

Introduction

Discrete differential geometry

- Deals with discrete geometric objects: points (vertices), segments (edges), faces, polygons, polyhedra.
- Finds properties and invariants (affine or metric)
- Focuses on differential quantities (such as curvature)

How do we discretize derivatives?

- Tangent vectors (s is arclength)

$$
t(s)=\frac{d \gamma}{d s}=\lim _{h \rightarrow 0} \frac{\gamma(s+h)-\gamma(s)}{h} \longleftrightarrow t_{i}=\frac{p_{i+1}-p_{i}}{\ell_{i}}
$$

- Curvature in \mathbb{R}^{2} (change in the tangent direction)

$$
\kappa(s) n(s)=\frac{d t}{d s} \stackrel{?}{\longleftrightarrow} \kappa_{i} n_{i}=\frac{t_{i+1}-t_{i}}{\ell_{i}}
$$

(note the lack of symmetry!)

- Curvature of surfaces in \mathbb{R}^{3} ?

Smooth gaussian curvature

Gaussian curvature K at p measures

- Length of infinitesimal circle at p :

$$
K=\lim _{r \rightarrow 0} \frac{3}{\pi r^{3}}(2 \pi r-L(C(r)))
$$

- variation of the normal vector w.r.t. the metric

$$
K=\frac{\operatorname{det} I I}{\operatorname{det} l}=\frac{\left|\begin{array}{ccc}
-\frac{E_{v}}{2}+F_{u v}-\frac{G_{u}}{2} & \frac{E_{u}}{2} & F_{u}-\frac{E_{v}}{2} \\
F_{v}-\frac{G_{u}}{2} & E & F \\
\frac{G_{v}}{2} & F & G
\end{array}\right|-\left|\begin{array}{ccc}
0 & \frac{E_{v}}{2} & \frac{G_{u}}{2} \\
\frac{E_{v}}{2} & E & F \\
\frac{G_{u}}{2} & F & G
\end{array}\right|}{\left(E G-F^{2}\right)^{2}}
$$

- spherical area of the normal

Curvature and derivatives in multiple variables

Problems:

- what are I and II?
- how can one take derivatives when there are no notion of "two variables'?

Conclusion: describe geometric invariants by their properties.

Discrete curves in the plane

A (connected) curve is set of vertices p_{1}, \ldots, p_{n} linked by edges $\left(p_{i} p_{i+1}\right)$. Its (euclidean) invariants are:

- lengths $\ell_{i}=\left\|p_{i+1}-p_{i}\right\|$, defined on edges
- tangent vectors $v_{i}=\frac{p_{i+1}-p_{i}}{\ell_{i}}$
- rotation angles $\theta_{i}=\left(v_{i-1}, v_{i}\right)$

Bonnet theorem

Theorem (Bonnet theorem, smooth case)
Given a function κ, there exists a curve γ whose curvature is exactly κ. Such a curve is unique up to congruence.

Solve in arclength coordinate s, using Cauchy-Lipschitz theorem:

$$
\frac{d^{2} \gamma}{d s^{2}}=\kappa J \frac{d \gamma}{d s}
$$

where J is the rotation by $+\pi / 2$. The (local) solution is determined by initial data $\gamma(0), \gamma^{\prime}(0)$, hence up to congruence (equivariance of the equation).

Global existence is more complicated.

Bonnet theorem (discrete case)

Theorem

Given angles θ_{i} and lengths ℓ_{i}, there exists a discrete curve (p_{i}) corresponding to these. Such a curve is unique up to congruence.

Curvature as closest fitting circle

Menger curvature:

$$
\kappa_{i}^{M}=\frac{2 \sin \theta_{i}}{\left\|p_{i+1}-p_{i-1}\right\|}
$$

Variation of tangent or normal vectors

In the smooth case, $\kappa=\langle d t / d s, J t\rangle=\frac{d \phi}{d s}$, where ϕ is the angle of the tangent t (or normal n). For discrete curves, since $\phi_{i}-\phi_{i-1}$,

$$
\kappa_{i}^{\theta}=\frac{2 \theta_{i}}{\ell_{i-1}+\ell_{i}} \quad \text { or } \quad \kappa_{i}^{n}=\frac{2\left\langle t_{i}-t_{i-1}, n_{i}\right\rangle}{\ell_{i-1}+\ell_{i}}=\frac{4 \sin \frac{\theta_{i}}{2}}{\ell_{i-1}+\ell_{i}}
$$

