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Introduction

Discrete differential geometry

» Deals with discrete geometric objects:
points (vertices), segments (edges),
faces, polygons, polyhedra.

» Finds properties and invariants (affine
or metric)

» Focuses on differential quantities (such
as curvature)
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How do we discretize derivatives?

» Tangent vectors (s is arclength)

t(s) = Cal [ Chs hl)1 —1(s) _ Pit1—pi

» Curvature in R? (change in the tangent direction)

dt tivy1 — t
Kk(s)n(s) = e s king = %

(note the lack of symmetry!)

» Curvature of surfaces in R3?
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Smooth gaussian curvature

Gaussian curvature K at p measures

» Length of infinitesimal circle at p:

K = lim > (2nr — L(C(r)))

r—0 Tmr

» variation of the normal vector w.r.t. the metric

Evv Guu Eu Ev Ev Gu

3t -3 3 R |05 R

F,— & E F |- (Eg_ E F

detll S F G S F G
"~ det! (EG — F2)2

» spherical area of the normal
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Curvature and derivatives in multiple variables

Problems:
» what are [/ and /I?

» how can one take derivatives when there are no notion of “two
variables"?

Conclusion: describe geometric invariants by their properties.
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Discrete curves in the plane

A (connected) curve is set of vertices pi, ..., p, linked by edges (p;pi+1).
Its (euclidean) invariants are:

> lengths ¢; = ||pi+1 — pil|, defined on edges
» tangent vectors v; = W

i

» rotation angles 0; = (vi_1, v;)
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Bonnet theorem

Theorem (Bonnet theorem, smooth case)

Given a function k, there exists a curve v whose curvature is exactly k.
Such a curve is unique up to congruence.

Solve in arclength coordinate s, using Cauchy—Lipschitz theorem:

dz'y ﬁ

ds2 ~ "ds’
where J is the rotation by +m/2. The (local) solution is determined by
initial data (0), 7/(0), hence up to congruence (equivariance of the
equation).
@ Global existence is more complicated.
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Bonnet theorem (discrete case)
Theorem

Given angles 0; and lengths (;, there exists a discrete curve (p;)
corresponding to these. Such a curve is unique up to congruence.
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Curvature as closest fitting circle

Menger curvature:

o A . —
" Ipig1 — pi-l|
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Variation of tangent or normal vectors

In the smooth case, k = (dt/ds, Jt) = %, where ¢ is the angle of the

tangent t (or normal n). For discrete curves, since ¢; — ¢;_1,

.9
K;? _ 20; S 2(t; — ti—1, nj) _ 4sin
i+ ¢ li1+ ¢ big+ ¢
As a consequence, we recover Gauss-Bonnet
b
0(b) — 0(a) = / () ds
a
i1+ ¢

total angular variation = Z 0; = Z K? 5
i i
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Variation of length

Consider the length L =", 4; =", ||pi — pi-1]|-

VL=V lpi = pi1ll + [|pi41 — pill = vi-1 — v;

7 2 i_ I'_ .
Mean curvature vector H; := w = kkn; with
. 9,—
Lo 4sin 3
A A A
i—1+ 4

First variation of area, when p; — p! = p; + eu; is

L'=L—eY kF(uj,ni)+o(e)
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Approximation properties

Convergence when points are close enough?
> ~ is the graph of x — y(x) = $x? + o(x?)
> pio1 = (=Ti—1, §77 1 +0(771)), piv1 = (73, 577 + o(77)) with
positive 75,71 € O(7), 7 — 0.

c? 2 2 c? 2 2
f,’ =T 1 + g'r,' + O(Ti ) y g,'_l = Ti-1 1 + § i—1 + O(T,'_l)
2
Pi 1I_JI P:P:+1 = Ti—1T; (1 - 4 —TiTi—1+ O(TI ].TI))

BB PP (1= Frmoa + ofriam)
cosf; = 0
i1 (1+ 5721 +0(7 1) (1+ 577 +0(r7))
c? 6?
= 1= g(ﬂ +7ii1)? +o(r?) =1— 5’ +o(7?)

c
Oi~ 3 (Ti—1+ )
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Discrete surfaces

An (abstract) discrete (polyhedral) surface S is

» a set V of vertices

» a set E of (unordered) edges e = (pq), p,g € V, p#gq

> aset F of faces f = (p1,...,pn = p1), Where (p;ipi+1) € E
such that

every vertex p belongs to 3 edges (2 on the boundary)
every edge e belongs to 2 faces (1 on the boundary)
every face f has at least 3 vertices (edges)

neighbors of p form a closed curve (except on the boundary)

00000

boundary curves are closed
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Metric structure

A metric structure on S is given by

» identification of each face f with a (non-unique) planar polygon
(chart), with compatible edge length

» by the lengths /(e) of each edge e, and angles between adjacent
edges, denoted ar(p).

