Multiplicity results for *p*-Laplacian problems

Rossella Bartolo

Dipartimento di Meccanica, Matematica e Management Politecnico di Bari

joint works with Anna Maria Candela and Dora Salvatore

Model problem

$$1
$$(P) \qquad \begin{cases} -\Delta_p u = g(x, u) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$$$

Background material: Rabinowitz, Peral, Dinca-Jebelean-Mawhin (super (p-1)-polynomial growth)

• $\Omega \subset \mathbb{R}^N$ open bounded with smooth boundary $\partial \Omega$ $(N \geq 3)$

•
$$g: \Omega \times \mathbb{R} \to \mathbb{R}$$
 subcritical $(p^* = \frac{pN}{N-p} \text{ if } p \in]1, N[, p^* = +\infty \text{ otherwise})$

$$\lim_{|t| o +\infty}rac{g(x,t)}{|t|^{p-2}t}\in\mathbb{R}$$
 uniformly with respect to $x\in\Omega$

The existence of (non-trivial) solutions is related to the interaction between g and $\sigma(-\Delta_p)$

Overview

* p=2 semilinear case: $W^{1,2}_0(\Omega)$, $\sigma(-\Delta)$, $(\lambda_k)_k$

- existence results:
 - Amann-Zehnder, Landesman-Lazer, Ahmad-Lazer-Paul
- multiplicity results:
 Rabinowitz, P.Bartolo-Benci-Fortunato, Chang
- * $p \neq 2$ quasilinear case: $W_0^{1,p}(\Omega)$, $\sigma(-\Delta_p)$
 - existence results:
 - Arcoya-Orsina, Drábek-Robinson, Li-Zhou, Liu-Li
 - multiplicity results: Li-Zhou. Perera-Szulkin

About $\sigma(-\Delta_p)$

The spectral properties of the p-Laplacian in $W^{1,p}_0(\Omega)$ are still mostly unknown

- eigenvalues $(\mu_k)_k$ in García-Peral 1987 via the Krasnoselskii genus eigenvalues $(\mu'_k)_k$ in Perera-Szulkin 2005 via the cohomological index of Fadell and Rabinowitz $(\mu_k)_k$ and $(\mu'_k)_k$ are unbounded, increasing and $\mu'_k \ge \mu_k$
- the first eigenvalue is characterized as

$$\mu_1 = \inf_{u \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p \, \mathrm{d}x}{\int_{\Omega} |u|^p \, \mathrm{d}x}$$

(positive, simple, isolated and has a positive eigenfunction φ_1)

eigenvalues do not provide for $W^{1,p}_0(\Omega)$ a decomposition similar to that of $W^{1,2}_0(\Omega)$

Quasi-eigenvalues for $-\Delta_p$

In Candela-Palmieri: $(\eta_h)_h$ increasing and diverging sequence corresponding functions $(\psi_h)_h$ generate the whole $W_0^{1,p}(\Omega)$ $\psi_1 \equiv \varphi_1, \ \eta_1 = \mu_1$

$$W_0^{1,p}(\Omega) = V_h \oplus W_h \quad \text{ for all } h \in \mathbb{N}$$

where $V_h = \operatorname{span}\{\psi_1, \ldots, \psi_h\}$

$$\eta_{h+1} \int_{\Omega} |w|^p \, \mathrm{d}x \le \int_{\Omega} |\nabla w|^p \, \mathrm{d}x \quad \forall h \in \mathbb{N} \text{ and } w \in W_h$$

if p=2, $(\eta_h)_h$ agrees with $(\lambda_h)_h$

for all $h \in \mathbb{N}$: $\eta_h \leq \mu_h$

Quasi-eigenvalues for $-\Delta_p$

In Li-Zhou: $(
u_k)_k$ increasing and diverging sequence for all $k \in \mathbb{N}$

 $\mathcal{W}_k = \{V : V \text{ is a subspace of } W_0^{1,p}(\Omega), \varphi_1 \in V, \dim V \ge k\}$

$$\nu_k = \inf_{V \in \mathcal{W}_k} \sup_{u \in V \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p \, \mathrm{d}x}{\int_{\Omega} |u|^p \, \mathrm{d}x}$$

 $u_1 = \mu_1$ if p = 2, $(\nu_k)_k$ agrees with $(\lambda_k)_k$ for all $k \in \mathbb{N}$: $\nu_k \ge \mu_k$

Broken symmetry

Setting of the problem

Let $l_{\infty} \in \mathbb{R}$ and $f : \Omega \times \mathbb{R} \to \mathbb{R}$ s.t.

