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The problem:

To classify domains Ω ∈ R
n that support a positive solution of

the over-determined elliptic system























∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
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∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

Theorem (Serrin, 1971). If Ω is bounded it is a ball
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The non compact case

The problem becomes : to classify unbounded domains Ω ∈ R
n

that support a positive solution of the over-determined elliptic
system
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The non compact case

The problem becomes : to classify unbounded domains Ω ∈ R
n

that support a positive solution of the over-determined elliptic
system























∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

Definition: If such problem is solvable, Ω is a f -extremal
domain
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Constant mean curvature surfaces

The argument used by Serrin was a generalization of the
method used by Alexandroff in 1962 to prove the following:

– p. 4/26



Constant mean curvature surfaces

The argument used by Serrin was a generalization of the
method used by Alexandroff in 1962 to prove the following:

Theorem. In R
n the only enbedded compact mean curvature

hypersurfaces are the spheres.

– p. 4/26



Constant mean curvature surfaces

The argument used by Serrin was a generalization of the
method used by Alexandroff in 1962 to prove the following:

Theorem. In R
n the only enbedded compact mean curvature

hypersurfaces are the spheres.

Recall : the mean curvature H(p) in a point p of a given
hypersurface is the sum (or the mean) of the principal
curvatures at p.
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Conjecture of Berestycki, Caffarelli and Nirenberg

Communication on Pure and Applied Mathematics, (1997).















































∆u+ f(u) = 0 in Ω

u > 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω ,
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EXTRA HYPOTHESIS

R
n\Ω connected

u bounded

⇓

Ω is a half space, or a ball, or a cylinder Rj ×B (where B is a ball) or
the complement of one of these three exemples.
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Many results from EDP’s community

Reichel (Arch. Rat. Mech. & An.)

Some rigidity results for exterior domains, for some very special
kind of functions f , with some special behaviours of the solution
u at infinity
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Many results from EDP’s community

Reichel (Arch. Rat. Mech. & An.)

Some rigidity results for exterior domains, for some very special
kind of functions f , with some special behaviours of the solution
u at infinity

Berestycki-Caffarelli-Nirenberg (Comm. Pure & Appl. Math.)

Some rigidity results for epigraphs, for some very special kind of
functions f , with some special assumptions of asymptotical
flatness for the boundary of the domain.
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Many results from EDP’s community

Reichel (Arch. Rat. Mech. & An.)

Some rigidity results for exterior domains, for some very special
kind of functions f , with some special behaviours of the solution
u at infinity

Berestycki-Caffarelli-Nirenberg (Comm. Pure & Appl. Math.)

Some rigidity results for epigraphs, for some very special kind of
functions f , with some special assumptions of asymptotical
flatness for the boundary of the domain.

Farina-Valdinoci (Arch. Rat. Mech. & An.)

Some rigidity results for epigraphs in R
2 for all functions f , and

in R
3 for some classes of functions f .
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Coming back to constant mean curvature surfaces

In R
n there are non compact surfaces with constant mean

curvature ! For exemple the Delaunay surfaces...
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Coming back to constant mean curvature surfaces

In R
n there are non compact surfaces with constant mean

curvature ! For exemple the Delaunay surfaces...

It is a one parameter smooth family of constant mean curvature
surfaces in R

3.

They are periodic perturbations of a cylinder and are surfaces of
revolution
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A parallel result on overdetermined elliptic problems

Theorem (S. 2010 & Schlenk-S. 2011): For n ≥ 2 there exists a
smooth family of periodic perturbations Ω of the cylinder
Bn−1 × R (Bn−1 = unit ball), with boundary of revolution, where
there exists a periodic and positive solution to



















∆u+ λu = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω
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About the conjecture
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About the conjecture

Corollary. The conjecture is false for n ≥ 3.
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About the conjecture

Corollary. The conjecture is false for n ≥ 3.

The result is true also in dimension 2. But this is not
a counterexemple to the conjecture.

x

t
4−4
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About the conjecture

Corollary. The conjecture is false for n ≥ 3.

The result is true also in dimension 2. But this is not
a counterexemple to the conjecture.

x

t
4−4

The complement of such domain is not connected.
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The conjecture in dimension 2
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The conjecture in dimension 2

Theorem (Ros-S. 2013)

The conjecture of Berestycki-Caffarelli-Nirenberg in dimension 2
is true for all function f such that f(t) ≥ λ t for a λ > 0.
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The proof of the theorem (1)

Step 1. If R2\Ω is connected then there are only three
possibilities for Ω:

1. Ω is bounded (Done by Serrin !)