Remarks:
» for a triangle, lengths suffice

» for general polygons, lengths and angles are needed, and they have to
satisfy a integrability relation

Z Ejeizj‘;zl O — 0
j=1

where 0, = m — ) is the rotation angle.
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Intrinsic distance and unfolding

Unfolding = constructing isometric faces with connected edges.

The intrinsic metric inside S is flat with conical singularities

(= straight lines across edges).

The conical singularity is measured by the angle defect (impossibility to
close the unfolded faces) o = 2w — Z a. Also recover gaussian curvature
via : length of circle around p.
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Unfolding preserves intrinsic data
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Gauss—Bonnet around p

Apply the Gauss—Bonnet formula to faces touching p (aka star(p)):

/KdA+//<cgd£=27r
/ﬁgdﬂ =

3a
area(star(p)

We define the discrete gaussian curvature by K(p) =
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Global discrete Gauss—Bonnet

We can directly prove

> K(p) = 2mx =2n(|V| — |E| + |F])

For a surface without boundary,

doalp) = Y r=> ar(p)) =2xV[-> > ar(p)

P P fap f pef
= 27|V[ =) (If| = 2)x = 2x|V|+ 2x|F| — 7 ) _ |f|
f f

= 2n(|V[ - [E[ +[F])
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Dihedral angles

Gaussian curvature relies on intrinsic distances, but extrinsic position is
determined by dihedral angles 8 = (Nq, N»).

Theorem (Reconstruction)

A surface in space is uniquely determined by its lengths, vertex angles and
diedral angles, up to congruence.
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Spherical area

» spherical distance is equal to the dihedral angle

» spherical vertex angle at N; is 7 — «;
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Gauss image of the top vertex
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Variation of area

The area of triangle f = (pgr) is A(f) = %cﬁ - Jgf. So, the partial
gradient of area of a triangulated polyhedral surface S is

1 1 N
VPAZE Z JCWZEZJiquiH
(pgr)eF i

Cotangent formula

Jqiqi+1 = cotp; 4 qip+cot o gir1p
n

1 _
VoA = > Zl(cot Prqteotol ) aib
=
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Mean curvature vector

Fi(p) = ——VA———ZJG———ZJ qiqi+1

e~p

= _Z ZJ,(@ - m) = _Z Z(Ji - Ji—l)ﬁ

_ (Zwa+ZN,1X7>:_Z (R — W) 54
= —Z]e,\sm = Z\e|sm—

eSp

H(p) defines a normal vector at p
H(p) = Y esp H(e) is carried by the edges
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Mean curvature flow

Solve the smoothing problem by moving the points to minimize area (hence
bumps):
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Schwarz lantern (1890)

Discretize the cylinder of radius r and height h with integers n, m

>

>

2nm triangles

distance to cylinder bounded by
_cos ™

r(l—cos%) — 0

area of a single triangle ;

’—r:,’ \/1—1— > m2sint 2T

total area
2rh (nsin %) \/1+ > m2sin 2—

|imitwhenn—>oo,?—>a§oo:

2mrhy /1 + 16502 02

vertical slope of triangles of angle

2h
approx -3

3=
<~

H T
2sm;
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Discrete curvature

Xu, Xu & Sun (2005) prove that there is no discrete expression that will
converge to curvature for all discretization
Proof :

» fix points p = (0,0) , g = (exj, eyj,ez;), i=1,...,4

» consider a surface S given by z = %(ax2 + 2bxy + cy?), then the
gaussian curvature is K = ac — b? and obviously p € S

> solve g; € S in terms of a, b, c, i.e. ax? + 2bxy; + c2y? = 2z /e
the rank may lower than 3, e.g. (x1,)1) = (1,0) = —(x3,y3) and
(x2,¥2) = (0,1) = —(xa, ya); then b is arbitrary.