As a consequence, we recover Gauss-Bonnet

$$
\theta(b)-\theta(a)=\int_{a}^{b} \kappa(s) d s
$$

total angular variation $=\sum_{i} \theta_{i}=\sum_{i} \kappa_{i}^{\theta} \frac{\ell_{i-1}+\ell_{i}}{2}$

Variation of length

Consider the length $L=\sum_{i} \ell_{i}=\sum_{i}\left\|p_{i}-p_{i-1}\right\|$.

$$
\nabla_{p_{i}} L=\nabla_{p_{i}}\left\|p_{i}-p_{i-1}\right\|+\left\|p_{i+1}-p_{i}\right\|=v_{i-1}-v_{i}
$$

Mean curvature vector $\vec{H}_{i}:=\frac{2\left(v_{i}-v_{i-1}\right)}{\ell_{i-1}+\ell_{i}}=\kappa_{i}^{L} n_{i}$ with

$$
\kappa_{i}^{L}=\kappa_{i}^{n}=\frac{4 \sin \frac{\theta_{i}}{2}}{\ell_{i-1}+\ell_{i}}
$$

First variation of area, when $p_{i} \rightarrow p_{i}^{\prime}=p_{i}+\epsilon u_{i}$ is

$$
L^{\prime}=L-\epsilon \sum_{i} \kappa_{i}^{L}\left\langle u_{i}, n_{i}\right\rangle+o(\epsilon)
$$

Approximation properties

Convergence when points are close enough?

- γ is the graph of $x \mapsto y(x)=\frac{c}{2} x^{2}+o\left(x^{2}\right)$
- $p_{i-1}=\left(-\tau_{i-1}, \frac{c}{2} \tau_{i-1}^{2}+o\left(\tau_{i-1}^{2}\right)\right), p_{i+1}=\left(\tau_{i}, \frac{c}{2} \tau_{i}^{2}+o\left(\tau_{i}^{2}\right)\right)$ with positive $\tau_{i}, \tau_{i-1} \in O(\tau), \tau \rightarrow 0$.

$$
\begin{gathered}
\ell_{i}=\tau_{i}\left(1+\frac{c^{2}}{8} \tau_{i}^{2}+o\left(\tau_{i}^{2}\right)\right), \quad \ell_{i-1}=\tau_{i-1}\left(1+\frac{c^{2}}{8} \tau_{i-1}^{2}+o\left(\tau_{i-1}^{2}\right)\right) \\
\overrightarrow{p_{i-1} p_{i}} \cdot \overrightarrow{p_{i} p_{i+1}}=\tau_{i-1} \tau_{i}\left(1-\frac{c^{2}}{4} \tau_{i} \tau_{i-1}+o\left(\tau_{i-1} \tau_{i}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
\cos \theta_{i}= & \frac{\overrightarrow{p_{i-1} p_{i}} \cdot \overrightarrow{p_{i} p_{i+1}}}{\ell_{i} \ell_{i-1}}
\end{aligned}=\frac{\left(1-\frac{c^{2}}{4} \tau_{i} \tau_{i-1}+o\left(\tau_{i-1} \tau_{i}\right)\right)}{\left(1+\frac{c^{2}}{8} \tau_{i-1}^{2}+o\left(\tau_{i-1}^{2}\right)\right)\left(1+\frac{c^{2}}{8} \tau_{i}^{2}+o\left(\tau_{i}^{2}\right)\right)}
$$

Discrete surfaces

An (abstract) discrete (polyhedral) surface S is

- a set V of vertices
- a set E of (unordered) edges $e=(p q), p, q \in V, p \neq q$
- a set F of faces $f=\left(p_{1}, \ldots, p_{n}=p_{1}\right)$, where $\left(p_{i} p_{i+1}\right) \in E$ such that
(1) every vertex p belongs to 3 edges (2 on the boundary)
(2) every edge e belongs to 2 faces (1 on the boundary)
(3) every face f has at least 3 vertices (edges)
(9) neighbors of p form a closed curve (except on the boundary)
(3) boundary curves are closed

Metric structure

A metric structure on S is given by

- identification of each face f with a (non-unique) planar polygon (chart), with compatible edge length
- by the lengths $\ell(e)$ of each edge e, and angles between adjacent edges, denoted $\alpha_{f}(p)$.

Remarks:

- for a triangle, lengths suffice
- for general polygons, lengths and angles are needed, and they have to satisfy a integrability relation

$$
\sum_{j=1}^{n} \ell_{j} e^{i \sum_{k=1}^{j} \theta_{k}}=0
$$

where $\theta_{k}=\pi-\beta_{k}$ is the rotation angle.

