Multiplicity results for p-Laplacian problems

Rossella Bartolo
Dipartimento di Meccanica, Matematica e Management Politecnico di Bari

joint works with Anna Maria Candela and Dora Salvatore

Model problem

$1<p<+\infty, \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$

$$
\begin{cases}-\Delta_{p} u=g(x, u) & \text { in } \Omega \tag{P}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Background material: Rabinowitz, Peral, Dinca-Jebelean-Mawhin (super ($p-1$)-polynomial growth)

- $\Omega \subset \mathbb{R}^{N}$ open bounded with smooth boundary $\partial \Omega(N \geq 3)$
- $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ subcritical ($p^{*}=\frac{p N}{N-p}$ if $\left.p \in\right] 1, N\left[, p^{*}=+\infty\right.$ otherwise)
$\lim _{|t| \rightarrow+\infty} \frac{g(x, t)}{|t|^{p-2} t} \in \mathbb{R} \quad$ uniformly with respect to $x \in \Omega$
The existence of (non-trivial) solutions is related to the interaction between g and $\sigma\left(-\Delta_{p}\right)$

Overview

* $p=2$ semilinear case: $W_{0}^{1,2}(\Omega), \sigma(-\Delta),\left(\lambda_{k}\right)_{k}$
- existence results:

Amann-Zehnder, Landesman-Lazer, Ahmad-Lazer-Paul

- multiplicity results:

Rabinowitz, P.Bartolo-Benci-Fortunato, Chang

* $p \neq 2$ quasilinear case: $W_{0}^{1, p}(\Omega), \sigma\left(-\Delta_{p}\right)$
- existence results:

Arcoya-Orsina, Drábek-Robinson, Li-Zhou, Liu-Li

- multiplicity results:

Li-Zhou, Perera-Szulkin

About $\sigma\left(-\Delta_{p}\right)$

The spectral properties of the p-Laplacian in $W_{0}^{1, p}(\Omega)$ are still mostly unknown

- eigenvalues $\left(\mu_{k}\right)_{k}$ in García-Peral 1987 via the Krasnoselskii genus
eigenvalues $\left(\mu_{k}^{\prime}\right)_{k}$ in Perera-Szulkin 2005 via the cohomological index of Fadell and Rabinowitz $\left(\mu_{k}\right)_{k}$ and $\left(\mu_{k}^{\prime}\right)_{k}$ are unbounded, increasing and $\mu_{k}^{\prime} \geq \mu_{k}$
- the first eigenvalue is characterized as

$$
\mu_{1}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x}{\int_{\Omega}|u|^{p} \mathrm{~d} x}
$$

(positive, simple, isolated and has a positive eigenfunction φ_{1})
eigenvalues do not provide for $W_{0}^{1, p}(\Omega)$ a decomposition similar to that of $W_{0}^{1,2}(\Omega)$

Quasi-eigenvalues for $-\Delta_{p}$

In Candela-Palmieri:
$\left(\eta_{h}\right)_{h}$ increasing and diverging sequence corresponding functions $\left(\psi_{h}\right)_{h}$ generate the whole $W_{0}^{1, p}(\Omega)$ $\psi_{1} \equiv \varphi_{1}, \eta_{1}=\mu_{1}$

$$
W_{0}^{1, p}(\Omega)=V_{h} \oplus W_{h} \quad \text { for all } h \in \mathbb{N}
$$

where $V_{h}=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{h}\right\}$

$$
\eta_{h+1} \int_{\Omega}|w|^{p} \mathrm{~d} x \leq \int_{\Omega}|\nabla w|^{p} \mathrm{~d} x \quad \forall h \in \mathbb{N} \text { and } w \in W_{h}
$$

if $p=2,\left(\eta_{h}\right)_{h}$ agrees with $\left(\lambda_{h}\right)_{h}$
for all $h \in \mathbb{N}: \eta_{h} \leq \mu_{h}$