2 2xqy1 y?
X2 2%y Y3

Xf 2x3y3  ¥3
Xz% 2Xays  Ya
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Why is the discrete Euler characteristic a topological

invariant?
X =1|V|—|E[+]|F|
» add/remove vertex on edge, edge between vertices, vertex in face
» = always assume triangulation if needed
» define an equivalence relation : S ~ S’ if they can be refined up to the
same combinatorial structure. Then x(S) = x(5').
> |s is trivial?

Pascal Romon (UPEMLV) Discrete Differential Geometry May 2013 27 / 36



From the tetrahedron to the cube

©; O
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Smooth Euler characteristic

Define x on smooth S by picking a triangulation (or tiling).
Why is it well-defined?

» invariant under homeomorphisms (bicontinuous bijections)

» move vertices and edges

» refining to prove that x is independent of the tiling
Notes:

» for extrinsic surfaces, one can deform from smooth surfaces to discrete
polyhedra

» there are other meanings of x ...
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Cuts and handles

Theorem

For S with

g handles and

r boundary curves,
X=2—-2g—r

) x =10 ©@x=xo+1

@ yx=xo+1 @ x=xo0+3 Oy=xo+a=1
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Total curvature

Theorem (discrete Gauss—Bonnet)
> a(p) = 2mx (where a(p) is the angle defect) J

Apply to the equilateral metric:
» faces are regular n-gons
» edge length = 1
> inside angle is (1 — 2/n)m (Gauss—Bonnet again)

» angle defect is a(p) = 2mK.(p) (combinatorial curvature)
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Regular tilings of S? and T?

A tiling is regular if degree d and number n = |f| of edges are constant.

x=§:Kdm=|W<1—dn;2)

peV

2 | K |d=3|d=4|d=5|d=6

=3[ 1-d/6 [ 1/2 [ 1/3 ] 1/6 | 0

n=4] 1-d/4 | 1/4 0
5
6

1—-3d/10 | 1/10
1-d/3 | o0

WAS Y X
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Asymptotic degree

Consider tilings with constant number of edges n = |f|. Let v be the
number of vertices of degree k. Then

> |V| =", v, 2|E| = nl|F]|
> |E| = 13", k vk (double counting formula)
> x = V|- 2 E|
C7:Zkkvk:2|E|: 2n (1_L> _2n
Dok Vk 4 n—2 IV|) |V|soo n—2

to be compared with

=Y Kelo)=vi(1- 0" %)

peV
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Exceptional tilings of T?

The torus possesses regular tilings by triangles, quads and hexagons.

An exceptional vertex is a vertex with different degree from the expected
one (e.g. d = 6 for triangles).

Gauss—Bonnet implies : average degree remains constant (e.g. d = 6).

Theorem (lzmestiev, Kusner, Rote, Springborn & Sullivan)

There are no triangle tilings of the torus with two exceptional degrees
(5,7).

Proof: uses geometric with equilateral (hence flat metric), « = 7 d/3.
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Parallel transport and holonomy

If v is a smooth curve on S (no curved vertex), then one can define parallel
transport of vector X along 7 (using unfolding)

If 7 is a loop, the transported vector 7, (X) is a rotated image of X, the
same for any X. If v is a loop around a vertex p, the rotation angle is
exactly a(p).

The group generated by the rotations 7, for all loops ~ is the holonomy
group.

Lemma

For the equilateral metric with identical faces (with n faces, n = 3,4,6),
the holonomy is a subgroup of Zg, Z4 or Zs.

Proof.
» X does not change within a face
» the angle (X, edge of exit) changes from (X, edge of entry) by an
integral multiple of Z or 5 or 2%
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Shortest geodesic

Let T? be endowed with the triangle equilateral metric and two exceptional
vertices p+ of degrees 5 and 7 (angle defects +¢. Consider 7y a shortest
geodesic (non nec. unique).

» ~ does not meet p

» since y does not meet p,, it can be translated until it meets p_, with
side angles m + ¢, m + ¢, ¢+ =7/6 (P, > 0)

» if ¢ or ¢ are non zero, the holonomy is not in Zg, Z4 or Z3

» otherwise suppose ¢ = 0, then one side of  is flat: we can translate
to 7/ meeting again p_ (and p_ only)

» ~,~' delimit a flat cylinder, bounded by curves with positive angles
01, 62, such that 0; + 6, = 7/6, with p_ on both boundaries

» let 6 link p_ to itself along the cylinder. Then a small perturbation of
6 will have 61 holonomy.
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