Intrinsic distance and unfolding

Unfolding $=$ constructing isometric faces with connected edges.

The intrinsic metric inside S is flat with conical singularities (\Rightarrow straight lines across edges).
The conical singularity is measured by the angle defect (impossibility to close the unfolded faces) $\alpha=2 \pi-\sum \alpha_{k}$. Also recover gaussian curvature via : length of circle around p.

Unfolding preserves intrinsic data

Gauss-Bonnet around p

Apply the Gauss-Bonnet formula to faces touching $p($ aka $\operatorname{star}(p))$:

$$
\begin{aligned}
\int \kappa_{g} d \ell & =\sum_{i} \theta_{i} \quad \int K d A+\int \kappa_{g} d \ell=2 \pi \\
& =\sum_{i}\left(\pi-\phi_{i}^{+}-\phi_{i}^{-}\right) \\
& =\sum_{i}\left(\pi-\phi_{i}^{+}-\phi_{i-1}^{-}\right) \\
& =\sum_{i} \alpha_{i}
\end{aligned}
$$

We define the discrete gaussian curvature by $K(p)=\frac{3 \alpha}{\operatorname{area}(\operatorname{star}(p)}$

Global discrete Gauss-Bonnet

We can directly prove

$$
\sum_{p} K(p)=2 \pi \chi=2 \pi(|V|-|E|+|F|)
$$

For a surface without boundary,

$$
\begin{aligned}
\sum_{p} \alpha(p) & =\sum_{p}\left(2 \pi-\sum_{f \ni p} \alpha_{f}(p)\right)=2 \pi|V|-\sum_{f} \sum_{p \in f} \alpha_{f}(p) \\
& =2 \pi|V|-\sum_{f}(|f|-2) \pi=2 \pi|V|+2 \pi|F|-\pi \sum_{f}|f| \\
& =2 \pi(|V|-|E|+|F|)
\end{aligned}
$$

Dihedral angles

Gaussian curvature relies on intrinsic distances, but extrinsic position is determined by dihedral angles $\theta=\left(\vec{N}_{1}, \vec{N}_{2}\right)$.

Theorem (Reconstruction)

A surface in space is uniquely determined by its lengths, vertex angles and diedral angles, up to congruence.

Spherical area

- spherical distance is equal to the dihedral angle
- spherical vertex angle at \vec{N}_{i} is $\pi-\alpha_{i}$

Gauss image of the top vertex

Variation of area

The area of triangle $f=(p q r)$ is $A(f)=\frac{1}{2} \overrightarrow{q p} \cdot J \overrightarrow{q r}$. So, the partial gradient of area of a triangulated polyhedral surface S is

$$
\nabla_{p} A=\frac{1}{2} \sum_{(p q r) \in F} J \overrightarrow{q r}=\frac{1}{2} \sum_{i} J_{i} \overrightarrow{q_{i} q_{i+1}}
$$

Cotangent formula

$$
\begin{aligned}
& J \overrightarrow{q_{i} q_{i+1}}=\cot \varphi_{i+1}^{-} \overrightarrow{q_{i} p}+\cot \varphi_{i}^{+} \overrightarrow{q_{i+1} p} \\
& \nabla_{p} A=\frac{1}{2} \sum_{i=1}^{n}\left(\cot \varphi_{i+1}^{-}+\cot \varphi_{i-1}^{+}\right) \overrightarrow{q_{i} p}
\end{aligned}
$$

Mean curvature vector

$$
\begin{aligned}
\vec{H}(p) & =-\frac{1}{2} \nabla_{p} A=-\frac{1}{4} \sum_{e \sim p} J \vec{e}=-\frac{1}{4} \sum_{i} J_{i} \overrightarrow{q_{i} q_{i+1}} \\
& =-\frac{1}{4} \sum_{i} J_{i}\left(\overrightarrow{q_{i} p}-\overrightarrow{q_{i+1} p}\right)=-\frac{1}{4} \sum_{i}\left(J_{i}-J_{i-1}\right) \overrightarrow{q_{i}} \vec{p} \\
& =\frac{1}{4}\left(\sum_{i} \vec{N}_{i} \times{\overrightarrow{p q_{i}}}_{i}+\sum_{i} \vec{N}_{i-1} \times \overrightarrow{q_{i} p}\right)=\frac{1}{4} \sum_{i}\left(\vec{N}_{i-1}-\vec{N}_{i}\right) \times{\overrightarrow{p q_{i}}} \\
& =\frac{1}{2} \sum_{i}\left|e_{i}\right| \sin \frac{\theta_{i}}{2} \vec{N}_{e_{i}}=\frac{1}{2} \sum_{e \ni p}|e| \sin \frac{\theta_{e}}{2} \vec{N}_{e}
\end{aligned}
$$

