If N(p) is vertical, we associate to p the vertical half-line
through p.

This procedure defines a congruence of geodesics: CΣ.
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Pedro Roitman (Univ. de Braśılia) joint with Nilton Barroso Surfaces immersed in a half-space with the same Gaussian curvature induced by the Euclidean and Hyperbolic metrics



The geometric method

Start with an oriented immersed surface Σ, with orientation given
by a unit vector field N.
Let πhor be the horizontal projection onto ∂R3

+

Let J be the π
2 positive rotation in ∂R3

+ ≈ R2.
For each p ∈ Σ, we define a (hyperbolic)geodesic as follows:

the center of the circle is πhor (p).

The direction of the circle is defined by the vertical plane
parallel to Jπhor (N(p)).

The radius of the circle is R(p) = 1
|πhor (N(p))| .

If N(p) is vertical, we associate to p the vertical half-line
through p.

This procedure defines a congruence of geodesics: CΣ.
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+
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2 positive rotation in ∂R3

+ ≈ R2.
For each p ∈ Σ, we define a (hyperbolic)geodesic as follows:

the center of the circle is πhor (p).

The direction of the circle is defined by the vertical plane
parallel to Jπhor (N(p)).

The radius of the circle is R(p) = 1
|πhor (N(p))| .

If N(p) is vertical, we associate to p the vertical half-line
through p.

This procedure defines a congruence of geodesics: CΣ.
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Natural question

What is the condition on Σ for CΣ to be integrable?

Integrability Condition

CΣ is integrable if and only if Σ is a minimal surface (euclidean
sense).

Assuming CΣ to be integrable, is there any geometric property that
characterizes the orthogonal surfaces?

Intriguing Property

If Σ is minimal, then the orthogonal surfaces of CΣ are isocurved
(at smooth points).

Pedro Roitman (Univ. de Braśılia) joint with Nilton Barroso Surfaces immersed in a half-space with the same Gaussian curvature induced by the Euclidean and Hyperbolic metrics



Natural question

What is the condition on Σ for CΣ to be integrable?

Integrability Condition

CΣ is integrable if and only if Σ is a minimal surface (euclidean
sense).

Assuming CΣ to be integrable, is there any geometric property that
characterizes the orthogonal surfaces?

Intriguing Property

If Σ is minimal, then the orthogonal surfaces of CΣ are isocurved
(at smooth points).
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The integrable system

Let Σ be the graph of ψ(u, v). Let’s look for the surfaces
orthogonal to CΣ.
A local parametrization of such surfaces would look like:

Y = σ + R (cos θe1 + sin θe3) , (4)

where σ is the center of the circle and so on...
The orthogonality condition is equivalent to

〈dY,− sin θe1 + cos θe3〉 = 0,

where 〈 , 〉 stands for the euclidean inner product.
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the integrable system

After some computations...we arrive at this system

θu =
sin θ

R
〈σu, e1〉, θv =

sin θ

R
〈σv , e1〉 (5)

It is better to make the following change of variables:
sin θ = 1/ coshβ e cos θ = tanhβ, and work with the equations:

βu = −〈σu, e1〉
R

, βv = −〈σv , e1〉
R

, (6)
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Integrability condition

Frobenius’ theorem gives us the integrability condition:(
〈σu, e1〉

R

)
v

=

(
〈σv , e1〉

R

)
u

. (7)

Since
σ(u, v) = (u, v , 0),

R =

√
1 + ψ2

u + ψ2
v√

ψ2
u + ψ2

v

,

e1 =
(−ψv , ψu)√
ψ2
u + ψ2

v

,

it follows from simple computations that (7) is equivalent to

(1 + ψ2
v )ψuu − 2ψuψvψuv + (1 + ψ2

u)ψvv = 0,
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Integrable system for β

Given ψ, (minimal graph), we have to find solutions of the system:

βu = − ψv√
1 + |∇ψ|2

;

βv =
ψu√

1 + |∇ψ|2
.

Apparently weak points for the constructions of explicit examples:

We need to start with a minimal graph(there aren’t many
explicit solutions).

Integration can be difficult.
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Remarks about the geometric construction

The existence of β assures the existence of the map Y . But
Y is not always an immersion.(In other words, we may have
natural singularities).

If we start with an immersion Y into R3
+ and ask if Y comes

from a surface by the inverse process then Y must be
isocurved.

Stricktly speaking, we actually don’t need a surface to start
our geometric construction, all we need is a smooth two
parameter family of contact elements of R3.
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Geometric Remark

Bonus

The integrable system for β admits an interpretation in terms of
the minimal surface.

The solutions of the integrable system associated to a minimal
surface Σ has the form β = x∗3 + C , where x∗3 is the height
function of the conjugate surface Σ∗.
This fact frees us from the limitations of working with minimal
graphs.
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Pedro Roitman (Univ. de Braśılia) joint with Nilton Barroso Surfaces immersed in a half-space with the same Gaussian curvature induced by the Euclidean and Hyperbolic metrics



A few examples

Surface of Revolution
Consider f (z) = iez and g(z) = ce−z , c ∈ R, c 6= 0. Using f and
g as Weierstrass data we have a helicoid. The associated isocurved
surface is a surface of revolution. As an example let’s choose
c = 2:

X(x , y) = (α(x) sin y , α(x) cos y , γ(x)),

where

α(x) =
1

4

(
−e5 x + 8 e3 x + 45 ex − 8 e−x + 16 e−3 x

)
(4 e−2 x + 1) (e4 x + 1)

,

and

γ(x) =
1

2

e3 x
√

1 + 8 e−2 x + 16 e−4 x

e4 x + 1
.
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Surface of Revolution

Figure: Isocurved of revolution
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Scherk type example

Consider the function defined in a fundamental domain:

ϕ(x , y) = ln
cos y

cos x
.

the conjugate function in this case is well known:

ϕ∗(x , y) = arcsin (sin x sin y).

From our method we get the following isocurved parametrized
surface:

X(x , y) = (x − Λ1 sin y cos x , y − Λ1 sin x cos y ,Λ2),

where

Λ1 =

√
cos2 x + cos2 y − cos2 x cos2 y tanh(arcsin(sin x sin y))

sin2 x cos2 y + sin2 y cos2 x
,

and

Λ2 =

√
cos2 x + cos2 y − cos2 x cos2 y

cosh(arcsin(sin x sin y))
√

cos2 x + cos2 y − 2 cos2 x cos2 y
.
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Scherk type

Figure: 2-periodic Scherk type Isocurved
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Scherk...

Figure: Top view
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Are all isocurved generated in this way?

Some remarks:

No, not all isocurved are generated by our method.

However, locally we can generate all the elliptic isocurved
surfaces.

The hyperbolic isocurved surfaces are generated in a similar
way using timelike minimal surfaces in L3.

There are also parabolic examples and probably a degenerate
type of minimal surface can be associated to it.
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way using timelike minimal surfaces in L3.

There are also parabolic examples and probably a degenerate
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Final Remarks

Why not?

Look for other problems for immersed submanifolds with properties
defined by two Riemannian metrics in the ambient manifold.

About Isocurved, there’s probably no better place than Granada to
ask:

Why do minimal surfaces appear as uninvited guests in this
world of isocurved surfaces?

And why do isocurved surfaces appear in 1-parameter family
as parallel surfaces in the hyperbolic sense?

Muchas Gracias!!
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