 $g(x,t) \ = \ l_{\infty} |t|^{p-2} t + f(x,t) \quad \text{for all } (x,t) \in \Omega \times \mathbb{R}$

Problem (P) becomes

$$(P_{\infty}) \qquad \begin{cases} -\Delta_p u - l_{\infty} |u|^{p-2} u = f(x, u) & \text{ in } \Omega\\ u = 0 & \text{ on } \partial\Omega \end{cases}$$

Moreover

$$f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$$
$$\lim_{|t| \to +\infty} \frac{f(x, t)}{|t|^{p-2}t} = 0$$

Broken symmetry

Setting of the problem

The weak solutions of $({\cal P}_\infty)$ are the critical points of the C^1 functional

$$J(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, \mathrm{d}x - \frac{l_{\infty}}{p} \int_{\Omega} |u|^p \, \mathrm{d}x - \int_{\Omega} F(x, u) \, \mathrm{d}x$$

on $W^{1,p}_0(\Omega)$, with $F(x,t) = \int_0^t f(x,s) \, \mathrm{d}s$

Moreover

- $\lim_{t\to 0} \frac{f(x,t)}{|t|^{p-2}t} = l_0 \in \mathbb{R}$
- $l_{\infty} \not\in \sigma(-\Delta_p)$
- $\bullet \ f(x,\cdot) \text{ is odd for } x\in \Omega$

Semilinear case: a multiplicity result

Under the previous assumptions, if

• there exist $h, k \in \mathbb{N}$ s.t.

$$\min\{l_0 + l_\infty, l_\infty\} < \lambda_h < \lambda_k < \max\{l_0 + l_\infty, l_\infty\}$$

with $(\lambda_k)_k$ (distinct) eigenvalues of $-\Delta$ in $W^{1,2}_0(\Omega)$, then

 (P_∞) has at least $\dim(M_h\oplus\ldots\oplus M_k)$ distinct pairs of non-trivial solutions

where M_j is the eigenspace corresponding to the eigenvalue λ_j of $-\Delta$ in $W^{1,2}_0(\Omega)$

Quasilinear case: a multiplicity result

Under the previous assumptions, if

• there exist $h, k \in \mathbb{N}$, with $h \ge k$, s.t.

$$\min\{l_0+l_\infty, l_\infty\} < \eta_h \le \nu_k < \max\{l_0+l_\infty, l_\infty\}$$

with $(\eta_k)_k$ and $(\nu_k)_k$ sequences of quasi–eigenvalues of $-\Delta_p$ in $W^{1,p}_0(\Omega),$ then

 (P_{∞}) has at least k - h + 1 distinct pairs of non-trivial solutions

Previous results: $l_0 + l_{\infty} = 0$ (Li-Zhou) or also $l_0 + l_{\infty} \notin \sigma(-\Delta_p)$ (Perera-Szulkin)

Main tools of the proof

- Genus (Coffman) and pseudo-index (Benci) related to the genus
- V, W closed subspaces of X; if

 $\dim V < +\infty \quad \text{ and } \quad \operatorname{codim} W < +\infty$

then, for all odd bounded homeomorphism h on X and for all open bounded symmetric neighbourhood $B \subset X$ of 0:

 $\gamma(V \cap h(\partial B \cap W)) \geq \dim V - \operatorname{codim} W$

• the functional J satisfies a variant of the Palais-Smale condition at level $c \in \mathbb{R}$: any sequence $(u_n)_n \subseteq X$ s.t.

$$\lim_{n \to +\infty} J(u_n) = c$$

$$\lim_{n \to +\infty} \| \mathrm{d} J(u_n) \|_{X'} (1 + \| u_n \|_X) = 0$$

converges in X, up to subsequences

The proof

• Using the ν_k : there exists $V^{\sigma} \in \mathcal{W}_k$ with $\dim V^{\sigma} = k$ s.t.

 $J(u) \le c_{\infty} \qquad \forall u \in V^{\sigma}$

• using the assumption on l_0 and η_k setting $S_{\rho} = \{u \in W_0^{1,p}(\Omega) : ||u|| = \rho\}$ if ρ is small enough $J(u) \ge c_0 \quad \forall u \in S_{\rho} \cap W_{h-1}$

•
$$(S_{\rho} \cap W_{h-1}, \mathcal{H}^*, \gamma^*)$$
 pseudo-index theory
 $\gamma^*(V^{\sigma}) = \min_{h \in \mathcal{H}^*} \gamma(V^{\sigma} \cap h^{-1}(S_{\rho} \cap W_{h-1})) \ge \dim V^{\sigma} - \operatorname{codim} W_{h-1}$

• Abstract theorem in P.Bartolo-Benci-Fortunato adapted to Banach spaces

Remarks

For all $k \in \mathbb{N}$

$\eta_k \le \mu_k \le \nu_k$

Under additional assumptions:

- existence results
- resonant case
- $l_0 \in \{\pm\infty\}$

Problems with broken symmetry

Let $h:\Omega\times\mathbb{R}\to\mathbb{R},$ h continuous, $\varepsilon\in\mathbb{R},$ g odd

$$(P_{\varepsilon}) \qquad \begin{cases} -\Delta_p u = g(x, u) + \varepsilon h(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Bolle-Ghoussoub-Teherani type problem

$$(P_{\varphi}) \qquad \qquad \left\{ \begin{array}{ll} -\Delta_p u = |u|^{q-2}u + h & \quad \text{in } \Omega \\ u = \varphi & \quad \text{on } \partial \Omega \end{array} \right.$$

 $1 , <math display="inline">\Omega$ any smooth domain, $\varphi \in C^2(\overline{\Omega})$

If $2 , then <math>(P_{\varphi})$ has infinitely many solutions for any $h \in C(\overline{\Omega})$

Problem set on a Banach space, nonlinear operator, regularity of solutions

The idea of the proof

Bolle's method: it is considered a continuous path of functionals $(J_{\theta})_{\theta \in [0,1]}$ starting at a symmetric functional (corresponding to $h = 0 = \varphi$) and ending at the non even functional associated to the problem

$$\begin{array}{l} \mbox{Setting } u = v + \varphi \mbox{ on } \Omega, \mbox{ problem } (P_{\varphi}) \mbox{ becomes} \\ (P) \qquad \left\{ \begin{array}{l} -\Delta_p (v + \varphi) \ = |v + \varphi|^{q-2} (v + \varphi) + h & \mbox{ in } \Omega \\ v = 0 & \mbox{ on } \partial\Omega \end{array} \right. \end{array}$$

The weak solutions of $\left(P\right)$ are the critical points of the C^{1} functional

$$J_1(v) = \frac{1}{p} \int_{\Omega} |\nabla(v + \varphi)|^p \, \mathrm{d}x - \frac{1}{q} \int_{\Omega} |v + \varphi|^q \, \mathrm{d}x - \int_{\Omega} hv \, \mathrm{d}x$$

on $W_0^{1,p}(\Omega)$

Broken symmetry

The idea of the proof

- $(J_{\theta})_{\theta \in [0,1]}$ verifies some conditions
- $(c_k)_k$ sequence of mini-max values for J_0

then

- either J_1 has infinitely many critical points
- or a certain bound on $c_{k+1} c_k$ holds

 $\exists L > 0 \text{ s.t.}$

$$c_k \ge Lk^{\frac{pq}{N(q-p)}-1} \quad \forall k \ge k_0$$

thus we get an absurd by

$$c_k \leq Lk^p$$

if p = 2 better bound by Tanaka (using Morse Theory)

Remarks

If p = 2, problem (P_{φ}) has infinitely many solutions for all $q \in]2, \frac{2N}{N-1}[$ (Bolle-Ghoussoub-Teherani)

Without additional assumptions, it is still an open problem whether there exist infinitely many solutions for q up to $2^*=\frac{2N}{N-2}$, also for $\varphi=0$

$$\begin{split} 1$$

in this case

$$c_k \le Lk^{\frac{q}{q-1}}$$

The radial case

R>0, $\xi\in\mathbb{R}$

$$(P_{\xi}) \qquad \begin{cases} -\Delta_p u = |u|^{q-2}u + h & \text{in } B_R \\ u = \xi & \text{on } \partial B_R \end{cases}$$

 B_R is the open ball centered in 0 with radius R in \mathbb{R}^N $2 and <math>h \in C_{rad}(\overline{B}_R)$ if p = 2 optimal result in Candela-Palmieri-Salvatore Setting $u = v + \xi$ the weak radial solutions of (P_{ξ}) are the critical points of the C^1 functional

$$J_1(v) = \frac{1}{p} \int_{B_R} |\nabla v|^p \, \mathrm{d}x - \frac{1}{q} \int_{B_R} |v + \xi|^q \, \mathrm{d}x - \int_{B_R} hv \, \mathrm{d}x \quad \text{ on } \quad W^{1,p}_{\mathrm{rad}}$$

Better estimates

If 2

$$J_0(v) \ge C (I_{2,r}(v))^{\frac{p}{2}}$$

with

$$I_{2,r}(v) = \frac{1}{2} \int_{B_R} |\nabla v|^2 \, \mathrm{d}x - \frac{D}{r} \int_{B_R} |v|^r \, \mathrm{d}x$$