- $\vec{H}(p)$ defines a normal vector at p
- $\vec{H}(p)=\sum_{e \ni p} \vec{H}(e)$ is carried by the edges

Mean curvature flow

Solve the smoothing problem by moving the points to minimize area (hence bumps):

$$
\frac{d p_{i}}{d t}=\vec{H}\left(p_{i}\right)
$$

Schwarz lantern (1890)

Discretize the cylinder of radius r and height h with integers n, m

- $2 n m$ triangles
- distance to cylinder bounded by

$$
r\left(1-\cos \frac{\pi}{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0
$$

- area of a single triangle :

$$
\frac{r h}{m} \sin \frac{\pi}{n} \sqrt{1+\frac{4 r^{2}}{h^{2}} m^{2} \sin ^{4} \frac{2 \pi}{n}}
$$

- total area

$$
2 r h\left(n \sin \frac{\pi}{n}\right) \sqrt{1+\frac{4 r^{2}}{h^{2}} m^{2} \sin ^{4} \frac{2 \pi}{n}}
$$

- limit when $n \rightarrow \infty, \frac{m}{n^{2}} \rightarrow \alpha \leq \infty$:

$$
2 \pi r h \sqrt{1+\frac{16 \pi^{4} r^{2}}{h^{2}} \alpha^{2}}
$$

- vertical slope of triangles of angle approx $\frac{2 h}{\alpha \pi^{2} r}$

Discrete curvature

$X u, X u \& S u n(2005)$ prove that there is no discrete expression that will converge to curvature for all discretization

Proof:

- fix points $p=(0,0), q_{i}=\left(\epsilon x_{i}, \epsilon y_{i}, \epsilon z_{i}\right), i=1, \ldots, 4$
- consider a surface S given by $z=\frac{1}{2}\left(a x^{2}+2 b x y+c y^{2}\right)$, then the gaussian curvature is $K=a c-b^{2}$ and obviously $p \in S$
- solve $q_{i} \in S$ in terms of a, b, c, i.e. $a x_{i}^{2}+2 b x_{i} y_{i}+c^{2} y_{i}^{2}=2 z_{i} / \epsilon$ the rank may lower than 3, e.g. $\left(x_{1}, y_{1}\right)=(1,0)=-\left(x_{3}, y_{3}\right)$ and $\left(x_{2}, y_{2}\right)=(0,1)=-\left(x_{4}, y_{4}\right)$; then b is arbitrary.

$$
\left(\begin{array}{lll}
x_{1}^{2} & 2 x_{1} y_{1} & y_{1}^{2} \\
x_{2}^{2} & 2 x_{2} y_{2} & y_{2}^{2} \\
x_{1}^{3} & 2 x_{3} y_{3} & y_{3}^{2} \\
x_{4}^{2} & 2 x_{4} y_{4} & y_{4}^{2}
\end{array}\right)
$$

Why is the discrete Euler characteristic a topological invariant?

$$
\chi=|V|-|E|+|F|
$$

- add/remove vertex on edge, edge between vertices, vertex in face
- \Rightarrow always assume triangulation if needed
- define an equivalence relation : $S \sim S^{\prime}$ if they can be refined up to the same combinatorial structure. Then $\chi(S)=\chi\left(S^{\prime}\right)$.
- Is is trivial?

From the tetrahedron to the cube

Smooth Euler characteristic

Define χ on smooth S by picking a triangulation (or tiling). Why is it well-defined?

- invariant under homeomorphisms (bicontinuous bijections)
- move vertices and edges
- refining to prove that χ is independent of the tiling

Notes:

- for extrinsic surfaces, one can deform from smooth surfaces to discrete polyhedra
- there are other meanings of $\chi \ldots$

Cuts and handles

Theorem

For S with
g handles and
r boundary curves,
$\chi=2-2 g-r$

(a) $\chi=\chi_{0}$

(d) $\chi=\chi_{0}+1$

(b) $\chi=\chi_{0}$

(e) $\chi=\chi_{0}+3$

(c) $\chi=\chi_{0}+1$

(f) $\chi=\chi_{0}+4=1$

Total curvature

Theorem (discrete Gauss-Bonnet)

$\sum \alpha(p)=2 \pi \chi$ (where $\alpha(p)$ is the angle defect)
Apply to the equilateral metric:

- faces are regular n-gons
- edge length $=1$
- inside angle is $(1-2 / n) \pi$ (Gauss-Bonnet again)
- angle defect is $\alpha(p)=2 \pi K_{c}(p)$ (combinatorial curvature)

$$
K_{c}(p)=1-\frac{d(p)}{2}+\sum_{f \ni p} \frac{1}{|f|}
$$

Regular tilings of \mathbb{S}^{2} and \mathbb{T}^{2}

A tiling is regular if degree d and number $n=|f|$ of edges are constant.

$$
\chi=\sum_{p \in V} K_{c}(p)=|V|\left(1-d \frac{n-2}{2 n}\right)
$$

\mathbb{S}^{2}	K	$d=3$	$d=4$	$d=5$	$d=6$
$n=3$	$1-d / 6$	$1 / 2$	$1 / 3$	$1 / 6$	0
$n=4$	$1-d / 4$	$1 / 4$	0		
$n=5$	$1-3 d / 10$	$1 / 10$			
$n=6$	$1-d / 3$	0			

Asymptotic degree

Consider tilings with constant number of edges $n=|f|$. Let v_{k} be the number of vertices of degree k. Then

- $|V|=\sum_{k} v_{k}, 2|E|=n|F|$
- $|E|=\frac{1}{2} \sum_{k} k v_{k}$ (double counting formula)
- $\chi=|V|-\frac{n-2}{n}|E|$

$$
\bar{d}=\frac{\sum_{k} k v_{k}}{\sum_{k} v_{k}}=\frac{2|E|}{|V|}=\frac{2 n}{n-2}\left(1-\frac{\chi}{|V|}\right) \underset{|V| \rightarrow \infty}{\longrightarrow} \frac{2 n}{n-2}
$$

to be compared with

$$
\chi=\sum_{p \in V} K_{c}(p)=|V|\left(1-d \frac{n-2}{2 n}\right)
$$

Exceptional tilings of \mathbb{T}^{2}

The torus possesses regular tilings by triangles, quads and hexagons. An exceptional vertex is a vertex with different degree from the expected one (e.g. $d=6$ for triangles).
Gauss-Bonnet implies : average degree remains constant (e.g. $d=6$).
Theorem (Izmestiev, Kusner, Rote, Springborn \& Sullivan)
There are no triangle tilings of the torus with two exceptional degrees $(5,7)$.

Proof: uses geometric with equilateral (hence flat metric), $\alpha=\pi d / 3$.

Parallel transport and holonomy

If γ is a smooth curve on S (no curved vertex), then one can define parallel transport of vector X along γ (using unfolding)
If γ is a loop, the transported vector $\tau_{\gamma}(X)$ is a rotated image of X, the same for any X. If γ is a loop around a vertex p, the rotation angle is exactly $\alpha(p)$.
The group generated by the rotations τ_{γ} for all loops γ is the holonomy group.

Lemma

For the equilateral metric with identical faces (with n faces, $n=3,4,6$), the holonomy is a subgroup of $\mathbb{Z}_{6}, \mathbb{Z}_{4}$ or \mathbb{Z}_{3}.

Proof.

- X does not change within a face
- the angle (X, edge of exit) changes from (X, edge of entry) by an integral multiple of $\frac{\pi}{3}$ or $\frac{\pi}{2}$ or $\frac{2 \pi}{3}$

Shortest geodesic

Let \mathbb{T}^{2} be endowed with the triangle equilateral metric and two exceptional vertices $p_{ \pm}$of degrees 5 and 7 (angle defects $\pm \frac{\pi}{6}$. Consider γ a shortest geodesic (non nec. unique).

- γ does not meet p_{+}
- since γ does not meet p_{+}, it can be translated until it meets p_{-}, with side angles $\pi+\phi, \pi+\psi, \phi+\psi=\pi / 6(\phi, \psi \geq 0)$
- if ϕ or ψ are non zero, the holonomy is not in $\mathbb{Z}_{6}, \mathbb{Z}_{4}$ or \mathbb{Z}_{3}
- otherwise suppose $\phi=0$, then one side of γ is flat: we can translate γ to γ^{\prime} meeting again p_{-}(and p_{-}only)
- γ, γ^{\prime} delimit a flat cylinder, bounded by curves with positive angles θ_{1}, θ_{2}, such that $\theta_{1}+\theta_{2}=\pi / 6$, with p_{-}on both boundaries
- let δ link p_{-}to itself along the cylinder. Then a small perturbation of δ will have θ_{1} holonomy.