Quasi-eigenvalues for $-\Delta_{p}$

In Li-Zhou:
$\left(\nu_{k}\right)_{k}$ increasing and diverging sequence for all $k \in \mathbb{N}$

$$
\mathcal{W}_{k}=\left\{V: V \text { is a subspace of } W_{0}^{1, p}(\Omega), \varphi_{1} \in V, \operatorname{dim} V \geq k\right\}
$$

$$
\nu_{k}=\inf _{V \in \mathcal{W}_{k}} \sup _{u \in V \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x}{\int_{\Omega}|u|^{p} \mathrm{~d} x}
$$

$\nu_{1}=\mu_{1}$
if $p=2,\left(\nu_{k}\right)_{k}$ agrees with $\left(\lambda_{k}\right)_{k}$
for all $k \in \mathbb{N}: \nu_{k} \geq \mu_{k}$

Setting of the problem

Let $l_{\infty} \in \mathbb{R}$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ s.t.

$$
g(x, t)=l_{\infty}|t|^{p-2} t+f(x, t) \quad \text { for all }(x, t) \in \Omega \times \mathbb{R}
$$

Problem (P) becomes
$\left(P_{\infty}\right) \quad \begin{cases}-\Delta_{p} u-l_{\infty}|u|^{p-2} u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$
Moreover
$f \in C(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$
$\lim _{|t| \rightarrow+\infty} \frac{f(x, t)}{|t|^{p-2} t}=0$

Setting of the problem

The weak solutions of $\left(P_{\infty}\right)$ are the critical points of the C^{1} functional

$$
J(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} \mathrm{~d} x-\frac{l_{\infty}}{p} \int_{\Omega}|u|^{p} \mathrm{~d} x-\int_{\Omega} F(x, u) \mathrm{d} x
$$

on $W_{0}^{1, p}(\Omega)$, with $F(x, t)=\int_{0}^{t} f(x, s) \mathrm{d} s$
Moreover

- $\lim _{t \rightarrow 0} \frac{f(x, t)}{|t|^{p-2} t}=l_{0} \in \mathbb{R}$
- $l_{\infty} \notin \sigma\left(-\Delta_{p}\right)$
- $f(x, \cdot)$ is odd for $x \in \Omega$

Semilinear case: a multiplicity result

Under the previous assumptions, if

- there exist $h, k \in \mathbb{N}$ s.t.

$$
\min \left\{l_{0}+l_{\infty}, l_{\infty}\right\}<\lambda_{h}<\lambda_{k}<\max \left\{l_{0}+l_{\infty}, l_{\infty}\right\}
$$

with $\left(\lambda_{k}\right)_{k}$ (distinct) eigenvalues of $-\Delta$ in $W_{0}^{1,2}(\Omega)$, then
$\left(P_{\infty}\right)$ has at least $\operatorname{dim}\left(M_{h} \oplus \ldots \oplus M_{k}\right)$ distinct pairs of non-trivial solutions
where M_{j} is the eigenspace corresponding to the eigenvalue λ_{j} of $-\Delta$ in $W_{0}^{1,2}(\Omega)$

Quasilinear case: a multiplicity result

Under the previous assumptions, if

- there exist $h, k \in \mathbb{N}$, with $h \geq k$, s.t.

$$
\min \left\{l_{0}+l_{\infty}, l_{\infty}\right\}<\eta_{h} \leq \nu_{k}<\max \left\{l_{0}+l_{\infty}, l_{\infty}\right\}
$$

with $\left(\eta_{k}\right)_{k}$ and $\left(\nu_{k}\right)_{k}$ sequences of quasi-eigenvalues of $-\Delta_{p}$ in $W_{0}^{1, p}(\Omega)$, then
(P_{∞}) has at least $k-h+1$ distinct pairs of non-trivial solutions
Previous results: $l_{0}+l_{\infty}=0$ (Li-Zhou) or also $l_{0}+l_{\infty} \notin \sigma\left(-\Delta_{p}\right)$ (Perera-Szulkin)

Main tools of the proof

- Genus (Coffman) and pseudo-index (Benci) related to the genus
- V, W closed subspaces of X; if

$$
\operatorname{dim} V<+\infty \quad \text { and } \quad \operatorname{codim} W<+\infty
$$

then, for all odd bounded homeomorphism h on X and for all open bounded symmetric neighbourhood $B \subset X$ of 0 :

$$
\gamma(V \cap h(\partial B \cap W)) \geq \operatorname{dim} V-\operatorname{codim} W
$$