 $\text{ if } v \in W^{1,p}_{\mathrm{rad}} \text{ verifies }$

$$\int_{B_R} |\nabla v|^p \, \mathrm{d}x >> \left(\int_{B_R} |v|^r \, \mathrm{d}x\right)^{\frac{p}{2}}$$

and $r = \frac{q(pN-2N+2p)-pN(p-2)}{p^2} \in]2, 2^*[$

 $\exists \tilde{L}>0 \text{ s.t.}$

$$c_k \ge \tilde{L}k^{\frac{pr}{2(r-2)}} \quad \forall k \ge \tilde{k}$$

The radial result

If
$$2 where
• $\overline{q} = \max\left\{\frac{pN(p+1)}{pN+N-p}, \overline{p}\right\}$ with $\overline{p} := \frac{pN(pN-2N+4)}{(N-2)(pN-2N+2p)}$, if $N \ge 4$
• $\overline{q} = \max\left\{\frac{3p(p+1)}{2p+3}, 4\right\}$, if $N = 3$
Then, for any $h \in C_{rad}(\overline{B}_R)$ problem (P_{ξ}) has infinitely many$$

Then, for any $h \in C_{rad}(B_R)$ problem (P_{ξ}) has infinitely many radial solutions

$$\label{eq:q_norm} \begin{split} \bar{q} &< p^* \\ \text{Improvement in the radial case if } \bar{q} = \bar{p} \text{:} \\ \text{for } N = 4 \\ \text{for } N \geq 5 \text{ if } p < \frac{2N}{N-4} \\ (\text{for } N = 3 \text{: } \bar{q} = 4 \text{ if } p < 3) \end{split}$$

A perturbed problem

Under the assumptions of the symmetric case, for any continuous \boldsymbol{h}

$$(P_{\varepsilon}) \qquad \begin{cases} -\Delta u - l_{\infty}u = f(x, u) + \varepsilon h(x, u) & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

- $(P_{\ensuremath{\varepsilon}})$ may not have a variational structure: truncation argument
- lack of symmetry (*h* could be not odd): topological relevant critical values

Work in progress for $p \neq 2$

Our results

Under the same assumptions of the unperturbed case, the number \bar{m} of distinct critical values of J is stable under small perturbations $(1 \leq \bar{m} \leq \dim(M_h \oplus \ldots \oplus M_k))$

- for ε small (P_{ε}) has at least a solution
- moltiplicity results (only f odd): for ε small, (P_{ε}) has at least \bar{m} distinct pairs of solutions but if h is not odd, a further assumption is needed
- the problem can also be resonant
- cases $l_0 = 0$, $l_0 \in \{\pm \infty\}$

Critical and essential levels

If $c \in \mathbb{R}$ is a critical level of a functional I, does G "closed to I" have a critical value near c? This is not true for every critical level Reeken, Degiovanni-Lancelotti, Mawhin-Willem

Let $I \in C^1(X, \mathbb{R})$, $a, b \in \mathbb{R}$, $a \leq b$ and $I^c = \{u \in X : I(u) \leq c\}$. The pair (I^b, I^a) is *trivial* if for every neighborhood $[\alpha', \alpha'']$ of a and $[\beta', \beta'']$ of b there exist two closed subsets A and B of X s.t. $I^{\alpha'} \subseteq A \subseteq I^{\alpha''}$, $I^{\beta'} \subseteq B \subseteq I^{\beta''}$ and A is a strong deformation retract of B

A real number c is an *essential value* of I if for every $\varepsilon > 0$ there exist $a, b \in]c - \varepsilon, c + \varepsilon[$ (a < b) s.t. the pair (I^b, I^a) is not *trivial*

"odd" definitions

Introduction

Symmetric problem

Broken symmetry

Critical and essential values

- an essential value c is a critical value if $(PS)_c$ holds
- 0 is not an essential value for

$$\phi(x) = \begin{cases} (x+1)^3 & \text{if } x < -1 \\ 0 & \text{if } -1 \le x \le 1 \\ (x-1)^3 & \text{if } x > 1 \end{cases}$$

- values arising from mini-max procedures are essential ones
- if I ∈ C¹ and (PS) holds, from the Deformation Lemma, if c is not a critical value, "near" there exists a trivial pair in some sense we require that the reversed implication holds

The idea of the proof

Truncation argument:

- \bullet continuous cut functions for $j\in\mathbb{N}$
- for ε small, functionals $J_{j,\epsilon}$
- the critical levels of J are critical ones for $J_{j,\epsilon}$, indeed

Let $c \in \mathbb{R}$ be a topologically relevant critical value (i.e. an essential one) of $I \in C^1(X, \mathbb{R})$. Then, for every $\eta > 0$ there exists $\delta > 0$ s.t. every $G \in C^1(X, \mathbb{R})$ satisfying (PS) in $]c - \eta, c + \eta[$ with

$$\sup\{|I(u) - G(u)| : u \in X\} < \delta$$

admits a critical value in $]c - \eta, c + \eta[$

the critical points of $J_{j,\epsilon}$ are uniformly bounded with respect to j and ε