2. Ω is an exterior domain (Easy case, EDP techniques)

3. ∂Ω is an open curve that separated R
2 in two connected

components, and Ω is one of such components (Hard case)

Ω

Ω

Ω
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Meeks, 1989, J. Diff. Geom.

Definition. A surface has finite topology if

1. it is a compact surface

2. outside of a big ball, the surface is done of a finite number
of noncompact components diffeomorphic to Sn−1 × R+,
called ends.
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Meeks, 1989, J. Diff. Geom.

Definition. A surface has finite topology if

1. it is a compact surface

2. outside of a big ball, the surface is done of a finite number
of noncompact components diffeomorphic to Sn−1 × R+,
called ends.

Theorem. Let S be a properly embedded finite topology
nonzero CMC surface in R

3. Then S cannot have only one end.
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The proof of the theorem

Definition. We say that a domain has finite topology if

1. it is bounded domain, or

2. it is the complement of a compact domain, or

3. outside of a big ball, the domain is done of a finite number
of noncompact components diffeomorphic to Bn−1 × R+,
called ends
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The proof of the theorem

Definition. We say that a domain has finite topology if

1. it is bounded domain, or

2. it is the complement of a compact domain, or

3. outside of a big ball, the domain is done of a finite number
of noncompact components diffeomorphic to Bn−1 × R+,
called ends

Proposition (Ros-S.). If f(t) ≥ λ t for some λ > 0 and Ω is an
f -extremal domain, then Ω cannot have only one end.
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Theorem: Korevaar, Kusner & Solomon, 1989

Let S be a properly embedded finite topology nonzero CMC
surface in R

3 contained in a cylinder. Then S is surface of
revolution.
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An other result

Theorem (Ros-S. 2013). Let Ω be an f -extremal domain of R2

with bounded curvature. If Ω is contained in a half-plane, then Ω
is either a ball or a half-plane or there exists a positive function
ϕ : R −→]0,∞[ such that Ω is {|y| < ϕ(x)}.

Corollary. Proof of the conjecture of
Berestycki-Caffarelli-Nirenberg in the half-plane under the
assumption of bounded curvature.

– p. 15/26



Generalization to H
2 × R and S2 × R (Morabito-S.)

Existence of Delaunay type domains with a positive solution of


















∆u+ λu = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω
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Open problems and conjectures (Ros-S.)
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Open problems and conjectures (Ros-S.)

Basic conjecture:

a class of CMC

hypersurfaces

inRn+1

(which?)
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domains inRn that support a positive

solution to the problem



















∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= const on ∂Ω

for f(t) = λ t (and maybe others?)
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Open problems and conjectures (Ros-S.)

1. Existence of "THE" family of Delaunay type domains for
overdetermined problems, from the cylinder to the sphere (as
limit).
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Open problems and conjectures (Ros-S.)

1. Existence of "THE" family of Delaunay type domains for
overdetermined problems, from the cylinder to the sphere (as
limit).

2. Rigidity of the ends of overdetermined domains : all the ends
have the aymptotic of such Delaunay domains.

3. Gluing method: existence of highly nontrivial overdetermined
domains with such kind of ends.

4. Correspondence between some kind of minimal surfaces and
harmonic overdetermined problems.
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Classification of harmonic overdetermined solutions

Theorem (Traizet 2013).

minimal bigraph inR3 ←→
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domains inR2 that support a positive

solution to the problem



















∆u = 0 in Ω

u = 0 on ∂Ω

∂u

∂ν
= constant on ∂Ω

with the hypothesis that ∂Ω has a finite

number of components, at least in the

quotient ifΩ is periodic
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The Scherk simply periodic minimal surface
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The Scherk type domain
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The Scherk type domain
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The Scherk type domain

Such domain was found by the physicians Baker, Saffman and
Sheffield in 1979 as a solution to an equilibrium problem in
hydrodynamics of vortices !
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We give the idea of the proof of:

Theorem (Ros-S. 2013). Let Ω be an f -extremal domain of R2

with bounded curvature. If Ω is contained in a half-plane, then Ω
is either a ball or a half-plane or there exists a positive function
ϕ : R −→]0,∞[ such that Ω is the symmetric domain
{|y| < ϕ(x)}.
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Step 1: The moving plane argument
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Step 2: The tilted moving plane argument

Ω1Ω2

y

p′

x

Σ(T )

Σ′(T )

0

p

y = −ε x + a
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Step 3: The implication of the moving plane argument
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Step 3: The implication of the moving plane argument

Ω

Ω
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Step 4: From classic PDE’s theory
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Step 4: From classic PDE’s theory

Bounded curvature of ∂Ω implies that ∇u is bounded.
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Step 4: From classic PDE’s theory

Bounded curvature of ∂Ω implies that ∇u is bounded.

if ∇u is bounded
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