- the functional J satisfies a variant of the Palais-Smale condition at level $c \in \mathbb{R}$: any sequence $\left(u_{n}\right)_{n} \subseteq X$ s.t.

$$
\lim _{n \rightarrow+\infty} J\left(u_{n}\right)=c
$$

$$
\lim _{n \rightarrow+\infty}\left\|\mathrm{d} J\left(u_{n}\right)\right\|_{X^{\prime}}\left(1+\left\|u_{n}\right\|_{X}\right)=0
$$

converges in X, up to subsequences

The proof

- Using the ν_{k} : there exists $V^{\sigma} \in \mathcal{W}_{k}$ with $\operatorname{dim} V^{\sigma}=k$ s.t.

$$
J(u) \leq c_{\infty} \quad \forall u \in V^{\sigma}
$$

- using the assumption on l_{0} and η_{k} setting

$$
\begin{gathered}
S_{\rho}=\left\{u \in W_{0}^{1, p}(\Omega):\|u\|=\rho\right\} \text { if } \rho \text { is small enough } \\
J(u) \geq c_{0} \quad \forall u \in S_{\rho} \cap W_{h-1}
\end{gathered}
$$

- $\left(S_{\rho} \cap W_{h-1}, \mathcal{H}^{*}, \gamma^{*}\right)$ pseudo-index theory

$$
\gamma^{*}\left(V^{\sigma}\right)=\min _{h \in \mathcal{H}^{*}} \gamma\left(V^{\sigma} \cap h^{-1}\left(S_{\rho} \cap W_{h-1}\right)\right) \geq \operatorname{dim} V^{\sigma}-\operatorname{codim} W_{h-1}
$$

- Abstract theorem in P.Bartolo-Benci-Fortunato adapted to Banach spaces

Remarks

For all $k \in \mathbb{N}$

$$
\eta_{k} \leq \mu_{k} \leq \nu_{k}
$$

Under additional assumptions:

- existence results
- resonant case
- $l_{0} \in\{ \pm \infty\}$

Problems with broken symmetry

Let $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, h$ continuous, $\varepsilon \in \mathbb{R}, g$ odd

$$
\begin{cases}-\Delta_{p} u=g(x, u)+\varepsilon h(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

- g is super $(p-1)$-linear and subcritical at infinity
- $h(x, u)=h(x), \varepsilon=1$
$p=2$: Struwe, Bahri-Berestycki, Rabinowitz, Bahri-Lions,
Tanaka, Bolle-Ghoussoub-Teherani
$p \neq 2$: García-Peral $(\Omega=] 0,1\left[{ }^{N}\right)$
- $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, \varepsilon$ "small"

Li-Liu (if $p \neq 2 h(x, \cdot)$ also odd); Hirano-Zou (only $p=2$)

- $g(p-1)$-linear at infinity
- $h(x, \cdot)$ odd, non resonant case
$p=2$: Li-Liu

Bolle-Ghoussoub-Teherani type problem

$$
\left.\begin{array}{l}
\left(P_{\varphi}\right) \quad \begin{cases}-\Delta_{p} u=|u|^{q-2} u+h & \text { in } \Omega \\
u=\varphi\end{cases} \\
\text { on } \partial \Omega
\end{array}\right\}
$$

If $2<p<q<\frac{p N(p+1)}{p N+N-p}$, then $\left(P_{\varphi}\right)$ has infinitely many solutions for any $h \in C(\bar{\Omega})$

Problem set on a Banach space, nonlinear operator, regularity of solutions

The idea of the proof

Bolle's method: it is considered a continuous path of functionals $\left(J_{\theta}\right)_{\theta \in[0,1]}$ starting at a symmetric functional (corresponding to $h=0=\varphi$) and ending at the non even functional associated to the problem
Setting $u=v+\varphi$ on Ω, problem (P_{φ}) becomes
(P)

$$
\begin{cases}-\Delta_{p}(v+\varphi)=|v+\varphi|^{q-2}(v+\varphi)+h & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

The weak solutions of (P) are the critical points of the C^{1} functional

$$
J_{1}(v)=\frac{1}{p} \int_{\Omega}|\nabla(v+\varphi)|^{p} \mathrm{~d} x-\frac{1}{q} \int_{\Omega}|v+\varphi|^{q} \mathrm{~d} x-\int_{\Omega} h v \mathrm{~d} x
$$

on $W_{0}^{1, p}(\Omega)$

The idea of the proof

- $\left(J_{\theta}\right)_{\theta \in[0,1]}$ verifies some conditions
- $\left(c_{k}\right)_{k}$ sequence of mini-max values for J_{0} then
- either J_{1} has infinitely many critical points
- or a certain bound on $c_{k+1}-c_{k}$ holds
$\exists L>0$ s.t.

$$
c_{k} \geq L k^{\frac{p q}{N(q-p)}-1} \quad \forall k \geq k_{0}
$$

thus we get an absurd by

$$
c_{k} \leq L k^{p}
$$

if $p=2$ better bound by Tanaka (using Morse Theory)

Remarks

If $p=2$, problem $\left(P_{\varphi}\right)$ has infinitely many solutions for all $q \in] 2, \frac{2 N}{N-1}[$ (Bolle-Ghoussoub-Teherani)

Without additional assumptions, it is still an open problem whether there exist infinitely many solutions for q up to $2^{*}=\frac{2 N}{N-2}$, also for $\varphi=0$
$1<p<q<p^{*}$ and $\frac{q}{q-1}<\frac{p q}{N(q-p)}-1$
Then problem $\left(P_{0}\right)$ has infinitely many solutions for any $f \in L^{p^{\prime}}(\Omega)$ (p^{\prime} is the conjugate exponent of p)
in this case

$$
c_{k} \leq L k^{\frac{q}{q-1}}
$$

The radial case

$R>0, \xi \in \mathbb{R}$
$\left(P_{\xi}\right) \quad \begin{cases}-\Delta_{p} u=|u|^{q-2} u+h & \text { in } B_{R} \\ u=\xi & \text { on } \partial B_{R}\end{cases}$
B_{R} is the open ball centered in 0 with radius R in \mathbb{R}^{N} $2<p<q<p^{*}$ and $h \in C_{\mathrm{rad}}\left(\bar{B}_{R}\right)$
if $p=2$ optimal result in Candela-Palmieri-Salvatore Setting $u=v+\xi$ the weak radial solutions of $\left(P_{\xi}\right)$ are the critical points of the C^{1} functional

$$
J_{1}(v)=\frac{1}{p} \int_{B_{R}}|\nabla v|^{p} \mathrm{~d} x-\frac{1}{q} \int_{B_{R}}|v+\xi|^{q} \mathrm{~d} x-\int_{B_{R}} h v \mathrm{~d} x \quad \text { on } \quad W_{\mathrm{rad}}^{1, p}
$$

Better estimates

If $2<p<q<\bar{p} \exists C$ s.t.

$$
J_{0}(v) \geq C\left(I_{2, r}(v)\right)^{\frac{p}{2}}
$$

with

$$
I_{2, r}(v)=\frac{1}{2} \int_{B_{R}}|\nabla v|^{2} \mathrm{~d} x-\frac{D}{r} \int_{B_{R}}|v|^{r} \mathrm{~d} x
$$

if $v \in W_{\mathrm{rad}}^{1, p}$ verifies

$$
\int_{B_{R}}|\nabla v|^{p} \mathrm{~d} x \gg\left(\int_{B_{R}}|v|^{r} \mathrm{~d} x\right)^{\frac{p}{2}}
$$

and $\left.r=\frac{q(p N-2 N+2 p)-p N(p-2)}{p^{2}} \in\right] 2,2^{*}[$
$\exists \tilde{L}>0$ s.t.

$$
c_{k} \geq \tilde{L} k^{\frac{p r}{2(r-2)}} \quad \forall k \geq \tilde{k}
$$

The radial result

If $2<p<q<\bar{q}$ where

- $\bar{q}=\max \left\{\frac{p N(p+1)}{p N+N-p}, \bar{p}\right\}$ with $\bar{p}:=\frac{p N(p N-2 N+4)}{(N-2)(p N-2 N+2 p)}$, if $N \geq 4$
- $\bar{q}=\max \left\{\frac{3 p(p+1)}{2 p+3}, 4\right\}$, if $N=3$

Then, for any $h \in C_{\mathrm{rad}}\left(\bar{B}_{R}\right)$ problem $\left(P_{\xi}\right)$ has infinitely many radial solutions
$\bar{q}<p^{*}$
Improvement in the radial case if $\bar{q}=\bar{p}$:
for $N=4$
for $N \geq 5$ if $p<\frac{2 N}{N-4}$
(for $N=3: \bar{q}=4$ if $p<3$)

A perturbed problem

Under the assumptions of the symmetric case, for any continuous h
$\left(P_{\varepsilon}\right)$

$$
\begin{cases}-\Delta u-l_{\infty} u=f(x, u)+\varepsilon h(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

- (P_{ε}) may not have a variational structure: truncation argument
- lack of symmetry (h could be not odd): topological relevant critical values

Work in progress for $p \neq 2$

Our results

Under the same assumptions of the unperturbed case, the number \bar{m} of distinct critical values of J is stable under small perturbations $\left(1 \leq \bar{m} \leq \operatorname{dim}\left(M_{h} \oplus \ldots \oplus M_{k}\right)\right)$

- for ε small $\left(P_{\varepsilon}\right)$ has at least a solution
- moltiplicity results (only f odd):
for ε small, $\left(P_{\varepsilon}\right)$ has at least \bar{m} distinct pairs of solutions
but if h is not odd, a further assumption is needed
- the problem can also be resonant
- cases $l_{0}=0, l_{0} \in\{ \pm \infty\}$

Critical and essential levels

If $c \in \mathbb{R}$ is a critical level of a functional I, does G "closed to I " have a critical value near c ? This is not true for every critical level Reeken, Degiovanni-Lancelotti, Mawhin-Willem

Let $I \in C^{1}(X, \mathbb{R}), a, b \in \mathbb{R}, a \leq b$ and $I^{c}=\{u \in X: I(u) \leq c\}$. The pair $\left(I^{b}, I^{a}\right)$ is trivial if for every neighborhood $\left[\alpha^{\prime}, \alpha^{\prime \prime}\right]$ of a and $\left[\beta^{\prime}, \beta^{\prime \prime}\right]$ of b there exist two closed subsets A and B of X s.t. $I^{\alpha^{\prime}} \subseteq A \subseteq I^{\alpha^{\prime \prime}}, I^{\beta^{\prime}} \subseteq B \subseteq I^{\beta^{\prime \prime}}$ and A is a strong deformation retract of B

A real number c is an essential value of I if for every $\varepsilon>0$ there exist $a, b \in] c-\varepsilon, c+\varepsilon\left[(a<b)\right.$ s.t. the pair $\left(I^{b}, I^{a}\right)$ is not trivial
"odd" definitions

Critical and essential values

- an essential value c is a critical value if $(P S)_{c}$ holds
- 0 is not an essential value for

$$
\phi(x)= \begin{cases}(x+1)^{3} & \text { if } x<-1 \\ 0 & \text { if }-1 \leq x \leq 1 \\ (x-1)^{3} & \text { if } x>1\end{cases}
$$

- values arising from mini-max procedures are essential ones
- if $I \in C^{1}$ and $(P S)$ holds, from the Deformation Lemma, if c is not a critical value, "near" there exists a trivial pair in some sense we require that the reversed implication holds

The idea of the proof

Truncation argument:

- continuous cut functions for $j \in \mathbb{N}$
- for ε small, functionals $J_{j, \epsilon}$
- the critical levels of J are critical ones for $J_{j, \epsilon}$, indeed

Let $c \in \mathbb{R}$ be a topologically relevant critical value (i.e. an essential one) of $I \in C^{1}(X, \mathbb{R})$. Then, for every $\eta>0$ there exists $\delta>0$ s.t. every $G \in C^{1}(X, \mathbb{R})$ satisfying $(P S)$ in $] c-\eta, c+\eta[$ with

$$
\sup \{|I(u)-G(u)|: u \in X\}<\delta
$$

admits a critical value in $] c-\eta, c+\eta[$
the critical points of $J_{j, \epsilon}$ are uniformly bounded with respect to j and ε

